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An algorithm for calculating the leading relativistic corrections for D states of atoms with an arbitrary number
of electrons with all-electron explicitly correlated Gaussian functions is derived and tested in calculations for
the helium and beryllium atoms. The finite-nuclear-mass approach used enables us to determine the isotopic
shifts of the corrections. The results for interstate transitions for 1D states of the helium atom are compared with
previous calculations. The results for the beryllium atom are compared with the experimental values, as these
are high-accuracy calculations of D states of a four-electron atom performed with the inclusion of the leading
relativistic corrections. The calculated and experimental values agree with each other within the experimental
error bar.

DOI: 10.1103/PhysRevA.100.042503

I. INTRODUCTION

Very accurate quantum-mechanical calculations of the
ground and excited states of small atoms have always pro-
vided the testing ground for new computational methods for
atomic calculations. The testing has been possible due to
the availability of very accurate gas-phase spectra of these
systems. An important group of states for which such high
accuracy experimental data are available are D states. For
example, in the NIST atomic spectra database [1] among
the 182 states of the lithium atom there are ten 2D states
which correspond to the electron configurations 1s2nd , where
n = 3, 4, . . . , 12. For the beryllium atom there are 219 lev-
els listed, 11 of them are 1D states and 10 are 3D states.
The leading electronic configuration in the wave function
of the lowest 1D state is 1s22p2 and in the wave functions of
the rest of the states the leading configurations are 1s22s1nd1,
n = 3, 4, . . . , 12, respectively. The leading configurations for
the 3D states are 1s2nd2, n = 3, 4, . . . , 12. For the boron
atom, 66 states with energies below the first ionization energy
are listed. There are as many as 38 D states with the lowest
corresponding to the electron configuration 1s22s12p2 and the
rest corresponding to the electron configurations 1s22s2nd1.
The approach developed in this work enables us to calculate
the energies of the above-mentioned D states with high accu-
racy. The high accuracy is achieved by including in the total
state energy a very well optimized variational nonrelativistic
energy of the atom and the leading relativistic corrections. The
calculations are performed using an approach that explicitly
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accounts for the finite mass of the atomic nucleus and expand-
ing the spatial part of the wave function in terms of all-electron
explicitly correlated Gaussian functions.

While bound states of two- and three-electron atoms have
been calculated with very high accuracy using Hylleraas-
type explicitly correlated functions (see, for example, the
calculations concerning the lithium atom performed by Yan
and Drake [2], as well as calculations for other two- and
three-electron atomic systems [3–7]), the approach involving
the Hylleraas functions has not been extended to atoms with
four or more than four electrons due to difficulties with
calculating the Hamiltonian matrix elements. There is one
exception. King et al. [8] calculated the ground states of the
beryllium isoelectronic series using a Hylleraas approach with
Slater-type basis functions.

Another type of basis function that has been very popular
in high-accuracy atomic calculations are explicitly correlated
Gaussian functions (ECGs) that exponentially depend on
squares of the interelectron distances. The most accurate
results for four- and five-electron atoms have been obtained
with those functions [9–12]. The largest atomic calculations
so far include those of some of the lowest states of the carbon
and nitrogen atoms [13,14]. ECGs were also used by Pachucki
et al. in beryllium [15–18] and boron [19] calculations.

The main advantage of using explicitly correlated Gaus-
sians in atomic calculations is the simplicity of the algo-
rithms for calculating the Hamiltonian and overlap integrals
with these functions, which can be analytically evaluated for
an arbitrary number of electrons. However, there are some
drawbacks of using Gaussians in atomic calculations. These
functions do not satisfy the Kato cusp conditions and are
decaying too fast at large distances. Thus large ECG basis
sets need to be used to achieve satisfactory convergence of
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the energy and other properties. Also, extensive variation
optimization of the Gaussian nonlinear parameters needs to
be performed to improve the energy convergence [9–12]. In
our calculations the optimization is aided by providing the
analytically calculated gradient of the energy determined with
respect to the Gaussian parameters to the procedure that runs
the variational energy minimization. The matrix elements for
the energy gradient for the D states, as well as the matrix ele-
ments of the Hamiltonian and overlap matrices, were derived
and implemented in our 2011 paper [20].

In the approach we use in this work we explicitly account
for the finite mass of the nucleus in the variational nonrel-
ativistic calculations, as well as in the calculations of the
relativistic corrections. This is done by means of employing
a Hamiltonian that explicitly depends on the masses of all
particles forming the atom including the mass of the nucleus.
The Hamiltonian is obtained by separating out the operator
representing the kinetic energy of the center-of-mass motion
from the laboratory-frame nonrelativistic Hamiltonian of the
system. The finite-nuclear-mass (FNM) approach allows for
calculating isotope shifts of the total and transition energies.

