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Application of the Hylleraas-B-spline basis set: Nonrelativistic Bethe logarithm of helium

San-Jiang Yang ,1,2 Yong-Bo Tang ,3 Yong-Hua Zhao,4 Ting-Yun Shi,2,* and Hao-Xue Qiao1,†

1School of Physics and Technology, Wuhan University, Wuhan 430072, People’s Republic of China
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
3College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People’s Republic of China

4Computer Network Information Center, Chinese Academy of Sciences Beijing, People’s Republic of China

(Received 29 July 2019; published 21 October 2019)

In this paper, we report an application of the Hylleraas-B-spline basis to the calculation of the nonrelativistic
Bethe logarithm of helium. The Bethe logarithms for the n 1S states of helium, where n is up to 10, are calculated
precisely in the acceleration and the velocity-acceleration gauges, which greatly improves the accuracy of the
traditional B-spline basis. In addition, to overcome numerical instability problem emerging from the use of this
basis, a multiple-precision generalized symmetric eigenvalue problem solver is developed.
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I. INTRODUCTION

For few-electron atomic systems, an atomic energy level
can be calculated to high precision using the theory of non-
relativistic quantum electrodynamics [1], which provides a
series expansion of the energy level in terms of Zα and α,
with Z being the nuclear charge and α the fine-structure
constant. The leading-order relativistic correction is scaled as
mα4, and the leading-order radiative correction is scaled as
mα5, which contains the so-called Bethe logarithm. The Bethe
logarithm can be expressed as an infinite sum over a complete
set of intermediate states. Since the Bethe logarithm involves
the factor ln |Em − E0| that makes the summation extremely
slowly converge, precise evaluation of the Bethe logarithm is
a very challenging task.

For helium and heliumlike ions, Drake and Goldman [2]
developed an approach for calculating the Bethe logarithm. In
their approach, it requires only a single matrix diagonalization
with respect to a carefully constructed basis set in Hylleraas
coordinates that can reflect a huge range of distance scales.
For highly excited Rydberg states, they established the 1/n
expansion formula [3,4] that contains the Rydberg electron
hydrogenic Bethe logarithm and the correction due to the
higher multipole moments. The Drake-Goldman’s method has
also been successfully applied to helium using different basis
sets [5] and to other few-body systems, including hydrogen
[6,7], the hydrogen molecular ion [8], and lithium [9]. Another
independent approach of calculating the Bethe logarithm is
the integral representation method of Schwartz [10], which
has been further developed by Korobov [11,12] and Pachucki
and Komasa [13,14] and applied to few-electron atomic and
molecular systems.

By building Hylleraas coordinates into the B-spline func-
tions, we have recently proposed the Hylleraas-B-spline basis
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and used this type of basis to calculate static dipole polar-
izabilities, dynamic dipole polarizabilities and dynamic hy-
perpolarizabilities of helium [15,16]. This method has signifi-
cantly improved the traditional B-spline basis in the sense that
it is capable of generating a wider range of energy spectrum of
the Hamiltonian. In this work, we will extend the Hylleraas-
B-spline basis to the calculations of the Bethe logarithm of
helium. Tang et al. [7] performed a calculation of the Bethe
logarithm for atomic hydrogen using the traditional B-spline
basis set and found that the first nonzero knot of B-splines is
closely related to the range of the intermediate energy spec-
trum generated by the B-spline basis. For the case of helium,
however, the knot sequence of B-splines that are situated very
near the origin could result in a numerical degeneracy prob-
lem. To overcome this problem, based on Message Passing
Interface and the software ARPREC [17], we have devel-
oped a parallel program, the Multiple-precision Generalized
Symmetric Eigenvalue Problem Solver (MGSEPS), which can
solve a generalized symmetric matrix eigenvalue problem
efficiently with great stability. With this program, we will
calculate the Bethe logarithm for the n 1S states of helium with
n up to 10, in both the acceleration gauge and the velocity-
acceleration gauge. Comparisons with previous B-spline re-
sults and with results from other methods will be made.

The article is organized as follows. In Sec. II we briefly
introduce the Hylleraas-B-spline basis and the basic formulas
for the Bethe logarithm in two gauges. Numerical results are
presented in Sec. III, together with comparisons with available
theoretical results. Finally, a summary is given in Sec. IV.
Atomic units are used throughout.

