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Correlation trends in the hyperfine structure for Rb, Cs, and Fr, and high-accuracy
predictions for hyperfine constants
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We perform high-precision calculations of the hyperfine structure for nS1/2 and nP1/2 states of the alkali-metal
atoms Rb, Cs, and Fr across the principal quantum number n and study the trend in the size of the correlations.
Our calculations are performed in the all-orders correlation potential method. We demonstrate that the relative
correlation corrections fall off quickly with n and tend towards constant and nonzero values for highly excited
states. This trend is supported by experiments, and we utilize the smooth dependence on n to make high-accuracy
predictions of the hyperfine constants, with uncertainties to within 0.1% for most considered S1/2 states of Rb
and Cs.
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I. INTRODUCTION

The hyperfine structure lies at the interface of atomic and
nuclear physics, sensitive both to properties of the nucleus
and to the electronic wave functions in the nuclear region
[1]. By comparing measured and calculated values of the
hyperfine structure, information about nuclear and atomic
structure may be deduced. Such hyperfine comparisons play
an important role in atomic parity violation (APV) studies
[2,3], by contributing to the understanding of the modeling
of atomic wave functions and to the assignment of the error
in the theoretical value for the APV amplitude. APV studies
provide a sensitive and unique probe of possible new physics
beyond the standard model, including providing a window
into a possible dark sector [3].

Much of the focus on the hyperfine structure related to
studies of APV has been for the ground and low-lying states
[4,5]. In the current work, we explore the behavior of the
hyperfine structure across principal quantum numbers n to
n = 18 for heavy alkali-metal atoms. We are interested, par-
ticularly, in the contribution of the correlation corrections, that
is, what remains beyond the mean-field result. We study the
corrections to the states n 2S1/2 and n 2P1/2—which we refer
to simply as ns and np1/2—for neutral alkali-metal atoms of
interest for APV studies: Rb [6], Cs [7], and Fr [8].

The motivation to study the hyperfine structure for high
states of heavy alkali-metal atoms comes from recent works
[9,10], where it was found that (i) the uncertainties in cal-
culations of the hyperfine structure associated with nuclear
properties are significant and hinder the extraction of in-
formation about the electronic wave functions in hyperfine
comparisons [9], and (ii) the reliance on explicit information
about nuclear properties may be removed by constructing a
ratio from experimentally and theoretically deduced hyperfine
structure for states with a high n [10]. Improving our mod-
eling of the hyperfine structure for high states is critical for
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removing the crippling dependence on nuclear uncertainties
and for accurately probing the electronic wave functions in
the nuclear region through the ratio method [10].

The usual starting point for accurate calculations of the
hyperfine structure for heavy atoms is the relativistic Hartree-
Fock approximation. The many-body corrections are often
divided into a part arising from the distortion of the atomic
core due to the external field (magnetic hyperfine interaction),
referred to as core polarization, and the remaining part, which
we refer to as the correlation correction. For alkali-metal
atoms, with a single valence electron above closed shells,
this correlation correction is dominated by the effect of the
polarization of the atomic core by the Coulomb field of the
valence electron.

There have been several studies of the trends in the core
polarization and correlation corrections to the hyperfine struc-
ture in heavy alkali-metal atoms—for ground states across the
nuclear charge Z [11,12] and for s, p, and d states across the
principal quantum number n [13–18]. In the latter works, the
leveling of the relative core polarization corrections and the
decrease in the relative correlation corrections with increasing
n have been noted. However, only the lowest few states were
considered in these works, with �n = 2–6, and most of the
studies were limited to s states.

In a recent work [10], the hyperfine structure for s states
was evaluated for Cs, Fr, Ba+, and Ra+ up to n = 16, and the
relative correlation corrections were shown to fall off quickly
and approach constant and nonzero values for high n. In the
current work, we explore this curious behavior in more detail,
and we extend the previous studies by investigating the trend
in relative core polarization and correlation corrections for
both s and p1/2 states for Rb, Cs, and Fr up to n = 18. We
deduce relative correlation corrections from measured values
for the hyperfine constants, and we demonstrate that these
values agree well with our theoretical results.

Further, the existence of the trend in relative correlation
corrections allows us to make very accurate predictions of the
hyperfine constants for excited states by combining theoretical
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and measured values. We do this for the s and p1/2 states of Rb
and Cs up to n = 17 and for states of Fr up to n = 12. For most
s states of Rb and Cs, we believe these results are accurate to
about 0.1% or better. As a test, we also make predictions in
the same way for excited states where high-precision exper-
imental data are available, and we find excellent agreement
between our predictions and the measured hyperfine constants
(with deviations of central values to within 0.05%).

This paper is organized as follows. In Sec. II we present
the basic theory for the hyperfine structure and provide further
details for motivating the study of the correlation corrections
for high states. In Sec. III, the contribution of the core polar-
ization to the hyperfine structure is evaluated, and it is shown
that the relative correction is (very nearly) constant across the
principal quantum number for s and p1/2 states. In Sec. IV,
we describe the all-orders correlation potential method, and in
Sec. V results for the relative correlation corrections across n
are obtained. The trends in the relative correlation corrections
are shown to be supported by measurements of the hyperfine
structure. Finally, in Sec. VI, we utilize the correlation trends
to make high-accuracy predictions for the hyperfine constants.
Concluding remarks are presented in Sec. VII.