As a numerical illustration of the procedure implemented
in this work we perform calculations of the relativistic cor-
rection of the lowest ten 1D states of the helium atom. Eight
of these states were calculated before by Drake and Yan
[21] and the present results are compared with their results
to validate the correctness of the present implementation.
We also perform calculation for the lowest two 1D states
of the beryllium atom. The transition energy calculated as
a difference between the total energies of those two states,
which include the relativistic corrections, is compared with
the experimental value. These are high-accuracy calculations
of D states of a four-electron atom performed with the inclu-
sion of the leading relativistic corrections. As the corrections
are calculated using nonrelativistic wave functions obtained
in FNM calculations and the relativistic operators (obtained
by transforming the laboratory-frame operators to an internal
coordinate system; the internal coordinate system used in this
work is described in the next section), they directly include
the so-called recoil effects.

Hamiltonian

We consider an atom with N particles (i.e., n = N − 1
electrons and a nucleus). We start with the laboratory-frame
nonrelativistic Hamiltonian and we separate out the center-of-
mass motion. This is done by introducing an internal Cartesian
coordinate system centered at the nucleus. The positions of
the electrons in this coordinate system are described by the ri

(i = 1, . . . , n) vectors. The separation of the center-of-mass
motion is rigorous and results in the laboratory Hamiltonian
becoming a sum of the operator representing the kinetic en-
ergy of the center-of-mass motion and the following “internal”
Hamiltonian:

Ĥ = −1

2

⎛
⎜⎝ n∑

i=1

1

μi
∇T

ri
· ∇ri + 1

m0

n∑
i, j=1
i �= j

∇T
ri

· ∇r j

⎞
⎟⎠

+
n∑

i=1

q0qi

ri
+

n∑
i> j=1

qiq j

ri j
, (1)

where T denotes the matrix-vector transpose; this notation
is used throughout the present work, m0 is the nucleus
mass and q0 is its charge, qi are electron charges, and
μi = m0mi/(m0 + mi ) are electron reduced masses (mi, i =
2, . . . , n, are the electron masses). The Hamiltonian (1) de-
scribes the motion of n (pseudo)electrons, whose masses
have been changed to the reduced masses, in the central
field of the charge of the nucleus. This motion is coupled
through the Coulombic interactions:

∑n
i=1

q0qi

ri
+ ∑n

i> j=1
qiq j

ri j
,

where ri j = |r j − ri|, and through the mass polarization term,
− 1

2

∑n
i, j=1
i �= j

(1/m0)∇T
ri

· ∇r j . Hamiltonian (1) is used in the

present calculations.

II. BASIS FUNCTIONS

In this work we consider atomic D states (i.e., L = 2 states)
corresponding to electronic configurations where one or two
electrons of the n electron atom is occupying a non-s state.
Examples of such states include the above-mentioned 1s22p2

and 1s22s1nd1 1D states of the beryllium atom. To construct
the spatial part of the wave function of an atomic D (with
ML = 0) state with a single d electron or two p electrons using
explicitly correlated Gaussian functions one needs to use the
following functions as products of Gaussian exponentials and
Cartesian angular harmonics:

φ
(L=2)
k = (

xik x jk + y jk yik − 2zik z jk

)
exp[−rT (Ak ⊗ I3)r], (2)

where electron labels ik and jk , whose value can vary from 1
to n, are either equal or not equal to each other. Ak in (2) is an
n × n symmetric matrix of the exponential parameters of the
Gaussian, ⊗ is the Kronecker product, I3 is a 3 × 3 identity
matrix, and r is a 3n vector that has the form

r =

⎛
⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1
...

xn

yn

zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We denote (Ak ⊗ I3) in (2) as Ak . As basis functions (2) are
used to expand wave functions of bound atomic states, they
need to be square integrable. This only happens if the Ak

matrix is positive definite. To make it positive definite we
represent it in the Cholesky-factored form as Ak = (LkLT

k ) ⊗
I3, where Lk is a n × n lower triangular matrix. With the
Lk matrix elements being any real numbers, Ak is positive
definite. This is an important feature because it allows us to
use the Lk matrix elements as the variational optimization
parameters, which can be varied without any restrictions in the
range from −∞ to +∞. The optimization of these parameters
through the variational energy minimization is performed in
the present calculations.

The proper permutational symmetry of the wave function
in the present calculations is implemented with the use of
the spin-free formalism. In this formalism, an appropriate
symmetry projector is constructed and applied to the spatial
parts of the wave function to impose the desired symme-
try properties. The projector, which introduces the desired

042503-2



FINITE-NUCLEAR-MASS CALCULATIONS OF THE … PHYSICAL REVIEW A 100, 042503 (2019)

symmetry properties, is constructed using the standard pro-
cedure involving Young operators [22–24]. The procedure
for generating the permutational symmetry projector was
described earlier [25].

For the 1D states of the beryllium atom the symme-
try projector can be chosen as P = (1 − P13)(1 − P24)(1 +
P12)(1 + P34), where Pi j permutes the spatial coordinates
of the ith and jth electrons. In the calculations of the Hamil-
tonian and overlap matrix elements, as well as in the operators
representing the relativistic corrections, the projector is placed
only in the “ket” part of the integrals because the operators are
symmetric with respect to permutations of the electron labels.
As the projector contains 4! = 24 terms in the beryllium
calculations, each matrix element is a sum of 24 different
terms.

