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Roles of electron correlation effects for the accurate determination of gj factors of low-lying states
of 113Cd+ and their applications to atomic clocks
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We investigate roles of electron correlation effects in the determination of gj factors of the ns 2S1/2 (n=5,6,7),
np 2P1/2,3/2 (n=5,6), 5d 2D3/2,5/2, and 4 f 2F5/2,7/2 states of the singly ionized cadmium (Cd+) ion. Single and
double excited configurations along with important valence triple excited configurations through relativistic
coupled-cluster (RCC) theory are taken into account for incorporating electron correlation effects in our
calculations. We find significant contributions from the triples to the lower S and P states for attaining high
accuracy results. The contributions of Breit interaction and lower-order quantum electrodynamics effects, such
as vacuum polarization and self-energy corrections, are also estimated using the RCC theory and are quoted
explicitly. In addition, we present energies of the aforementioned states from our calculations and compare them
with the experimental results to validate gj values. Using the gj factor of the ground state, systematical shift
due to the Zeeman effect in the microwave clock frequency of the |5s 2S1/2, F = 0, mF = 0〉 ↔ |5s 2S1/2, F =
1, mF = 0〉 transition in the 113Cd+ ion has been estimated.
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I. INTRODUCTION

The use of high-precision atomic clocks for both sci-
entific and commercial applications is widely accepted in
many areas of physics. Today optical atomic clocks offer the
most precise frequencies to recalibrate units of time (e.g.,
seconds). Microwave atomic clocks are extremely robust in
numerous scientific and industrial fields including satellite
navigation systems, network synchronization, timekeeping
applications, and defense systems [1] owing to their several-
order-lower frequencies compared with optical clock fre-
quencies. Mostly microwave clocks are based on the neutral
atoms, but making these clocks using singly charged ions has
many advantages. They can be more compact in size and
consume low power, which are the imperative criteria for
making a portable atomic clock. Compared with the other
developed trapped-ion microwave clocks, e.g., 199Hg+ [2,3],
microwave clocks using 113Cd+ have the unique feature that
their cooling and pumping lines have a frequency differ-
ence of only 800 MHz. Therefore, their cooling, pumping,
and detecting processes can be carried out by the same
laser. This is advantageous for making miniaturized atomic
clocks for aerospace applications [5]. Since 2012, there has
been much progress in the making of high-performance
miniaturized cadmium ion atomic clocks [4–7]. A frequency
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uncertainty and stability for the ground-state hyperfine split-
ting of 6.6 × 10−14 and 6.1 × 10−13/

√
τ , respectively, where

τ is the average time, were achieved in 2015 [4]. Sympathetic
cooling of Cd+ ions was accomplished in the mean time,
which lowers the second-order Doppler shift and dead-time
drastically [8]. In order to improve uncertainty of the clock
frequency to below 10−16 or make clocks comparable with
the currently available 133Cs fountain clocks, one of the
important tasks is to estimate the second-order Zeeman shift
accurately.

In the microwave atomic clocks a small external magnetic
field is applied to break the degeneracy of the ground-state
hyperfine levels. The fluctuation arising from the background
magnetic field can be suppressed down to 10−9 T or even
lower by using multilayer magnetic shields. When the sta-
bility of the background magnetic field is well controlled, it
becomes important to calibrate the applied magnetic field very
strictly. This can affect precise estimate of the Zeeman shift,
and hence accurate determination of the clock transition. For
this purpose precise knowledge of the gj factor of the ground
state of the Cd+ ion is strongly desired. There has also been
immense interest in understanding roles of various physical
effects for the accurate determination of the gj factors of
atomic states. Most of the gj factor studies are concentrated
on the highly charged ions (HCIs) with few electrons in
which relativistic effects play crucial roles for their accurate
determination. This demands rigorous treatments of quantum
electrodynamics (QED) to higher orders and nuclear recoil
(NRec) effects. For example, agreements between the theo-
retical and experimental values of the g j factors in the H-like
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C5+, O7+, and Si13+ ions [9–12], and in the Li-like Si11+