II. HYPERFINE STRUCTURE

The interaction between the magnetic dipole moment of
the nucleus and the magnetic field from unpaired electrons in
the atom produces small splittings in the electronic spectra of
the levels referred to as the hyperfine structure. The relativistic
operator for the magnetic hyperfine interaction is

hhfs = cα · A = 1

c

μ · (r × α)

r3
F (r) , (1)

where α is a Dirac matrix, A is the nuclear vector potential,
μ = μI/I is the nuclear magnetic moment, and I is the nuclear
spin. F (r) describes the nuclear magnetization distribution
and F (r) = 1 for a point nucleus. The finite nuclear mag-
netization distribution makes a contribution to the hyperfine
structure known as the Bohr-Weisskopf effect [19]. We use
atomic units throughout, |e| = me = h̄ = 4πε0 = 1, c = 1/α,
unless otherwise stated.

The magnetic hyperfine structure is often quantified by the
hyperfine A constant, which may be expressed at lowest order
as

Anκ = − α2

mp

gIκ

J (J + 1)

∫ ∞

0
dr f (r)g(r)/r2 , (2)

where n is the principal quantum number, κ is the rel-
ativistic angular momentum quantum number, with κ =
−1, 1,−2, . . . for s, p1/2, p3/2,..., etc., J is the electronic
angular momentum, mp is the proton mass, gI = μ/(μN I ) is
the nuclear g-factor, and μN is the nuclear magneton. Here,
f and g are the upper and lower radial components of the
single-particle Dirac orbitals,

ϕnκm(r) = 1

r

(
fnκ (r) �κm(r̂)

iαgnκ (r) �−κm(r̂)

)

(� is a spherical spinor), which satisfy the relativistic Hartree-
Fock (RHF) equations

(cα · p + (β − 1)c2 + Vnuc(r) + VHF)ϕ = εϕ , (3)

where β is a Dirac matrix, and VHF and Vnuc are the Hartree-
Fock and nuclear potentials, respectively. See, e.g., Ref. [20]
for detailed expressions of VHF. We use a Fermi distribution
to form the nuclear potential, with the thickness parameter
corresponding to the 90%–10% charge density falloff set to
2.3 fm and the half-density radius found from the root-mean-
square charge radii tabulated in Ref. [21].

An accurate theoretical description of the hyperfine struc-
ture goes beyond the expression presented in Eq. (2). The
largest corrections are due to many-body effects, and to reach
an accuracy within ∼1% or ∼0.1%, finite-nucleus magneti-
zation and quantum electrodynamic (QED) radiative correc-
tions must be included. In a recent paper [10], the following
parametrization for the hyperfine constant was introduced,

Anκ = AMB
nκ

μ

μN

(
1 + α

π
F BW

nκ + α

π
F QED

nκ

)
, (4)

which conveniently factors out the nuclear and QED radiative
corrections. We adopt the same parametrization in this work.
The first term on the right-hand-side AMB

nκ corresponds to
an electronic many-body value found with μ = μN , point-
nucleus magnetization [F (r) = 1], and no QED corrections.
We emphasize that the finite nuclear charge distribution is
included in AMB

nκ through the electronic wave functions found
in the (screened) finite-nucleus potential (3). The term F BW

nκ

is the relative Bohr-Weisskopf correction originating from
the finite magnetization distribution of the nucleus, modeled
through F (r) in the hyperfine operator (1), and F QED

nκ is the
relative QED radiative correction. Note that AMB

nκ contains the
nuclear spin I , from the nuclear g-factor gI [see Eq. (2)], and
so may be different for different isotopes.

The QED radiative corrections to the hyperfine structure
for low-lying states of heavy atoms were rigorously evaluated
in [9,22–24] and for s states across principal quantum number
in [10]. A detailed study of the Bohr-Weisskopf effect in
different nuclear models was carried out recently for heavy
atoms [9] and across principal quantum numbers in Ref. [10].
In the current work, where Bohr-Weisskopf contributions are
required, we use the results from Refs. [9,10] found in the
nuclear single-particle model (see, e.g., Ref. [25]).

In Ref. [10], it was demonstrated theoretically that the
relative Bohr-Weisskopf and QED radiative corrections, F BW

nκ

and F QED
nκ , are independent of the principal quantum number n

to a high accuracy for s and p states for heavy atoms of interest
for APV studies [10]. And indeed, the n independence of the
Bohr-Weisskopf effect has been experimentally demonstrated
across n = 5–7 for Rb [26]. What this means is that the
nuclear and QED terms that appear as a factor in Eq. (4)
are the same for all n and that they may be determined from
the ratio of measured and calculated values for the hyperfine
structure, Aexp

n′κ /AMB
n′κ [10]. This may be readily seen from

Eq. (4) by considering the equation for two principal quantum
numbers, n and n′, and setting the total hyperfine constant for
the state n′κ to the measured value Aexp

n′κ when all effects are
included correctly.