We use a general quadratic form, rT Wkr, in place of
(xik x jk + yik y jk − 2zik z jk ) in (2) allowing for a more general-
ized approach in deriving the matrix elements. With that, our
basis functions are

φ
(L=2)
k = (rT Wkr) exp[−rT Akr], (4)

where Wk is a sparse 3n × 3n symmetric matrix that
for ik = jk comprises only three nonzero elements:
W3(ik−1)+1,3(ik−1)+1 = 1, W3(ik−1)+2,3(ik−1)+2 = 1, and
W3(ik−1)+3,3(ik−1)+3 = −2; for ik �= jk it comprises six nonzero
elements: W3(ik−1)+1,3( jk−1)+1 = W3( jk−1)+1,3(ik−1)+1 =
1
2 , W3(ik−1)+2,3( jk−1)+2 = W3( jk−1)+2,3(ik−1)+2 = 1

2 , and
W3(ik−1)+3,3( jk−1)+3 = W3( jk−1)+3,3(ik−1)+3 = 1.

III. RELATIVISTIC OPERATORS

We consider relativistic corrections of the order of α2.
The operators representing these corrections, which include
the mass-velocity (MV), Darwin (D), orbit-orbit (OO), and
spin-spin (SS) corrections, derived in the internal coordinate
system with the use of the finite-nuclear-mass approach are
(as the states considered in this work are single states, the
spin-orbit interaction is zero and is not included in the cal-
culations):

A. Mass-velocity term

ĤMV = −1

8
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⎣ 1
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0

(
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∇ri
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1
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B. Darwin term

ĤD = π
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n∑
i=1

(
4

3
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+ π

2
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C. Orbit-orbit term
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1
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∇ri
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j
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+ 1
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. (7)

D. Spin-spin term

HSS = −8π

3

4∑
i, j = 1

j > i

qiq j

mimj
(si · s j )δ(ri j ), (8)

where δ(r) is the Dirac delta function and si are spin operators
for individual electrons. For the states considered in this work
si · s j = −3/4.
The formulas for the matrix elements of the above relativistic
operators are presented in the Appendix.

IV. VARIATIONAL CALCULATIONS

The variational calculations are performed separately and
independently for each state and for each state a different
basis set is generated. In the calculations the linear expan-
sion coefficients, ck , of the wave function in terms of basis
functions are obtained in the standard way by solving the
secular equation. The nonlinear parameters (i.e., the Lk matrix
elements) are optimized through the variational minimization
of the total nonrelativistic energy. As mentioned, the analytic
energy gradient determined with respect to these parameters
is used in the minimization [26].

The growing of the basis set for each state is a multistep
process. It involves choosing a small starting set of ECGs (for
the lowest state this set is generated using an orbital guess
obtained using a standard atomic orbital basis set; for a higher
state a basis set generated for the next lower state is used as
the initial guess; usually a rather small basis set is used as an
initial guess). After the initial basis set is optimized the up-
dating of the set starts. It involves addition of small groups of
functions, optimizing them, and, after each group of functions
is added to the basis set, reoptimizing the whole set. All this is
done using the one-function-at-the-time approach. The initial
guess for an added function is generated by selecting a set of
most contributing functions already included in the basis set,
randomly perturbing their nonlinear exponential parameters,
and choosing the function which lowers the energy the most.
At this stage, the chosen function is added to the basis set and
its nonlinear parameters, i.e., the Lk matrix elements, are op-
timized using the procedure that employs the analytic energy
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gradient. Also, at this stage, the ik and jk indices involved in
the preexponential angular factor are optimized. This is the
only time the optimization of these indices is carried out. After
a certain number of functions (100 in the present calculations)
is added to the basis set, the entire basis is reoptimized. The
reoptimization involves cycling over all functions, one by one,
several times and reoptimizing their nonlinear parameters.
In the calculations we performed before for other systems
it was determined that the above strategy is efficient and
numerically stable. The stability of the calculations is also
enhanced by checking for any linear dependencies between
the basis functions that may appear during the optimization.
Such dependencies may lead to numerical inaccuracies and
destabilization of the optimization process. If during the op-
timization of a basis function it becomes linearly dependent
with any other function already included in the basis set, the
function is reset to what it was before the optimization. The
use of the analytic gradient is crucial in making the optimiza-
tion efficient and in generating very well converged results,
i.e., the nonrelativistic energy and the corresponding wave
function.