and Ca17+ [13–15] HCIs at the eight or even lower decimal
places, serve as the most stringent test of the bound-state
QED theory. Such studies yield unprecedented values of the
ratio between the mass of an electron and the mass of a
proton, and the fine-structure constant [16]. Contrasting to
the great success in achieving high-precision values of the
g j factors in few-body systems, accurate determination of
these factors in many-electron systems is challenging owing
to strong electron correlation effects associated with this
property. In the neutral atoms or singly charged ions, these
interactions contribute predominantly to the g j factors over
the QED interactions [17–20]. In this context, the relativistic
coupled-cluster (RCC) theory, which is currently known as
one of the leading quantum many-body methods and has
been referred to as the gold standard for treating electron
correlations, is apt to determine atomic properties including gj

factors accurately. This theory was employed to study the gj

factors of the ground states of Li, Be+, and Ba+ by Lindroth
and Ynnerman [21], but they determined only the corrections
to the g j factors (�g j) due to electron correlation effects with
respect to the bare Dirac values. Recently, the roles of electron
correlation effects in the net g j factors of ground and few
excited states of Ca+ were demonstrated by employing RCC
theory [22].

In this paper, we have applied the RCC theory to calculate
the g j factors of the ground state 5s 2S1/2 and some of the low-
lying ns 2S1/2 (n=6,7), np 2P1/2,3/2 (n=5,6), 5d 2D3/2,5/2, and
4 f 2F5/2,7/2 excited states of Cd+. We have also determined
electron affinities (EAs) of the valence electrons of the above
states with the [4d10] closed-shell configuration by consid-
ering singles and doubles excitations approximation in the
RCC theory (RCCSD method) and compared them with the
available experimental results to validate our calculations. We
have incorporated contributions from the important valence
triples excitations in a perturbative approach in the RCCSD
method (RCCSDpT method) only in the gj factor evaluation
expression as described in [22]. Further, systematic shift due
to the Zeeman effect in the microwave clock frequency of
the 113Cd+ ion has been estimated by using the calculated gj

factor of its ground state. We give all the quantities in atomic
units (a.u.) unless otherwise specified explicitly.

II. THEORY

In the presence of an external homogeneous magnetic
field �B, the interaction Hamiltonian of electrons in an atomic
system in a.u. is given by [21,23]

Hmag = −c
∑

i

�αi · �Ai = c

2

∑
i

�αi · (�ri × �B), (1)

where c is the speed of light, �α is the Dirac operator, and �A
is the vector field seen by the electron located at �r due to the
applied magnetic field. We can rewrite the above expression as

Hmag = c

2

∑
i

(�αi × �ri ) · �B

= −i
c√
2

∑
i

ri{�αi ⊗ �C(1)}(1) · �B = M̃ · �B (2)

where �C(1) is the Racah coefficient of rank 1 and magnetic
moment operator given by

�M =
∑

i,q=−1,0,1

�μ(1)
q (ri) = −i

c√
2

∑
i

ri{�αi ⊗ �C(1)}(1). (3)

Using this operator, the Dirac contribution to the Landé
g j factor of a bound-state electron in an atomic system is
given by

gD
j = 1

μB

M̃
�J (4)

with total angular momentum of the state J and the Bohr
magneton μB = 1/2 in a.u.. Using the reduced matrix
element, it can be expressed as

gD
j = 1

2μB

〈J|| �M||J〉√
J (J + 1)(2J + 1)

. (5)

For the calculation of this factor, the single-particle reduced
matrix element of μ(1)

q is given by

〈κ f ||μ(1)||κi〉 = −(κ f + κi )〈−κ f ||C(1)||κi〉

×
∫ ∞

0
dr r (Pf Qi + Q f Pi ), (6)

where P(r) and Q(r) are the large and small components
of the radial parts of the single-particle Dirac orbitals,
respectively, and κ is the relativistic angular momentum
quantum number. The reduced matrix element of the Racah
�C(1) operator is calculated as

〈κ f || C(k) || κi〉 = (−1) j f +1/2
√

(2 j f + 1)(2 ji + 1)

×
(

j f k ji
1/2 0 −1/2

)
�

(
lκ f , k, lκi

)
,

(7)

with

�
(
lκ f , k, lκi

) =
{

1 for lκ f + k + lκi = even
0 otherwise,

(8)

for the corresponding orbital momentum lκ of the orbital with
relativistic quantum number κ .