Remarkably, removing the explicit dependence on nuclear
structure makes it possible to probe the electronic wave func-
tions in the nuclear region with a greatly improved sensitivity
(potentially testing the many-body theory at the level of 0.1%
or better) compared to what is possible from a direct hyperfine
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comparison. For example, the nuclear magnetic moment alone
for isotopes of Fr has an uncertainty of ∼1%, limiting this
comparison. Note that the preference to determine the ratio
described above for highly excited states comes from the
observation that the relative correlation corrections are signif-
icantly smaller for the higher states compared to the ground
or low-lying states, as we see in more detail later. Because it
is expected that the uncertainty in the many-body calculation
of AMB

nκ is related to the size of the correlation correction, it
is anticipated that a higher accuracy may be achieved for the
high-lying states compared to the lower ones. This motivates
our study of the hyperfine constant across principal quantum
numbers, as we strive to better understand and evaluate it.

The subject of the current work relates to the many-body
term AMB

nκ and, in particular, the trends arising from contri-
butions beyond the RHF approximation. The electronic term
may be approximated by

AMB
nκ ≈ AHF

nκ

(
1 + F δV

nκ

)(
1 + F�

nκ

)
, (5)

where AHF
nκ is the result at the relativistic Hartree-Fock level of

approximation, F δV
nκ is a relative correction arising due to po-

larization of the atomic core by the hyperfine field, and F�
nκ is

the relative correction arising from valence-core electron cor-
relations beyond the δV core-polarization effects. The precise
definitions of F δV and F� are given in the following sections.
In the next sections we study the relative core polarization
and correlation corrections across principal quantum numbers
n. We see that the core polarization correction is (nearly)
independent of the principal quantum number and that the
relative correlation corrections drop quickly and approach a
constant value for high n.

III. CORE POLARIZATION

One of the dominant many-body corrections to the hyper-
fine structure (hfs) arises due to polarization of the atomic
core by the hyperfine field: core polarization. We include this
in our calculations using the time-dependent Hartree-Fock
(TDHF) method, which is equivalent to the random phase
approximation (RPA) with exchange. Effectively, it modifies
the hyperfine operator, such that [27]

hhfs → hhfs + δVhfs . (6)

Only the exchange term contributes to the core polarization
for the magnetic hyperfine structure, and so it is sometimes
referred to as the “exchange core polarization.”

To calculate δVhfs, we use the TDHF method, in which the
single-particle orbitals are expressed as

ϕ′ = ϕ + δϕ, (7)

where ϕ is the unperturbed orbital and δϕ is the correction due
to the hyperfine interaction. Then the set of TDHF equations

(hHF − εc)δϕc = −(hhfs + δVhfs − δεc)ϕc (8)

is solved self-consistently for all core orbitals. Here, the index
c denotes a state in the core, δε = 〈ϕc|hhfs + δVhfs|ϕc〉 is the
correction to the energy for the core orbital c, and hHF is the
single-particle Hamiltonian operator on the left-hand side of
Eq. (3).

 18

 20

 22

 24

 26

 28

6 8  10  12  14  16  18

F
δV

n

RPA corrections (%) to HFS for s1/2 and p1/2 states

Rb p1/2
Rb s1/2

Cs p1/2
Cs s1/2

Fr p1/2
Fr s1/2

FIG. 1. The relative core polarization (RPA) corrections F δV (in
%) for s1/2 and p1/2 states of Rb, Cs, and Fr.

In Fig. 1 we plot the relative core polarization corrections
(F δV ) as a function of n for s1/2 and p1/2 states of Rb, Cs, and
Fr. The correction F δV is defined as 〈ϕ|δVhfs|ϕ〉/〈ϕ|hhfs|ϕ〉,
found from the ratio of the hyperfine constant with core
polarization included to that without. We observe the follow-
ing trends: (i) the relative core polarization corrections are
constant for higher states, and (ii) the corrections decrease
with increasing Z . These observations are in agreement with
previous studies. For example, the first point has been noted
in Refs. [14–16], where the first few s states of K, Rb, and
Fr are considered, and the second point has been noted in
Refs. [11,12].

In the current work we extend previous studies by going
to higher n values and by studying the trend for the p1/2

states. The relative core polarization corrections decrease
slightly with increasing n for the lowest-lying levels, and they
approach constant values as n is further increased. For s1/2

states, they level out at 21%, 20%, and 18% for Rb, Cs, and
Fr, respectively. The relative core polarization corrections for
p1/2 states are significantly larger than for s1/2 states, and they
approach 25%, 24%, and 22% for Rb, Cs, and Fr.

IV. CORRELATION POTENTIAL METHOD

We use the correlation potential method [27] to include
valence-core electron correlations. In this method, a corre-
lation potential �(ri, r j, ε) is added to the RHF equations
[Eq. (3)], and new orbitals ϕBr (Brueckner orbitals) and
Brueckner energies are obtained for the valence states. The
correlation potential is defined such that the average value
of the second-order correlation potential corresponds to the
second-order correlation correction to the energy. Diagrams
are presented in Fig. 2.