As high-accuracy results of nonrelativistic energies and
relativistic corrections obtained with the infinite-nuclear-mass
(INM) approach exist in the literature for the helium atom
[2], the variational optimization of the nonlinear parameters
of the Gaussians is carried out in this work using the INM
approach, i.e., the parameters are optimized for ∞He. In
the nonlinear-parameter optimization for the beryllium atom
the FNM approach is used. Thus, for beryllium, the total
nonrelativistic energies obtained in the calculations include
the adiabatic and nonadiabatic effects resulting from the finite
mass of the nucleus of 7Be. The basis sets obtained for 7Be are
used to perform the INM energy calculations (∞Be) without
reoptimization of the nonlinear parameters. As our previous
calculations of S and P states of atomic isotopomers have
shown, reoptimization of the nonlinear variational parameters
is not needed when states of different isotopes are calculated.
The adjustment of the linear expansion coefficients of the
wave function in terms of the basis functions, ck , through
rediagonalization of the Hamiltonian is quite sufficient for
describing the relatively small changes in the wave function
and the energy caused by the change of the nuclear mass.
Analogically, for the helium atom, the basis sets obtained
in the INM optimizations are used to calculate the non-
relativistic energies and the relativistic corrections for 3He
and 4He.

To check whether the same applies to D states, such as the
ones considered in this work, we took the basis set of 1000
ECGs for the lowest 1D state of the helium atom obtained by
the variational minimization of the nonrelativistic energy of
∞He and performed a reoptimization of the ECG nonlinear
parameters for the 4He isotope. The 4He energies before and
after the reoptimization are equal to −2.05533899479121 and
−2.05533899479273 hartree, respectively. As one can see, the
improvement is only by about one in the twelve’s significant
digit after the decimal point. In calculations performed with
the double precision, this is close to the expected numerical
accuracy of the computation.

V. RESULTS

The D-state (L = 2) atomic code written in Fortran90 that
employs the MPI (message passing interface) protocol used
in the present calculations has been updated to include the
algorithm to calculate the MV, Darwin, OO, and SS relativistic
corrections. The code is used in the present calculations.

The first test case concerns the ten lowest 1D states of
the helium atom. The basis sets for the lowest two states is
grown to the size of 1600 functions, for the third to the size
of 1800 functions, and for the remaining states to the size
of 2000 function. As mentioned, the basis set optimizations
are performed using the internal Hamiltonian with an infinite
nuclear mass and the calculations of the energies for the 3He
and 4He isotopes are performed without reoptimization of
the basis set exponential parameters. The convergence of the
nonrelativistic energies of the ten states with the number of
the basis functions is shown in Table I. The ∞He energies
are compared with the energies obtained by Drake using
the Hylleraas type functions [27]. As the comparison shows,
for some lowest states the present energies agree with the
energies of Drake to 13 digits. After that the agreement gets
progressively worse, indicating that the basis sets need to be
extended beyond 2000 functions. It is worth noticing that in
the present calculations two more states than considered by
Drake are determined (states 11 1D and 12 1D).

The MV, D, and OO relativistic corrections calculated for
each considered state with the largest basis set are shown
in Table II. The results obtained for ∞He are compared
with the results of Drake and Yan [21]. As one can see the
agreement is very good particularly for lower states. It is
particularly interesting to examine the OO correction. The
algorithm for calculating this correction contains two types
of terms. The first type comprising two-electron contributions
does not depend on the mass of the nucleus. The second type
includes terms dependent on the inverse of the nuclear mass.
As the level of excitation increases and one of the electrons
becomes excited to an increasingly more diffuse state and,
thus, becomes separated from the first electron, which remains
in the core 1s state, the OO correction calculated for ∞He
converges to zero. But, when the calculation is performed for
either 3He or 4He, the terms dependent on the nuclear mass
dominate the correction. These terms describe the magnetic
interaction of the orbiting electrons with the orbiting nucleus.
The orbiting motion occurs around the center of mass of the
atom. For an infinite nuclear mass this interaction is zero.
Now, as the atom becomes excited to an increasingly higher
Rydberg state and one of the electrons (the d electron) almost
departs from the atom, the interaction should be converging
to the OO finite-nuclear-mass interaction in the ground 2S
state of the He+ ion, which is zero. The results for the
4He+ and 3He+ ions are shown in Table II and, as one can
see, the expected convergence trend is indeed occurring. The
agreement between the present values of the MV, D, and OO
relativistic corrections calculated for ∞He with the results
obtained by Drake and Yan [21] and the correct asymptotic
convergence of the corrections calculated for 4He and 3He to
the corresponding values calculated for the 4He+ and 3He+

042503-4



FINITE-NUCLEAR-MASS CALCULATIONS OF THE … PHYSICAL REVIEW A 100, 042503 (2019)

TA
B

L
E

I.
C

on
ve

rg
en

ce
of

th
e

to
ta

l
no

nr
el

at
iv

is
tic

en
er

gi
es

of
∞

H
e,

4
H

e,
an

d
3
H

e
w

ith
th

e
nu

m
be

r
of

ba
si

s
fu

nc
tio

ns
.