For evaluating gD
j using Eq. (5), it is necessary to calculate

wave functions of the states in an atomic system considering
relativistic effects. It is also known that the Dirac value of
the Landé g factor of a free electron (gD

f ) has significant
corrections from the QED theory. The net value with the QED
effects is approximately given by [24]

g f 	 gD
f ×

[
1 + 1

2

αe

π
− 0.328

(αe

π

)2
+ · · ·

]

≈ 1.001160 × gD
f , (9)

where αe is the fine-structure constant. To account for this
correction along with gD

j (denoted by �gQ
j ) for the net result

as g j = gD
j + �gQ

j , we consider the additional interaction
Hamiltonian with the magnetic field as [25]

�Hmag ≈ 0.001160 μBβ �	 · �B = 0.001160 �M̃ · �B, (10)
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where β is the Dirac matrix, �	 is the four-component
spinor, and � �M = ∑

i,q=−1,0,1 ��μ(1)
q (ri ) = ∑

i βi �	i. Using

this Hamiltonian, we determine �gQ
j as [26]

�gQ
j = 0.001160

〈J||�M̃||J〉√
J (J + 1)(2J + 1)

, (11)

for which the single-particle matrix element is given by

〈κ f ||�μ(1)||κi〉 = (κ f + κi − 1)〈−κ f ||C(1)||κi〉

×
∫ ∞

0
dr(Pf Pi + Q f Qi ). (12)

Contribution due to the NRec effect to the bound state gj

factors in Cd+ can be estimated using the formula [27]

�gNRec
j = (αeZ )2

n2

1

Mnuc
, (13)

where Mnuc is the mass of the atomic nucleus, Z is the
atomic number, and n is the principal quantum number of the
interested states. This is found to be of the order of ≈10−7,
which is neglected because such uncertainty is much lower
than the intended precision that can be achieved in the present
paper.

III. METHOD OF CALCULATIONS

We consider the Dirac-Coulomb (DC) Hamiltonian to cal-
culate the wave functions of the atomic states, which, in a.u.,
is given by

HDC =
∑

i

[cαi · pi + (βi − 1)c2 + Vnuc(ri )] +
∑
i, j>i

1

ri j
,

(14)

where pi is the momentum operator, Vnuc(r) denotes the
nuclear potential, and 1

ri j
represents the Coulomb potential

between the electrons located at the i and j positions. The
Breit interaction contribution is estimated by incorporating the
interaction potential

V B(ri j) = − [αi · α j + (αi · r̂ij)(α j · r̂ij)]

2ri j
, (15)

where r̂ij is the unit vector along ri j . Similarly, we also include
effective potentials for vacuum polarization and self-energy
interactions as discussed in our previous work [28] to account
for QED interactions in the determination of the atomic wave
functions.

The investigated states of the Cd+ ion can be expressed in
the RCC theory as [29,30]

|
v〉 = eT {1 + Sv}|�v〉, (16)

where |�v〉 = a†
v|�0〉 is the reference state with valence or-

bital v for the Dirac-Hartree-Fock (DHF) wave function of the
[4s24p64d10] closed-shell configuration. The RCC excitation
operators T and Sv are responsible for exciting electrons
from the |�0〉 and |�v〉 reference states, respectively. The
amplitudes of these RCC operators are evaluated by solving
the following equations:

〈�∗
0|HN |�0〉 = 0 (17)

and

〈�∗
v|(HN − �Ev )Sv|�v〉 = −〈�∗

v|HN |�v〉, (18)

where |�∗
0〉 and |�∗

v〉 are the singly and doubly excited-state
configuration with respect to |�0〉 and |�v〉, respectively. The
notation HN is defined as HN = (HeT )l where subscript N
means the normal order form of the operator and l means
that all the terms are linked. The quantity �Ev corresponds
to the EA of the state with the valence electron v. We evaluate
�Ev by

�Ev = 〈�v|HN {1 + Sv}|�v〉 − 〈�0|HN |�0〉. (19)

In the RCCSD method, the singles and doubles excitations are
denoted by

T = T1 + T2 and Sv = S1v + S2v. (20)

After obtaining amplitudes of the RCC operators, the ex-
pectation value of an operator O is evaluated as

〈
v|O|
v〉
〈
v|
v〉 = 〈�v|{1 + S†

v}eT †
OeT {1 + Sv}|�v〉

〈�v|{1 + S†
v}eT † eT {1 + Sv}|�v〉

.