We use the Feynman diagram technique to include higher-
order correlations, and a fitting procedure is used to approx-
imate the inclusion of missed diagrams. Calculation of the
hyperfine constant with valence-core correlations included,
along with core polarization, corresponds to evaluation of the
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(1)

(3)

(2)

(4)

FIG. 2. Goldstone diagrams for the second-order correlation cor-
rections to the energy, where (1) and (3) are direct terms, and (2) and
(4) are exchange terms. Forward solid lines correspond to electron
lines; backward lines, to holes; and dashed lines, to Coulomb lines.

matrix element

〈ϕBr|hhfs + δVhfs|ϕBr〉 . (9)

In the following section we describe how higher orders are
included in the correlation potential.

Higher orders

The Feynman diagram technique is used to reexpress the
Goldstone diagrams in Fig. 2. Then it is relatively straight-
forward to include certain classes of diagrams to all orders
in the Coulomb interaction. We do this using the method
developed in Ref. [28]; we refer the reader to that work for
the relevant equations. The most important class of diagrams
corresponds to electron-electron screening of the Coulomb
interaction, represented in Fig. 3. Another class of diagrams—
hole-particle interaction—is included through dressed hole-
particle loops, as depicted in Fig. 4. All-orders electron-
electron screening and the hole-particle interaction are in-
cluded in the direct terms of the correlation potential using
the Feynman diagram formalism, as shown in Fig. 5.

Exchange diagrams are usually considered to be small in
comparison to direct diagrams (see, e.g., Ref. [29]), and a
simpler approach is used. The exchange part of the correlation
potential is evaluated at the second order. This calculation
involves a sum over a complete set of states in the internal
lines, and to discretize the states in this sum, we introduce a
cavity of radius 40aB and diagonalize the relativistic Hartree-
Fock Hamiltonian on a set of 40 splines of order k = 9
[20]. Higher-order correlations are accounted for by using
multipolarity-dependent screening factors fk , where k is the
multipolarity of the Coulomb interaction. These rescale the
Coulomb integrals gk that correspond to the Coulomb lines
in the exchange diagrams, (2) and (4), in Fig. 2 as fkgk . The

++ +...=

FIG. 3. All-orders electron-electron screening of the Coulomb
interaction, corresponding to a series of hole-particle loops, produc-
ing a dressed Coulomb line.

+ +...= +

FIG. 4. All-orders summation of hole-particle interaction, form-
ing a dressed polarization loop.

screening factors fk are found from the ratio [29]

fk = 〈v|�∞,ee
dir,k |v〉〈v|�(2)

dir,k|v〉, (10)

where �∞,ee
dir,k and �

(2)
dir,k refer to the direct parts of the all-orders

and second-order correlation potentials, respectively. These
factors include only the dominant electron-electron screening
correction.

To improve the accuracy of our calculations further, we
multiply the correlation potential by a fitting factor which is
tuned to reproduce the experimental binding energies. Beyond
the higher-order corrections that may be absorbed into a corre-
lation potential, there are other small corrections (at the level
of 1% or less). These include so-called structural radiation and
normalization of states [27] and are taken into account in this
work.

We also include the Breit correction, accounting for retar-
dation and magnetic effects. The effective Breit Hamiltonian,

hB(r1, r2) = −1

2r12

(
α1 · α2 + (α1 · r12)(α2 · r12)

r2
12

)
, (11)

where r12 = r1 − r2, is included in the Hartree-Fock equations
self-consistently at the RHF and RPA levels.

V. CORRELATION CORRECTIONS ACROSS PRINCIPAL
QUANTUM NUMBERS

In our previous work [10] we observed that the relative
correlation corrections for s states of Cs, Fr, Ba+, and Ra+

tend towards constant and nonzero values for high n. We
define the relative correlation correction F� as

F� = (A − ARPA)/ARPA , (12)

where A is the total hyperfine constant and ARPA is the result
of our calculation at the RPA level, including the nuclear
magnetic moment, Bohr-Weisskopf, and QED corrections
using Eq. (4). The relative correlation correction describes the
correlations included beyond the mean-field approximation.
Note that in the theoretical evaluation of F� any dependence
on nuclear properties and QED radiative corrections in A and
ARPA factors out, as long as these corrections are treated in
the same way. It is also possible to find experimental values
for the relative correlation corrections, as done below, using
measured values for the hyperfine constants A in Eq. (12).

FIG. 5. Feynman diagram of the direct, all-orders correction to
the energy. Note that at the lowest order, this diagram is equivalent
to the sum of Goldstone diagrams (1) and (3) in Fig. 2.
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FIG. 6. Relative correlation corrections F� for ns states of 87Rb,
133Cs, and 211Fr. All-orders many-body results are shown as crosses,
values extracted from measurements (see tables in the following
sections) are shown as circles with error bars, and dashed lines
correspond to least-squares fits to the measured data. Uncertainties
from the choice of nuclear magnetic moments and Bohr-Weisskopf
corrections are not included; these may be sizable for Fr. Measured
values of hyperfine constants for 8s and 9s states of Fr were found
from 210Fr using the simple rescaling g211

I /g210
I .