E
ne

rg
ie

s
of

∞
H

e+ ,
4
H

e+ ,
an

d
3
H

e+
ob

ta
in

ed
w

ith
25

G
au

ss
ia

n
fu

nc
tio

ns
ar

e
al

so
sh

ow
n

at
th

e
bo

tto
m

of
th

e
ta

bl
e

(m
ar

ke
d

w
ith

fo
ot

no
te

a)
.T

he
re

su
lts

ar
e

co
m

pa
re

d
w

ith
th

e
en

er
gi

es
ca

lc
ul

at
ed

by
D

ra
ke

in
[2

7]
.A

ll
va

lu
es

ar
e

gi
ve

n
in

a.
u.

St
at

e
B

as
is

E
∞

H
e

E
4

H
e

E
3
H

e
St

at
e

B
as

is
E

in
f

E
4

H
e

E
3
H

e

3
1
D

12
00

−2
.0

55
62

07
32

85
16

−2
.0

55
33

89
94

79
27

−2
.0

55
24

68
19

10
31

4
1
D

12
00

−2
.0

31
27

98
46

17
78

−2
.0

31
00

14
27

68
62

−2
.0

30
91

03
37

85
46

14
00

−2
.0

55
62

07
32

85
20

−2
.0

55
33

89
94

79
31

−2
.0

55
24

68
19

10
35

14
00

−2
.0

31
27

98
46

17
83

−2
.0

31
00

14
27

68
75

−2
.0

30
91

03
37

85
64

16
00

−2
.0

55
62

07
32

85
21

−2
.0

55
33

89
94

79
36

−2
.0

55
24

68
19

10
43

16
00

−2
.0

31
27

98
46

17
85

−2
.0

31
00

14
27

68
61

−2
.0

30
91

03
37

85
40

R
ef

.[
27

]
−2

.0
55

62
07

32
85

22
46

(6
)

−2
.0

31
27

98
46

17
86

87
(7

)

5
1
D

14
00

−2
.0

20
01

58
36

15
96

−2
.0

19
73

89
53

60
08

−2
.0

19
64

83
66

18
29

6
1
D

16
00

−2
.0

13
89

82
27

42
40

−2
.0

13
62

21
79

40
14

−2
.0

13
53

18
64

96
22

16
00

−2
.0

20
01

58
36

15
97

−2
.0

19
73

89
53

58
93

−2
.0

19
64

83
66

16
27

18
00

−2
.0

13
89

82
27

42
41

−2
.0

13
62

21
79

40
14

−2
.0

13
53

18
64

96
21

18
00

−2
.0

20
01

58
36

15
98

−2
.0

19
73

89
53

58
83

−2
.0

19
64

83
66

17
02

20
00

−2
.0

13
89

82
27

42
41

−2
.0

13
62

21
79

40
15

−2
.0

13
53

18
64

96
23

R
ef

.[
27

]
−2

.0
20

01
58

36
15

99
84

(4
)

−2
.0

13
89

82
27

42
42

86
(5

)

7
1
D

16
00

−2
.0

10
21

00
28

45
53

−2
.0

09
93

44
83

81
15

−2
.0

09
84

43
34

03
20

8
1
D

16
00

−2
.0

07
81

65
12

55
84

−2
.0

07
54

12
94

73
05

−2
.0

07
45

12
51

85
49

18
00

−2
.0

10
21

00
28

45
56

−2
.0

09
93

44
83

81
23

−2
.0

09
84

43
34

03
31

18
00

−2
.0

07
81

65
12

55
88

−2
.0

07
54

12
94

73
17

−2
.0

07
45

12
51

85
67

20
00

−2
.0

10
21

00
28

45
60

−2
.0

09
93

44
83

81
27

−2
.0

09
84

43
34

03
36

20
00

−2
.0

07
81

65
12

55
92

−2
.0

07
54

12
94

73
20

−2
.0

07
45

12
51

85
68

R
ef

.[
27

]
−2

.0
10

21
00

28
45

79
8(

1)
−2

.0
07

81
65

12
56

38
11

(7
)

9
1
D

16
00

−2
.0

06
17

56
71

40
85

−2
.0

05
90

06
77

70
42

−2
.0

05
81

07
08

13
95

10
1
D

16
00

−2
.0

05
00

20
71

19
64

−2
.0

04
72

72
37

75
48

−2
.0

04
63

73
20

57
46

18
00

−2
.0

06
17

56
71

41
12

−2
.0

05
90

06
77

70
81

−2
.0

05
81

07
08

14
45

18
00

−2
.0

05
00

20
71

21
31

−2
.0

04
72

72
37

77
64

−2
.0

04
63

73
20

59
88

20
00

−2
.0

06
17

56
71

41
50

−2
.0

05
90

06
77

71
18

−2
.0

05
81

07
08

14
80

20
00

−2
.0

05
00

20
71

23
18

−2
.0

04
72

72
37

80
13

−2
.0

04
63

73
20

62
88

R
ef

.[
27

]
−2

.0
06

17
56

71
43

76
41

(6
)