(21)

We adopt an iterative procedure to include contributions from
the nonterminative terms from the above expressions. Here, O
stands for both the M and �M operators for the evaluations
of the gD

j and �gQ
j contributions, respectively. In our previous

work, we had observed that triples excitations play important
roles in the determination of the g j factors [22]. Inclusion
of these excitations requires huge computational resources,
which we are lacking at present. Therefore, we take into
account these contributions in the RCCSDpT method only by
defining excitation operators in the perturbative approach as

T pert
3 = 1

6

∑
abc,pqr

(HN T2)pqr
abc

εa + εb + εc − εp − εq − εr
(22)

and

Spert
3v = 1

4

∑
ab,pqr

(HN T2 + HN S2v )pqr
abv

�Ev + εa + εb − εp − εq − εr
, (23)

where {a, b, c} and {p, q, r} represent the occupied and virtual
orbitals, respectively, and εs are their single-particle orbital
energies. Contributions from these operators to the gj factors
are then given in terms of T †

2 OT pert
3 , S†

2vOT pert
3 , S†

2vOSpert
3v ,

T †
2 OSpert

3v , S†
1vT †

2 OSpert
3v , T pert†

3 OT pert
3 , and Spert†

3v OSpert
3v along

with their possible complex conjugate (c.c.) terms as part of
Eq. (21) in the RCCSD expression.

IV. RESULTS AND DISCUSSION

To verify accuracies of the wave functions of the atomic
states, the g j factors of which are investigated here, we have
evaluated EAs and compared them with their available exper-
imental values. In Table I, we give EAs of 11 low-lying states
of Cd+ from the DHF, second-order relativistic many-body
perturbation theory [RMBPT(2)] and RCCSD methods. As
can be seen, the DHF method gives lower values while the
RMBPT(2) method gives larger values compared to the results
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TABLE I. Electron affinities (EAs) of the 5–7s 2S1/2, 5 and 6p 2P1/2,3/2, 5d 2D3/2,5/2, and 4 f 2F5/2,7/2 states (in cm−1) of 113Cd+ from DHF,
second-order relativistic many-body perturbation theory [RMBPT(2)], and RCCSD methods are given. Corrections from the Breit (�Breit)
and low-order QED (�QED) interactions are quoted separately. The final results obtained by the RCCSD values adding �Breit and �QED are
compared with the experimental values listed in the NIST database [31]. Uncertainties in our final results are estimated using triple excitations
in the perturbative approach. Differences between our results from the NIST data are mentioned as � in percentage.

State DHF RMBPT(2) RCCSD �Breit �QED Final NIST �

5s 2S1/2 −124567.93 −138618.14 −136012.37 84.10 60.14 −135868(587) −136374.34 0.4
5p 2P1/2 −84902.34 −93102.78 −91847.93 83.31 7.58 −91757(306) −92238.40 0.5
5p 2P3/2 −82870.41 −90363.14 −89347.42 50.24 −0.64 −89298(295) −89755.93 0.5
6s 2S1/2 −51061.62 −53896.08 −53315.36 18.02 12.42 −53285(147) −53383.93 0.2
5d 2D3/2 −45146.73 −46880.67 −46602.79 3.85 0.38 −46599(94) −46685.35 0.2
5d 2D5/2 −45009.55 −46667.87 −46445.57 −0.60 0.01 −46446(90) −46530.84 0.2
6p 2P1/2 −39865.05 −41935.34 −41536.83 22.69 1.98 −41512(78) −41664.22 0.4
6p 2P3/2 −39241.67 −41181.53 −40844.47 13.81 −0.25 −40831(75) −40990.98 0.4
7s 2S1/2 −28191.88 −29280.12 −29045.33 7.11 4.87 −29033(58) −29073.79 0.1
4 f 2F5/2 −27539.36 −27884.18 −27880.85 0.13 0.11 −27881(22) −27955.19 0.3
4 f 2F7/2 −27542.58 −27886.78 −27884.13 0.23 0.11 −27884(22) −27942.22 0.2