A. Theory

The results of our many-body calculations for the relative
correlation corrections to the hyperfine structure for Rb, Cs,
and Fr are presented in Fig. 6 for s states across the principal
quantum n from the ground state to n = 18. The theory
results are shown as crosses in the figure (the values are
presented in tables in the following sections). In agreement
with Refs. [11,12], our results for the relative correlation
corrections to the hyperfine structure for the ground state of

 15

 20

 25

 30

 35

 40

 45

 50

 55

6 8 10 12 14 16 18

Correlation corrections (%) to HFS for np1/2 states

F
Σ  (

%
)

n

Rb Experiment
Rb Experimental fit

Rb Theory
Cs Experiment

Cs Experimental fit
Cs Theory

Fr Experiment
Fr Theory

FIG. 7. Relative correlation corrections F� for np1/2 states for
87Rb, 133Cs, and 211Fr. See caption to Fig. 6 for further explanation.
Note that for Fr p1/2 states there are no available data for the QED
corrections, and so these are not included in extracting the measured
values for this atom. The measured value for Fr 8p1/2 was found by
simply rescaling the hyperfine constant of 212Fr by g211

I /g212
I .

Cs show larger values than for the ground states of Rb and Fr.
The relative correlation corrections exhibit a strong decrease
at low n and level off to constant, nonzero values at high n.
The decrease in the correlation corrections with the principal
quantum number n has been observed theoretically in several
alkali-metal atoms (see, for example, Refs. [10,14,16–18]).
References [11,14] provide an explanation for these trends—
that they arise due to competing factors, the electric polar-
izability of the atom and the separation distance between
the core and valence electron. Indeed, at large distances, the
correlation potential approaches a local polarization potential
that involves the electric polarizability of the atomic core α,
�r→∞ ≈ −α/(2r4). The decrease in the relative correlation
potential with increasing n has been seen previously for the
lowest states and observed over a higher range of n, up to
n = 16, more recently in Ref. [10]. In the current work, we
study the trend up to n = 18 and present the first results for
Rb across a wide range in n. We demonstrate that for the
three atoms, F� tends towards constant and nonzero values
with an increase in n. At n = 18, we find that the relative
correlation corrections are 5.2%, 4.5%, and −0.3% for Rb, Cs,
and Fr. Note that for Fr, this value is negative, an interesting
result that has been observed previously for Ra+ [16], which
is consistent with our Ra+ results [10].

We have also calculated the relative correlation corrections
to np1/2 states up to n = 18 for Rb, Cs, and Fr. Our results are
shown in Fig. 7. It is shown that the relative correlation cor-
rections are significantly larger for the p1/2 states compared to
the s1/2 states. This is consistent with the results in Ref. [12],
where calculations were performed for the lowest-lying p1/2

states. The p1/2 states exhibit behavior similar to that of the s
states for F� , with the values decreasing quickly at low n as
n is increased and leveling off to constant and nonzero values
at high n.

Simple analytical arguments support the observation that
the relative correlation corrections tend towards constant val-
ues. These are applicable for both s and p1/2 states. The
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Brueckner orbitals may be written as ϕBr = ϕ + δϕ, where
here

δϕ =
∑

m

|ϕm〉〈ϕm|�(∞)|ϕ〉/(ε − εm) (13)

and ϕ and ε correspond to RHF values; see Eq. (3). The
correlation correction to the hyperfine constant A may then
be expressed as

�A ∝ 〈ϕ|hhfs|δϕ〉 + 〈δϕ|hhfs|ϕ〉 . (14)

We proceed by considering the simple case where the sum
is dominated by a single term where ε ≈ εm. It is known
that 〈ϕ|hhfs|ϕ〉 ∝ 1/ν3 [1], where ν is the effective principal
quantum number, and the energy interval may be approxi-
mated as 1/ν2 − 1/ν2

m ∝ 1/ν3 for large ν (since ν ≈ νm and
the difference between the two is approximately a constant).
Finally, 〈ϕ|�(∞)|ϕ〉 is simply the correlation correction to the
energy, which also scales as 1/ν3. Using these scalings, it is
then seen that

�A ∝ 1/ν3 . (15)

Therefore, the relative correlation correction �A/A tends
towards a constant for high n.

B. Experiment

In this section we look at the trends in the relative cor-
relation corrections derived from experiment and we use
the combination of our calculations with these experimental
results to make high-accuracy predictions for the hyperfine
constants.

For 133Cs, hyperfine constants have been measured for s
states up to n = 17, and there are data for several p1/2 states.
There are also a number of measurements of the hyperfine
constants for 87Rb, for s states up to n = 11 and for several
p1/2 states. For Fr, there are limited data for states with a
principal quantum number beyond n = 7. We use the available
data for the hyperfine constants for 7s and 7p1/2 states of 211Fr
[30,31]. For states 8s and 9s, we use the measurements for the
isotope 210Fr, and for 8p1/2 we use the measurement for 212Fr.
The relevant measured data for 133Cs, 87Rb, and 210,212Fr are
presented in the following sections.