−2
.0

05
00

20
71

65
42

50
(6

)
11

1
D

16
00

−2
.0

04
13

37
91

09
52

−2
.0

03
85

90
76

30
69

−2
.0

03
76

91
97

92
83

12
1
D

16
00

−2
.0

03
47

34
24

76
80

−2
.0

03
19

88
00

19
38

−2
.0

03
10

89
51

30
43

18
00

−2
.0

04
13

37
91

12
37

−2
.0

03
85

90
76

33
36

−2
.0

03
76

91
97

95
81

18
00

−2
.0

03
47

34
24

85
62

−2
.0

03
19

88
00

28
48

−2
.0

03
10

89
51

39
80

20
00

−2
.0

04
13

37
91

18
65

−2
.0

03
85

90
76

40
18

−2
.0

03
76

91
98

02
55

20
00

−2
.0

03
47

34
25

04
67

−2
.0

03
19

88
00

47
09

−2
.0

03
10

89
51

58
44

2 Sa
25

−1
.9

99
99

99
99

91
08

−1
.9

99
72

58
50

78
39

−1
.9

99
63

61
57

49
86

042503-5



MONIKA STANKE AND LUDWIK ADAMOWICZ PHYSICAL REVIEW A 100, 042503 (2019)

TA
B

L
E

II
.

M
as

s-
ve

lo
ci

ty
(M

V
),

D
ar

w
in

(D
),

an
d

or
bi

t-
or

bi
t(

O
O

)
re

la
tiv

is
tic

co
rr

ec
tio

ns
of

∞
H

e,
4
H

e,
an

d
3
H

e.
T

he
re

su
lts

fo
r

th
e

gr
ou

nd
st

at
es

of
∞

H
e+ ,4

H
e+ ,a

nd
3
H

e+
ob

ta
in

ed
w

ith
25

G
au

ss
ia

n
fu

nc
tio

ns
ar

e
al

so
sh

ow
n

(m
ar

ke
d

w
ith

fo
ot

no
te

a)
.T

he
re

su
lts

in
cl

ud
e

th
e

α
2

fa
ct

or
.T

he
∞

H
e

va
lu

es
ar

e
co

m
pa

re
d

w
ith

th
e

re
su

lts
of

D
ra

ke
an

d
Y

an
(D

Y
)

[2
1]

.A
ll

va
lu

es
ar

e
gi

ve
n

in
a.

u.

St
at

e
B

as
is

∞
H

e
4
H

e
3
H

e
St

at
e

B
as

is
∞

H
e

E
4

H
e

E
3
H

e

M
V

3
1
D

16
00

−5
.3

26
03

0
×

10
−4

−5
.3

23
11

0
×

10
−4

−5
.3

22
15

5
×

10
−4

8
1
D

20
00

−5
.3

25
08

9
×

10
−4

−5
.3

22
17

0
×

10
−4

−5
.3

21
21

5
×

10
−4

D
Y

−5
.3

26
03

10
7

×
10

−4
D

Y
−5

.3
25

25
91

5
×

10
−4

4
1
D

16
00

−5
.3

25
71

1
×

10
−4

−5
.3

22
79

2
×

10
−4

−5
.3

21
83

7
×

10
−4

9
1
D

20
00

−5
.3

24
84

8
×

10
−4

−5
.3

21
93

0
×

10
−4

−5
.3

20
97

5
×

10
−4

D
Y

−5
.3

25
75

53
1

×
10

−4
D

Y
−5

.3
25

22
61

4
×

10
−4

5
1
D

18
00

−5
.3

25
51

7
×

10
−4

−5
.3

22
59

8
×

10
−4

−5
.3

21
64

3
×

10
−4

10
1
D

20
00

−5
.3

24
46

5
×

10
−4

−5
.3

21
54

7
×

10
−4

−5
.3

20
59

3
×

10
−4

D
Y

−5
.3

25
52

83
1

×
10

−4
D

Y
−5

.3
25

20
38

0
×

10
−4

6
1
D

20
00

−5
.3

25
34

9
×

10
−4

−5
.3

22
42

9
×

10
−4

−5
.3

21
47

5
×

10
−4

11
1
D

20
00

−5
.3

23
63

1
×

10
−4

−5
.3

20
71

3
×

10
−4

−5
.3

19
75

8
×

10
−4

D
Y

−5
.3

25
39

22
1

×
10

−4

7
1
D

20
00

−5
.3

25
23

0
×

10
−4

−5
.3

22
31

0
×

10
−4

−5
.3

21
35

6
×

10
−4

12
1
D

20
00

−5
.3

23
99

7
×

10
−4

−5
.3

21
08

0
×

10
−4

−5
.3

20
12

6
×

10
−4

D
Y

−5
.3

25
31

04
4

×
10

−4
2 Sa

25
−5

.3
24

35
4

×
10

−4
−5

.3
21

43
5

×
10

−4
−5

.3
20

48
0

×
10

−4

D 3
1
D

16
00

4.
25

96
29

×
10

−4
4.

25
78

77
×

10
−4

4.
25

73
04

×
10

−4
8

1
D

20
00

4.
25

99
05

×
10

−4
4.