from the RCCSD method. The RCCSD results are in close
agreement with the experimental results. Corrections from the
Breit and QED interactions are quoted explicitly from the
RCCSD method, and those corrections are found to be com-
paratively small. Uncertainties in our final results are given by
estimating contributions from the valence triple excitations in
the perturbative approach, which are reasonably large. This
shows that the triple excitations are important to improve
accuracies of our calculations. Our results are compared with
the experimental values listed in the National Institute of
Science and Technology (NIST) database [31]. Differences
between our final results from these experimental values are
given as � in percentage in the same table. This shows that our
calculations agree with the experimental values at the sub-1
percentage level in all the states. These uncertainties can be
reduced further by incorporating full triple excitations in our
RCC method. Nonetheless, this analysis shows that we shall

be able to obtain g j factors with similar accuracies for the
considered states as for the case of energies.

After the investigation of roles of the electron correlation
effects in the EAs, we present the calculations of gj factors
of the above-mentioned states of 113Cd+. We give the gD

j
values in Table II from the DHF and RCCSD methods along
with the corrections from the terms involving perturbative
triple operators of the RCCSDpT method. The estimated �gQ

j

corrections to the gD
j values are also quoted from the DHF

and RCCSD methods in the same table. They seem to be
the decisive contributions to obtain the final results. Corre-
lation contributions to the gD

j values due to the perturbative
triple excitations, and contributions from the Breit and QED
interactions, are shown explicitly. The final gj values, g j =
gD

j + �gQ
j , of the respective states are obtained by adding all

these corrections. In our calculations we find the perturba-
tively triple excitation terms have sizable contributions to the

TABLE II. The gj factors of the 5–7s 2S1/2, 5 and 6p 2P1/2,3/2, 5d 2D3/2,5/2, and 4 f 2F5/2,7/2 states. The Dirac contributions to the gj factor
denoted by gD

j from the DHF and RCCSD methods along with corrections due to the perturbatively triple excitation terms and the Breit and

QED electronic interactions are given. Contributions to �gQ
j from the DHF and RCCSD method are quoted correspondingly. The final values,

gD
j + �gQ

j by adding corrections to gD
j , are taken from the RCCSD method. The uncertainties are mentioned in the parentheses by estimating

as half of the contributions due to the perturbatively triple excitation terms.

Contributions to gD
j Corrections to gD

j Contributions to �gQ
j

State DHF RCCSD Triples Breit QED DHF RCCSD Final

5s 2S1/2 1.999876 2.001624 −0.001064 −0.000020 −0.0000050 0.002320 0.002324 2.00286(53)
5p 2P1/2 0.666604 0.666568 0.001662 0.000013 0.0000007 −0.000773 −0.000773 0.66747(83)
5p 2P3/2 1.333283 1.333522 0.000860 −0.000003 −0.0000006 0.000773 0.000773 1.33515(43)
6s 2S1/2 1.999967 2.000202 −0.000253 −0.000003 −0.0000007 0.002320 0.002321 2.00227(13)
6p 2P1/2 0.666647 0.666657 0.000407 0.000004 0.0000003 −0.000773 −0.000773 0.66630(20)
6p 2P3/2 1.333315 1.333396 0.000189 −0.000001 −0.0000003 0.000773 0.000773 1.33436(1)
7s 2S1/2 1.999984 2.000070 −0.000099 −0.000001 −0.0000003 0.002320 0.002320 2.00229(5)
5d 2D3/2 0.799982 0.800013 0.000645 0.000002 −0.0000001 −0.000464 −0.000464 0.80020(32)
5d 2D5/2 1.199982 1.200094 0.000375 −0.000002 −0.0000014 0.000464 0.000464 1.20093(19)
4 f 2F5/2 0.857136 0.857140 −0.000027 0.000000 0.0000001 −0.000331 −0.000331 0.85678(1)
4 f 2F7/2 1.142850 1.142855 −0.0000427 0.000000 −0.0000001 0.000331 0.000331 1.14314(2)
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TABLE III. The contributions to gD
j obtained in the perturbative

triples using the RCCSDpT method.