In Figs. 6 and 7 we present these measured hyperfine
constants as relative correlation corrections F� alongside our
theory values. Indeed, it is possible to derive these relative
corrections from the measured data using Eq. (12). These
corrections are defined by what remains beyond our mean-
field results, in this case our RPA values. They are found by
subtracting ARPA, which includes the nuclear magnetic mo-
ment and the Bohr-Weisskopf and QED radiative corrections.
For reference, and illustration of the procedure, we present
the results of our calculations at the RHF and RPA levels
(without Bohr-Weisskopf or QED corrections) for the states
up to n = 12 in Table I. These data, along with the values for
F BW and F QED presented in Table II, are used to determine
ARPA according to Eq. (4).

The Bohr-Weisskopf corrections, F BW, and QED radia-
tive corrections, F QED, are presented in Table II. The Bohr-
Weisskopf results were obtained in the nuclear single-particle
model at the RPA level [9,10]. The results for 87Rb and

TABLE I. Calculated values of AMBμ/μN at the RHF and RPA
levels for s and p1/2 states of 87Rb, 133Cs, and 211Fr. Bohr-Weisskopf
and QED radiative corrections are not included. Units: MHz.

87Rb 133Cs 211Fr

RHF RPA RHF RPA RHF RPA

5s 2183 2644
6s 583.1 704.7 1434 1728
7s 238.8 288.5 393.9 474.0 5929 7040
8s 120.6 145.6 164.5 197.8 1520 1802
9s 69.24 83.59 84.11 101.1 624.0 739.5
10s 43.37 52.35 48.71 58.53 316.8 375.3
11s 28.95 34.94 30.70 36.89 182.7 216.5
12s 20.27 24.47 20.59 24.74 114.9 136.1
5p1/2 236.8 299.6
6p1/2 83.21 104.6 161.0 201.6
7p1/2 38.60 48.41 57.65 71.64 628.2 777.2
8p1/2 20.97 26.27 27.09 33.57 222.9 273.8
9p1/2 12.64 15.82 14.85 18.38 104.4 127.9
10p1/2 8.192 10.25 9.002 11.13 57.13 69.90
11p1/2 5.610 7.018 5.863 7.248 34.61 42.31
12p1/2 4.008 5.013 4.030 4.980 22.53 27.53

211Fr p1/2 states were found in the current work. For the
QED radiative corrections, F QED, we use the results from
Refs. [9,23]. The QED correction for the p1/2 state of Fr has
not been determined.

The relative correlation corrections may be extracted
from measured data for the hyperfine constants as fol-
lows. The measured hyperfine constant for Cs 9s is Aexp =
109.93(9) MHz [33]. Our theory result at the RPA level is
AMBμ/μN = 101.09 MHz, and from the data in Table II for
F BW and F QED, we obtain ARPA = 100.50 MHz using Eq. (4).
The relative correlation correction for Cs 9s is then found from
Eq. (12), giving F� = 9.39(9)%.

It is shown in Figs. 6 and 7 that our calculated F� generally
shows an excellent agreement with experiment for the con-
sidered s and p1/2 states. The agreement is particularly good
for the ground states of Rb and Cs and the p1/2 states of Rb.
Note that the error bars for F� only include the uncertainties
associated with the measured hyperfine constants, and they do

TABLE II. Relative Bohr-Weisskopf corrections, F BW, in the
nuclear single-particle model at the RPA level and relative QED
radiative corrections, F QED, in the core-Hartree approximation for
the lowest s and p1/2 states of 87Rb, 133Cs, and 211Fr. The values for
F BW for p1/2 states of 87Rb and 211Fr are results of the current work,
found using the same methods as in Refs. [9,10].

F BW F QED

μ [32] s p1/2 s [9] p1/2 [23]

87Rb 2.751818(2) −1.20a 0.0098 −1.039 −0.023
133Cs 2.582025(3) −0.898b −0.056a −1.638 −0.096
211Fr 4.00(8) −5.6a −1.69 −2.59 –

aFrom Ref. [9].
bFrom Ref. [10].
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TABLE III. Rb hyperfine constants A (in MHz) given by theory and experiment, as well as the predictions from the fit and ratio methods.

ns np1/2

n Theory Exp. [34] Fit Ratio Theory Exp. [34] Fit Ratio

5 3401.8 3417.341. . . – – 410.06 406.2(8) − −
6 800.78 807.66(8)a – 807.27(61) 132.77 132.56(3) − 132.60(14)
7 317.19 319.759(28)b – 319.92(24) 59.996 59.92(9) 59.96(11) 59.90(4)
8 157.62 159.2(15) 158.92(65) 158.94(17) 32.138 32.12(11) 32.15(9) 32.09(4)
9 89.662 90.9(8) 90.38(36) 90.41(10) 19.207 – 19.21(6) 19.18(3)
10 55.821 56.27(12) 56.26(22) 56.29(4) 12.383 – 12.39(5) 12.36(2)
11 37.092 37.4(3) 37.38(14) 37.40(3) 8.4453 – 8.45(4) 8.432(17)
12 25.891 – 26.23(17) 26.11(2) 6.0101 – 6.01(3) 6.001(18)
13 18.782 – 19.03(12) 18.94(2) 4.4295 – 4.43(2) 4.422(16)
14 14.055 – 14.24(9) 14.17(1) 3.3577 – 3.36(2) 3.352(14)
15 10.791 – 10.93(7) 10.88(1) 2.6055 – 2.61(1) 2.601(12)
16 8.4646 – 8.57(6) 8.535(6) 2.0623 – 2.06(1) 2.059(10)
17 6.7616 – 6.85(4) 6.818(5) 1.6599 – 1.66(1) 1.657(9)

aFrom Ref. [26].
bFrom Ref. [35].

not include uncertainties associated with extracting the rela-
tive correlation corrections, such as from the nuclear magnetic
moment. The nuclear magnetic moments of francium isotopes
have very large uncertainties (e.g., 2% for 211Fr), which may
explain a large part of the difference in the results between
theory and experiment.