25
81

54
×

10
−4

4.
25

75
81

×
10

−4

D
Y

4.
25

96
38

18
×

10
−4

D
Y

4.
26

00
79

24
×

10
−4

4
1
D

16
00

4.
25

98
49

×
10

−4
4.

25
80

98
×

10
−4

4.
25

75
25

×
10

−4
9

1
D

20
00

4.
25

97
11

×
10

−4
4.

25
79

60
×

10
−4

4.
25

73
87

×
10

−4

D
Y

4.
25

98
92

86
×

10
−4

D
Y

4.
26

00
87

62
×

10
−4

5
1
D

18
00

4.
25

99
67

×
10

−4
4.

25
82

15
×

10
−4

4.
25

76
43

×
10

−4
10

1
D

20
00

4.
25

93
08

×
10

−4
4.

25
75

57
×

10
−4

4.
25

69
85

×
10

−4

D
Y

4.
25

99
93

92
×

10
−4

D
Y

4.
26

00
91

43
×

10
−4

6
1
D

20
00

4.
25

99
96

×
10

−4
4.

25
82

45
×

10
−4

4.
25

76
72

×
10

−4
11

1
D

20
00

4.
25

84
89

×
10

−4
4.

25
67

38
×

10
−4

4.
25

61
65

×
10

−4

D
Y

4.
26

00
40

90
×

10
−4

7
1
D

20
00

4.
25

99
83

×
10

−4
4.

25
82

31
×

10
−4

4.
25

76
58

×
10

−4
12

1
D

20
00

4.
25

84
71

×
10

−4
4.

25
67

21
×

10
−4

4.
25

61
48

×
10

−4

D
Y

4.
26

00
65

28
×

10
−4

2 Sa
25

4.
25

92
98

×
10

−4
4.

25
75

47
×

10
−4

4.
25

69
74

×
10

−4

O
O

3
1
D

16
00

6.
47

79
76

×
10

−9
−1

.1
03

29
2

×
10

−7
−1

.4
85

30
9

×
10

−7
8

1
D

20
00

0.
39

53
34

×
10

−9
−1

.1
63

68
4

×
10

−7
−1

.5
45

56
0

×
10

−7

D
Y

6.
47

79
75

60
×

10
−9

D
Y

0.
39

53
34

76
×

10
−9

4
1
D

16
00

2.
95

26
82

×
10

−9
−1

.1
38

34
1

×
10

−7
−1

.5
20

29
2

×
10

−7
9

1
D

20
00

0.
27

89
30

×
10

−9
−1

.1
64

83
4

×
10

−7
−1

.5
46

70
7

×
10

−7

D
Y

2.
95

26
82

31
×

10
−9

D
Y

0.
27

89
32

40
×

10
−9

5
1
D

18
00

1.
56

35
62

×
10

−9
−1

.1
52

12
1

×
10

−7
−1

.5
34

03
6

×
10

−7
10

1
D

20
00

0.
20

39
97

×
10

−9
−1

.1
65

57
8

×
10

−7
−1

.5
47

44
8

×
10

−7

D
Y

1.
56

35
62

12
×

10
−9

D
Y

2.
04

00
52

75
×

10
−9

6
1
D

20
00

0.
92

10
50

×
10

−9
−1

.1
58

48
4

×
10

−7
−1

.5
40

37
9

×
10

−7
11

1
D

20
00

0.
15

36
14

×
10

−9
−1

.1
66

07
5

×
10

−7
−1

.5
47

94
3

×
10

−7

D
Y

0.
92

10
49

77
×

10
−9

7
1
D

20
00

0.
58

61
52

×
10

−9
−1

.1
61

79
8

×
10

−7
−1

.5
43

68
1

×
10

−7
12

1
D

20
00

0.
11

84
71

×
10

−9
−1

.1
66

42
0

×
10

−7
−1

.5
48

28
6

×
10

−7

D
Y

0.
58

61
52

92
×

10
−9

2 Sa
25

0.
0

−1
.1

67
58

5
×

10
−7

−1
.5

49
44

4
×

10
−7

042503-6



FINITE-NUCLEAR-MASS CALCULATIONS OF THE … PHYSICAL REVIEW A 100, 042503 (2019)

TABLE III. Convergence of the nonrelativistic energy (Enr), mass-velocity (MV), Darwin (D), orbit-orbit (OO), and spin-spin (SS)
relativistic corrections of the two lowest 1D states (3 1D and 4 1D) of 9Be. The results for ∞Be are also shown. The MV, D, OO, and SS
corrections include the α2 factor. All values are given in a.u.