II. THEORETICAL METHOD

A. Hylleraas-B-spline basis set

The Hamiltonian of helium for the case of infinite nuclear
mass is

H =
2∑

i=1

(
− 1

2me

�∇2
i − Z

ri

)
+ 1

r12
, (1)
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where Z = 2 is the nuclear charge, me is the electron mass, ri

is the distance between ith electron and the nucleus, and r12 is
the distance between the two electrons. Considering the wave
function behavior at the two electron coalescences, the wave
function of helium can be expanded using the following basis:
{
�i jcl1l2 = Bi,k (r1)Bj,k (r2)rc

12�
LM
l1l2 (r̂1, r̂2) ± exchange

}
, (2)

where rc
12 is a Hylleraas factor, �LM

l1l2
is the vector coupled

product of angular momenta l1 and l2 for the two electrons
to form the eigenstate of L(L + 1) and M, respectively, and
Bi,k (r) is the ith B-spline function of order k defined in the
finite domain (0, rmax) [18]. The shape of Bi,k (r) depends on
the nondecreasing knot sequence {ti} and the spline order k, as
defined as
⎧⎪⎪⎨
⎪⎪⎩

ti = 0 i = 1, 2, . . . , k − 1,

ti = rmax
eγ

(
i−k

N−k+1

)
− 1

eγ − 1
i = k, k + 1, . . . , N,

ti = rmax i = N + 1, . . . , N + k − 1, (3)

where N is the total number of B-splines, k = 7, and γ = τ ×
rmax, with τ being an adjustable parameter.

In this article, we restrict c in Eq. (2) to be less than 2. The
parameters i, j, c, l1, l2 are arranged according as follows:

i = 1, 2, . . . , j, j = 1, 2, . . . , N, c = 0, 1,

l1 = 0, 1, . . . , lmax, l2 = 0, 1, . . . , lmax, (4)

where lmax is the partial-wave expansion length. The terms
which make the norm of �i jcl1l2 be zero must be eliminated.

B. Nonrelativistic Bethe logarithm

The definition of the nonrelativistic Bethe logarithm in the
acceleration gauge is

β(n, L, S) = N (A)(n, L, S)

D(A)(n, L, S)
. (5)

In the above, n, L, S are the principal, total angular momen-
tum, and total electron spin quantum numbers, respectively,
for the state of interest �0. N (A) and D(A) are defined by

N (A)(n, L, S) =
∑
m,i

∣∣∣∣〈�0|Z�ri

r3
i

|�m〉
∣∣∣∣
2

× (Em − E0)−1 ln |Em − E0|
(6)

and

D(A)(n, L, S) =
∑
m,i

∣∣∣∣〈�0|Z�ri

r3
i

|�m〉
∣∣∣∣
2

(Em − E0)−1, (7)

where the summation over m is carried out for all intermediate
states �m.

Using the commutation relation

(Em − E0)〈�0| �p|�m〉 = 〈�0|[ �p, H]|�m〉

= −iZ〈�0| �r
r3

|�m〉,
(8)

one can recast the Bethe logarithm into the velocity-
acceleration gauge,

N (VA)(n, L, S) =
∑
m,i

〈�0|Z�ri

r3
i

|�m〉〈�0| �pi|�m〉

× ln |Em − E0|
(9)

and

D(VA)(n, L, S) =
∑
m,i

〈�0|Z�ri

r3
i

|�m〉〈�0| �pi|�m〉. (10)

It is noted that the following expression is valid:

D(A)(n, L, S) =
∑
m,i

|〈�0| �pi|�m〉|2(Em − E0). (11)

D(A)(n, L, S) in the above is similar to the expression of
the dipole polarizability in the velocity gauge if the factor
1/(Em − E0)4 were inserted. Because of the absence of this
factor, contributions from high-energy intermediate states are
significant. For the numerator N (A), the existence of ln |Em −
E0| makes high-energy intermediate states more important.
Drake and Goldman [2] pointed out that, in order to obtain
a converged value of the Bethe logarithm for helium, the
maximum intermediate energy should exceed 106 to cover a
huge range of distance scales.

III. RESULTS AND DISCUSSION

The maximum energy Emax of intermediate states is crucial
to obtain a precise value of the Bethe logarithm. For the
case of hydrogen, Ref. [7] shows that Emax generated by
the B-spline basis is closely related to the first nonzero knot
T1. In the case of helium, first, we do the calculations with
rmax = 200, τ = 0.0875 and rmax = 400, τ = 0.0475, respec-
tively, letting the first nonzero knot in the range 10−5–10−6. In
these two cases, under the total number of B-splines N = 50
and partial-wave expansion length lmax = 2, the first nonzero
knot T1 = 2.38 × 10−6 and 1.17 × 10−6 and Emax = 1.85 ×
1015 and 7.50 × 1014, respectively.