The smooth dependence of the relative correlation cor-
rections on the principal quantum number is supported by
the measured values. This allows us to make highly accurate
predictions of the hyperfine constants, as implemented in the
following section.

VI. PREDICTIONS

While there is a known trend of 1/ν3 for the hyperfine
constants, more accurate predictions may be found by taking
advantage of the observed trend in the relative correlation
corrections. We do this using two methods: by fitting the avail-
able experimental data to the theoretically motivated trend
in the relative correlation corrections and by using the ratio
method, as developed in Ref. [10]. We note that the observed
trends, from theory and experiment, align most strongly for
the excited states, and so the ground state is to be treated
separately (accurate calculations of the ground-state hyperfine
splitting for these atoms have been presented recently in
Ref. [9]).

A. Fit method

We fit the function a(n − b)−c + d to the relative correla-
tion corrections (F�) using weighted least squares, where n
is the principal quantum number and a, b, c, and d are the
fitting parameters. First, the parameters b and c are fixed by
fitting the function to the theoretical F� values [(n − b) > 1
may be thought of as an effective principal quantum number,
and c 
 1 determines the degree of the relative correlation
trend]. Then the a and d parameters are fitted to the F� values
derived from experimental A values; fitting these terms to the
experimental data corrects for small errors in the calculated

correlation corrections. This method allows us to make accu-
rate predictions using the fit when only a few experimental
values are known. We stress that we always exclude from
the fit the experimental value for the state we are making the
prediction for.

Using this method we predict the hyperfine constants up
to n = 17. These are presented for Rb and Cs in Tables III
and IV, respectively, wherever the experimental uncertainty
is higher than 0.1% or where measured values are currently
unavailable. We estimate the uncertainties in the predicted
values from the uncertainties in the fit parameters; the fit is
mostly sensitive to the b and c parameters (determined from
the fit to theory), and it is these which typically dominate the
uncertainty. Our predictions from the fit method all lie well
within the experimental error bars.

We note that investigating the measured hyperfine con-
stants in terms of this trend allows us to identify instances
where the midpoint of an experimental value deviates sig-
nificantly from the observed trend. For example, in Fig. 6 it
may be seen that F� derived from the Rb 9s measurement
lies above the trend in the Rb s states (this measurement
also has a relatively large uncertainty compared to the other
measurements). Using the fit method, we predict the hyperfine
constant to be A9s = 90.38(36) MHz, in comparison to the
experimental measurement of Aexp

9s = 90.9(8) MHz. Similarly,
the experimental F� values for Cs 10s and 15s also lie above
the trend in Fig. 6. Here, we predict A10s = 62.99(24) MHz
and A15s = 10.05(5) MHz, compared to the experimental data
Aexp

10s = 63.2(3) MHz and Aexp
15s = 10.1(1) MHz.

B. Ratio method

We also apply the ratio method to make highly accurate
predictions of the hyperfine constants for Rb and Cs, pre-
sented in Tables III and IV. Using the ratio method [10],
a value for the hyperfine constant An for a state n can be
expressed as

An = Ath
n

(
Aexp

m /Ath
m

)
(16)
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TABLE IV. Cs hyperfine constants A (in MHz) given by theory and experiment, as well as the predictions from the fit and ratio methods.

ns np1/2

n Theory Exp. [34] Fit Ratio Theory Exp. [34] Fit Ratio

6 2293.3 2298.157. . . – – 294.96 291.9309(12)e – –
7 541.65 545.818(16)a – 545.67(40) 95.015 94.40(5)f – 94.49(26)
8 217.51 219.125(4)b – 219.18(16) 43.209 42.97(10) 42.95(9) 42.93(7)
9 109.10 109.93(9)c 109.98(44) 109.92(8) 23.276 23.19(15) 23.16(7) 23.13(4)
10 62.505 63.2(3) 62.99(24) 62.98(6) 13.968 13.9(2) 13.91(5) 13.88(4)
11 39.126 39.4(2) 39.42(15) 39.42(3) 9.0343 – 9.00(4) 8.976(46)
12 26.106 26.31(10) 26.30(10) 26.30(2) 6.1785 – 6.15(3) 6.139(35)
13 18.281 18.40(11) 18.42(8) 18.42(1) 4.4106 – 4.39(2) 4.382(27)
14 13.297 13.41(12) 13.40(7) 13.40(1) 3.258 – 3.25(2) 3.237(21)
15 9.9725 10.1(1)d 10.05(5) 10.05(1) 2.4745 – 2.47(1) 2.458(16)
16 7.6705 7.73(5)d 7.73(5) 7.728(9) 1.9234 – 1.92(1) 1.911(13)
17 6.0261 6.06(10)d 6.07(4) 6.072(8) 1.5246 – 1.52(1) 1.515(10)

aFrom Ref. [36].
bFrom Ref. [37].
cFrom Ref. [33].
dFrom Ref. [38].
eFrom Ref. [39].
fFrom Ref. [40].