States T †
2 OSpert

3v S†
1vT †

2 OSpert
3v T pert†

3 OT pert
3 Spert†

3v OSpert
3v

5s 2S1/2 −0.001070 −0.000037 0.000154 −0.000111
5p 2P1/2 0.000830 0.000050 0.000033 0.000749
5p 2P3/2 0.000137 0.000011 0.000073 0.000639
6s 2S1/2 −0.000286 −0.000030 0.000026 0.000037
6p 2P1/2 0.000173 −0.000018 0.000008 0.000244
6p 2P3/2 −0.000001 −0.000014 0.000018 0.000186
7s 2S1/2 −0.000107 −0.000011 0.000010 0.000009
5d 2D3/2 0.000025 ≈0.0 0.000027 0.000586
5d 2D3/2 −0.000056 ≈0.0 0.000041 0.000389
4 f 2F5/2 −0.000027 ≈0.0 ≈0.0 ≈0.0
4 f 2F7/2 −0.000043 ≈0.0 ≈0.0 ≈0.0

g j factors. This suggests a full account of triple and other
higher level excitations would improve the results further.
Nonetheless, we anticipate additional contributions from these
higher level excitations will be within the half of the estimated
contributions due to the perturbative triple excitations. On
this basis we assign uncertainties as 50% of the perturbative
excitation contributions to the final values of the g j fac-
tors. There are no experimental values of the gj factors of
the considered states in Cd+ available to compare with our
calculations.

The contributions to gD
j of the perturbatively triple excita-

tions terms originate mainly from the T †
2 OSpert

3v , S†
1vT †

2 OSpert
3v ,

T pert†
3 OT pert

3 , and Spert†
3 OSpert

3v terms, which are given explicitly
in Table III. Computing these terms is very time consuming.
As can be seen, these triple contributions are as large as the
correlation contributions due to the RCCSD method. Contri-
butions from T †

2 OSpert
3v are found to be relatively larger com-

pared to the other terms followed by T pert†
3 OT pert

3 , S†
1vT †

2 OSpert
3v ,

and Spert†
3 OSpert

3v and there are strong cancellations among
the contributions from the above terms. The computation of
Spert†

3 OT pert
3 is extremely costly, and hence it is neglected

in the gD
j calculation of 4 f states. As shown in Sec. III

the contributions of the triple excitation terms for the 4 f
states are far less than the other states. In Fig. 1, we plot
magnitudes of these contributions from the individual terms
explicitly in order to highlight their roles. It can be seen
from these figures that the triples excitations have substan-
tially large contributions for the ground state and n = 5 ex-
cited states and smaller contributions for higher-lying excited
states.

Another motivation of the present paper is to estimate the
typical order of systematic effect due to the applied magnetic
field to the microwave clock frequency of the ground-state
hyperfine structure splitting in 113Cd+. The present level
of accuracy of this clock is ≈10−14 [4] and our desired
precision level is 10−16. In 113Cd+, the 2S1/2 (F = 0, mF =
0) → (F = 1, mF = 0) transition is considered for making
the clock, with F = I ± J for the nuclear spin I and electron
angular momentum J and with its projection mF . Under the
low magnetic field, the energies W (F, mF , B) (given in SI
unit) of different hyperfine-Zeeman sublevels |(J, mJ )F, mF 〉
for a given magnetic-field strength B can be approximately

estimated as [32–34]

W (0, 0, B) 	 W (0, 0, 0) − 3hAhf

4
− [g j − gI ]2μ2

BB2

4hAhf
, (24)

W (1, 0, B) 	 W (1, 0, 0) + hAhf

4
+ [g j − gI ]2μ2

BB2

4hAhf
, (25)

and

W (1,±1, B) 	 W (1,±1, 0) + hAhf

4
± [g j + gI ]μBB

2
(26)

where g j and gI are the electronic and nuclear g factors,
μB is the Bohr magneton, and Ahf is the magnetic dipole
hyperfine-structure constant. Using Eqs. (24) and (25), the
energy difference between the clock states of the ground state
in 113Cd+ is given by

W (0, 0, B) − W (1, 0, B) 	 −hAhf − [g j − gI ]2μ2
BB2

2hAhf
. (27)

As can be seen, the energy shift depends on the stray magnetic
field, where the second term in Eq. (27) is referred to as the
second-order Zeeman shift. Thus, the change in frequency due