The extrapolated values of ground-state energy of he-
lium under these parameters are E = −2.903724(1) and
−2.903723(1), respectively. Table I shows a convergence

TABLE I. Convergence of the Bethe logarithm for the ground
state of helium as the total number of B-splines N increases, where
the partial-wave expansion length lmax = 2. Numbers in parentheses
are computational uncertainties.

N rmax = 200 rmax = 400

20 4.378 4.37
25 4.371 4.369
30 4.3703 4.3705
35 4.37019 4.3702
40 4.370167 4.37017
45 4.370161 4.370164
50 4.3701599 4.370161
∞ 4.3701596(3) 4.370160(1)
Ref. [2] 4.370160218(3)
Ref. [21] 4.3701602229(1)
Ref. [12] 4.3701602230703(3)
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TABLE II. Convergence study for the ground-state energy of
helium as the total number of B-splines N and the partial-wave
expansion length lmax increase. Numbers in parentheses are compu-
tational uncertainties.

N\lmax 1 2 3 4

40 –2.9035 –2.90363 –2.9036 –2.9036
45 –2.90366 –2.90369 –2.90370 –2.90371
50 –2.90370 –2.90371 –2.90371 –2.903720
55 –2.90371 –2.903721 –2.90372 –2.9037231
60 –2.903722 –2.9037231 –2.903723 –2.9037239
65 –2.9037235 –2.9037238 –2.9037241 –2.9037242
70 –2.9037239 –2.9037241 –2.9037242 –2.903724306
∞ –2.90372436(6)

study for the ground-state Bethe logarithm. The extrap-
olated values of Bethe logarithm are 4.3701596(3) and
4.370160(1). In comparison with the highly precise value
4.3701602230703(3) of Korobov [12], our first extrapolated
value is not so well converged, which could be caused by
the lack of sufficient accuracy of our initial state. However,
our calculations imply that the intermediate states, generated
in two different boxes, are reliable, and further improvement
could be made once we have a more accurate initial state. In
the following calculations we set rmax = 400 and τ = 0.056
and increase N up to 70 and lmax up to 4. The corresponding
values for T1 and Emax are, respectively, 6.7 × 10−8–3.0 ×
10−8 and 1016–1018.

A. Energy levels

Table II shows a convergence study of the ground-state
energy of helium as N and lmax increase. The extrapolated
value for the ground state is −2.90372436(6), which has eight
significant digits in comparison with the benchmark value of
Schwartz [19]. Table III displays a comparison of the energy
levels for the n 1S states with n up to 10, from which one can
see that our values have eight significant digits in comparison
with Drake’s tabulation in Ref. [20]. These results provide
suitable initial states for our Bethe logarithm calculations.

TABLE III. Comparison of the energies for the n 1S states of he-
lium, where n is up to 10. Numbers in parentheses of the extrapolated
values are computational uncertainties.

n 1S Ref. [20]

1 –2.90372436(6) –2.9037243770341195
2 –2.14597403(3) –2.145974046054419(6)
3 –2.06127197(3) –2.061271989740911(5)
4 –2.03358670(4) –2.03358671703072(1)
5 –2.02117684(4) –2.021176851574363(5)
6 –2.01456308(4) –2.01456309844660(1)
7 –2.01062575(3) –2.01062577621087(2)
8 –2.00809359(3) –2.00809362210561(4)
9 –2.00636952(4) –2.00636955310785(3)
10 –2.00514299(9) –2.00514299174800(8)

TABLE IV. Convergence study of the Bethe logarithm for the
ground state of helium in the acceleration gauge as the total number
of B-splines N and the partial-wave expansion length lmax increase.
Numbers in parentheses are computational uncertainties.

N\lmax 1 2 3 4

40 4.3704 4.3702 4.3702 4.37019
45 4.3690 4.37018 4.37017 4.370170
50 4.370336 4.370168 4.370165 4.370163
55 4.370330 4.370162 4.370161 4.3701613
60 4.370328 4.370161 4.3701608 4.3701606
65 4.3703275 4.3701606 4.3701604 4.3701603
70 4.3703272 4.3701604 4.3701603 4.37016027
∞ 4.37016022(5)

B. Bethe logarithm

Convergence studies for the ground-state Bethe logarithm
in the acceleration and velocity-acceleration gauges are given
in Tables IV and Tables V, respectively, where the values in
these two gauges gradually approach each other as N and
lmax increase, as indicated in Fig. 1. The extrapolated values
of the Bethe logarithm are 4.37016022(5) and 4.3701601(1),
respectively, which have nine and seven significant digits.
It is noted that the current results in the acceleration gauge
have greatly improved the values from the traditional B-spline
basis; for example, for the ground state, the present value
has five more significant digits than the corresponding pure
B-spline one (see Table VI).