[see Eq. (4)], where Aexp
m is a measured hyperfine constant for

some other state of the same angular momentum (typically
taken as an excited state). Note that the calculated A values
can be expressed as Ath

n = An(1 + δn), where An is the “exact”
hyperfine constant and δn is the relative deviation. Either the
ratio method may be used to isolate the uncertainty for one
state, when the other state can be modeled significantly better,
or it may be used to make high-accuracy predictions, when δn

values are comparable in magnitude and of the same sign (or
small). When correlations are taken into account as described
above, we find the value for δn to be the same for all n to a very
good approximation, and therefore it cancels in the ratio, (16);
this is particularly true for the excited states, where the relative
correlation corrections are smaller. The ratio method thereby
leads to very accurate predictions for hyperfine constants, as
long as correlation effects are sufficiently taken into account,
and there is at least one experimental value available of
high accuracy [10]. Since the ratio method works best when
projecting from the excited states (as opposed to the ground
state), we use the measurements from the lowest excited states
that have the smallest uncertainties to make predictions for
the higher states. For example, for Cs, we use both the Aexp

7s
and the Aexp

8s experimental results to perform the predictions
for the n � 9s states. As a consistency check, we also use the
experimental hyperfine constant Aexp

7s to predict A8s, and Aexp
8s

to predict A7s.
The leading source of uncertainty in the ratio method

comes from errors in the inexact cancellation of the δn factors.
To this end, we calculate δn corresponding to our calculated A
values for each state using the available experimental values.
The variance in the observed δn values is used to estimate
the uncertainty in the predicted A values. Typically, the uncer-
tainty in the resulting A values for s states is better than 0.1%.
The uncertainty increases for the more highly excited states,
where the exact cancellation of the δn terms is less certain.

The resulting predicted values up to n = 17 are presented
for Rb and Cs in Tables III and IV, respectively. We make
predictions for states where high-precision experimental data
are available as a test of the method. Note that the agreement
with experiment in these cases is excellent, with deviations of
central values to within 0.05%.

We present results for the first few excited states of Fr
in Table V projected from the lowest states. The data from
the higher states are not known with sufficient precision to
make highly accurate predictions for the lowest states of 210Fr
and 212Fr using the ratio method. With fewer experimental
data, the uncertainty is more difficult to control, however, we

TABLE V. Fr hyperfine constants A (in MHz) given by experi-
ment and theory, and predictions using the ratio method. Calculations
were carried out for 211Fr. Measured data for higher states n > 7 are
available for 210,212Fr. We use the ratio method to predict A values
for the higher states of these isotopes only. Columns list values
for different isotopes and should not be compared directly. Nuclear
and QED contributions cancel in the ratio (16), so the results are
independent of which isotope is used for the theory part.

211Fr: Theory 210Fr: ns 212Fr: np1/2

n ns np1/2 Exp. Ratio Exp. Ratio

7 8886.4 1185.5 7195.1(4)a 1192.0(2)b

8 1930.8 367.9 1577.8(11)c 1574 373.0(1)a

9 763.5 164.7 622.32(30)d 624 167
10 380.4 88.08 310 89.3
11 217.2 52.63 177 53.4
12 135.6 33.96 111 34.4

aFrom Ref. [31].
bFrom Ref. [30].
cFrom Ref. [41].
dFrom Ref. [18].
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expect these predictions to be accurate to about 0.5%. We can
achieve this accuracy despite the nuclear magnetic moments’
not being known to better than 1%–2%.

VII. SUMMARY AND CONCLUSIONS

Accurate knowledge of hyperfine constants is impor-
tant for extracting nuclear properties, such as nuclear mag-
netic moments. As atomic theory precision increases, this
may be extended to extraction of the Bohr-Weisskopf ef-
fect and the radiative quantum electrodynamics effects that
become sizable in the strong electric field near the nu-
cleus. Thereby, such investigations play a significant role in
testing of nuclear physics models and models for includ-
ing radiative QED effects in atomic structure calculations.
Further, the comparison of high-precision atomic structure
calculations for hyperfine constants with measured values
provides an important handle for understanding the accuracy
of calculated wave functions at very small distance scales.
This is particularly important, for example, in studies of
APV.

With these motivations, we have investigated the trends in
the correlation corrections for the hyperfine constants across
principal quantum numbers n. We have shown that these
corrections tend towards constant, nonzero values for high
states. Our calculations were performed on Rb, Cs, and Fr
for the ground states up to n = 18 for s and p1/2 states. Our
results are supported by measured values for Cs and Rb, and
we have demonstrated that the smooth dependence of the
relative correlation corrections on n allows one to make highly
accurate predictions for the hyperfine constants. We have used
two methods to make these predictions—a least-squares fit
to measured values and the ratio method—and have obtained
values for the hyperfine constants for excited states of Rb and
Cs with uncertainties of about 0.1% or better for s states.
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