FIG. 1. The values of the triple contributions of (a) T †
2 OSpert

3v ,
(b) S†

1vT †
2 OSpert

3v , (c) T pert†
3 OT pert

3 , and (d) Spert†
3 OSpert

3v for different
valence states.
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to the second-order Zeeman shift is expressed as

�ν
(2)
Zeem(B) = − [g j − gI ]2μ2

BB2

2h2Ahf
. (28)

As can be seen, uncertainty in this quantity depends on the
uncertainties in both the g j factor and the applied magnetic
field B. In our experiment, the magnetic field is generated
by a pair of Helmholtz coils and the current controls the
strength of the magnetic field. Thus, it is not straightforward
for us to measure the applied magnetic-field strength very
accurately. Under such circumstances, the value of B needs
to be calibrated.

Assuming the B value is known precisely, the fractional
frequency uncertainty in �ν

(2)
Zeem(B) can be obtained by

δ
[
�ν

(2)
Zeem(B)

] = ∂
[
�ν

(2)
Zeem(B)

]
∂g jAhf

δg j

= (g j − gI )
μ2

BB2

h2A2
hf

δg j

≈ 1.70 × 10−14δg j, (29)

where δg j is the estimated uncertainty of g j . The above
value is estimated by considering B = 10−7 T for our typical
condition of the experiment, Ahf 	 −15.2 GHz [4], and gI =
0.6223009(9) × 10−3 [35]. By substituting our determined
values g j = 2.00286 and δg j = ±0.00053, we find that un-
certainty in the second-order Zeeman shift will not affect the
clock frequency at the 10−16 precision level if the applied
magnetic field is lower than the above assumed value. It is
also imperative to estimate the maximum level of fluctuation
in order to sustain the aforementioned precision level of the
clock frequency. For this purpose, we use two magnetic-field
sensitive transitions; i.e., ν+ and ν− correspond to the tran-
sitions from (F, mF ) = (0, 0) to (F, mF ) = (1, 1) and from
(F, mF ) = (0, 0) to (F, mF ) = (1,−1), respectively. Using
Eqs. (24) and (26), their energy differences at the first-order
level of B can be given by

W (0, 0, B) − W (1, 1, B) 	 −hAhf − [g j + gI ]μBB

2
(30)

and

W (0, 0, B) − W (1,−1, B) 	 −hAhf + [g j + gI ]μBB

2
. (31)

This yields the frequency difference as

δν∓ ≡ ν− − ν+ 	 [g j + gI ]μBB

h
. (32)

Using this expression, the magnetic-field strength B can be
determined as

B 	 hδν∓
[g j + gI ]μB

. (33)

This leads to uncertainty in the calibration of magnetic field
with respect to the g j factor as

δB = ∂B

∂g j
δg j 	 − hδν∓

(g j + gI )2μB
δg j ≈ −5.0 × 10−8δg j T.

(34)
Here, we have used δν∓ 	 2.8 kHz for B = 10−7 T [4] along
with values for other variables as defined above. According
to this, the calibration of the B value will be affected by the
uncertainty in the value of g j . Using our estimated g j value,
we anticipate the uncertainty in B would be less than 10−10 T.
This is sufficiently low to maintain the uncertainty in the
fractional second-order Zeeman shift with respect to the clock
frequency lower than 10−17 for the assumed magnetic field.
This is good enough for ensuring the 10−16 precision level
measurement of clock frequency.

V. CONCLUSION

The g j factors of the ground 5s 2S1/2 state, and the excited
6 − 7s 2S1/2, 5 and 6p 2P1/2,3/2, 5d 2D3/2,5/2, and 4 f 2F5/2,7/2

states, of 113Cd+ are calculated by using the relativistic
coupled-cluster theory. We have also evaluated energies of
these states and compared them with their experimental re-
sults to verify reliability of our calculations. We observed
triples effects are significant for high-precision calculation of
the g j factors of the aforementioned states, especially for the
low-lying states, in Cd+. Using the precisely determined g j

factor of the ground state, we have analyzed typical order
of systematic shift due to the second-order Zeeman effect
in the clock frequency of the |5s2S1/2, F = 0, mF = 0〉 ↔
|5s2S1/2, F = 1, mF = 0〉 transition in the 113Cd+ ion and
found it will be within the desired fractional uncertainty 10−16

level.
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