For the n 1S states of helium with n up to 10, our results
of the Bethe logarithm in the two gauges are tabulated in
Table VI, together with comparisons with other available
data. One can see that our results in the two gauges are
consistent with each other at the level of six or seven dig-
its. In general, our results have also in good accord with
other accurate values. It is noted that, in our calculations,
most of the knot sequences of B-splines are concentrated
in the first half of the box. Thus, further optimization of
these knot sequences will improve the accuracy of our
calculations.

TABLE V. Convergence study of the Bethe logarithm for the
ground state of helium in the velocity-acceleration gauge as the total
number of B-splines N and the partial-wave expansion length lmax

increase. Numbers in parentheses are computational uncertainties.

N\lmax 1 2 3 4

40 4.369 4.3695 4.3697 4.3698
45 4.368 4.37002 4.37005 4.37008
50 4.37015 4.37012 4.37013 4.370138
55 4.370164 4.370152 4.370153 4.370154
60 4.370167 4.370158 4.3701584 4.3701585
65 4.3701682 4.370159 4.3701596 4.3701597
70 4.3701684 4.37016006 4.37016002 4.37016004
∞ 4.3701601(1)
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FIG. 1. Relative difference η against the total number of B-
splines and the partial-wave expansion length lmax. Points in solid
lines and dash lines denote values in the acceleration and velocity-
acceleration gauges, respectively. Square, circle, and triangle points
denote the results under the conditions of lmax = 2, 3, 4, respectively.

IV. SUMMARY

We have successfully applied the Hylleraas-B-spline basis
to the calculations of the Bethe logarithm for various S

states of helium. Agreement between the acceleration and the
velocity-acceleration gauges has been achieved. Our results
for the Bethe logarithm have significantly improved the results
obtained from the traditional B-spline basis. The software
MGSEPS that we have developed has helped us overcome nu-
merical instability problem. It would be interesting to extend
our Hylleraas-B-spline approach to atomic systems with more
than two electrons.
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TABLE VI. Comparison of the Bethe logarithm for the n 1S states of helium, where n is up to 10. The first entries in the second and
third columns are from the acceleration gauge, and the second entries are from the velocity-acceleration gauge. Numbers in parentheses are
computational uncertainties.

States This work B-spline [22] References Ssymptotic expansions

1 1S 4.37016022(5) 4.37034(2) 4.370160218(3)a

4.3701601(1) 4.37014(2) 4.3701602229(1)b

4.3701602230703(3)d

2 1S 4.36641271(1) 4.36643(1) 4.36641272(7)a 4.366412729c

4.3664127(1) 4.366412(1) 4.3664127262(1)b 4.366378229d

4.366412726417(1)d

3 1S 4.36916480(6) 4.369170(1) 4.369164871(8)a 4.369164888c

4.3691648(1) 4.3691643(2) 4.369164860824(2)d 4.369164809d

4 1S 4.36989065(5) 4.369893(1) 4.36989066(1)a 4.369890657c

4.3698906(1) 4.3698903(5) 4.36989063236(1)d 4.369890661d

5 1S 4.3701520(1) 4.370152(3) 4.3701517(1)a 4.370152093c

4.3701519(1) 4.3701511(2) 4.37015179631(1)d 4.370151761d

6 1S 4.370267(1) 4.37027(1) 4.37026697432(3)d 4.370267364c

4.370267(1) 4.370266(2) 4.370266961d

7 1S 4.370326(1) 4.37033(1) 4.37032526176(2)d 4.370325649c

4.370326(1) 4.37033(1) 4.370325274d

8 1S 4.370359(2) 4.37034(4) 4.370358160c

4.370359(2) 4.37034(2) 4.370357839d

9 1S 4.370378(2) 4.370377682c

4.370378(2) 4.370377414d

10 1S 4.370389(1) 4.370390095c

4.370388(1) 4.370389875d

aDrake and Goldman [2].
bYerokhin and Pachucki [21].
cDrake [3].
dKorobov [12].
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