System State Basis Enr MV D OO SS

9Be 3 1D 2100 −14.407349580 −0.014033610 0.011295071 −0.000038177 0.000512155
3000 −14.407350719 −0.014033923 0.011296120 −0.000038177 0.000511957
3900 −14.407351053 −0.014035800 0.011297961 −0.000038177 0.000511952

10500 −14.407351368
11400 −14.407351371
12300 −14.407351373

∞Be 3 1D 3900 −14.408236961 −0.014039343 0.011300109 −0.000036806 0.000512046
12300 −14.408237282

9Be 4 1D 2100 −14.372923384 −0.014211577 0.011423474 −0.000046760 0.000525309
3000 −14.372924394 −0.014215861 0.011427686 −0.000046760 0.000525178
3900 −14.372924677 −0.014215932 0.011428019 −0.000046760 0.000525099

10500 −14.372924942
11400 −14.372924945
12300 −14.372924948

∞Be 4 1D 3900 −14.373824331 −0.014219326 0.011429766 −0.000045361 0.000525184
12300 −14.373824602

ions validates the algorithms derived and implemented in the
present work.

The next set of calculations is performed for the lowest
two 1D states of the beryllium atom. These are high-accuracy
calculations for these states. The ECG basis sets for each state
are grown to the level of 12300 functions and the optimiza-
tions of the Gaussian nonlinear parameters are carried out for
the 9Be isotope. After the 12300-ECGs basis set is generated
for each state, the energy for ∞Be is calculated without
reoptimization of the exponential parameters. As mentioned,
only the linear expansion parameters of the wave functions of
the two states are reevaluated by solving the standard secular
equation with the internal Hamiltonian, where the nuclear
mass is set to infinity. With 12300 ECGs in the basis set the
total nonrelativistic energies of the two states are converged to
10–11 digits. The results are shown in Table III.

Unfortunately, our present computational resources do not
allow for calculating the relativistic corrections with the full
12300-ECGs basis sets. Even with extensive optimization

TABLE IV. Calculation of the 3 1D → 4 1D transition energy
and its comparison with the experimental value [1]. The transition
energy is calculated for ∞Be and 9Be without the relativistic cor-
rections (�Enr) using the total nonrelativistic energies obtained with
12300 ECGs, and with the addition of the relativistic MV, D, OO, and
SS corrections (�Erel) calculated with 1200, 2100, and 3000 ECGs.
All values are given in cm−1.

Basis

∞Be �Enr 12300 7552.65
∞Be �Erel 12300 + 3900 7542.68
9Be �Enr 12300 7555.78

�Erel 12300 + 2100 7545.91
12300 + 3000 7545.75
12300 + 3900 7545.82(7)

Experiment [1] 7545.88(20)

of the algorithms and with the implementation of a parallel
approach in the computer code using the MPI protocol, the
practical limit for the basis set size for which the calculations
can be performed in our laboratory is lower than the number of
functions used to calculate the nonrelativistic energies. Thus,
in addition to the nonrelativistic energies obtained with 10500,
11400, and 12300 ECGs, the energies and the relativistic
corrections obtained with 2100, 3000, and 3900 ECGs are
shown in Table III. Both sets of results correspond to the 9Be
isotope. For ∞Be only the results obtained with 3900 and
12300 ECGs are shown. As one can see, with 3900 ECGs
eight digits in the total nonrelativistic energies are practically
already converged. However, more importantly, the relativistic
corrections are also very well converged for both states.

Finally, the results presented in Table III are used to
calculate the 3 1D → 4 1D transition energy. The energy is
calculated by taking the difference between the nonrelativis-
tic energies calculated for the two states with 12300 ECGs
and adding to it the differences of the relativistic energies
calculated with 2100, 3000, and 3900 ECGs. The obtained
values are compared with the experimental transition energy
in Table IV. As one can see, the inclusion of the relativistic
corrections significantly improves the agreement between the
calculated transition energy and the experimental value. Our
best calculated transition energy of 7545.82 cm−1 of 9Be
agrees with the experimental result of 7545.88 cm−1 obtained
by subtracting the energies of the 3 1D and 4 1D levels
[1] to within 0.06 cm−1. This is significantly less than the
experimental error bar of 0.2 cm−1. These are by far the most
accurate calculations ever performed for D states of a four
electron atom. The contribution from the leading relativistic
corrections to the 1D → 4 1D transition energy is nearly
10 cm−1.

VI. SUMMARY

In summary, algorithms for calculating the leading spin-
independent relativistic corrections for atomic D states are de-

042503-7
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rived and implemented using Fortran90 and the MPI protocol.
The corrections are calculated using the nonrelativistic wave
functions obtained in variational calculations performed with
an approach where the Hamiltonian describing the internal
state of the atom explicitly depends on the finite mass of the
nucleus. The spatial parts of the wave functions are expanded
in terms of explicitly correlated Gaussian functions. Thor-
ough variational optimization of the exponential parameters
of the Gaussians performed with a procedure that employs
the analytical energy gradient and the use of large basis sets
enables us to obtain very accurate results. The implemented
algorithms are first tested in calculations of the ten lowest 1D
states of the helium atom. The calculations are performed for
finite and infinite masses of the helium nucleus. The infinite-
nuclear-mass results are compared with literature results and
the finite-nuclear-mass results are tested for their convergence
to the results obtained for 3He+ and 4He+ ions. We also per-
form calculations for the two lowest 1D states of the beryllium

atom to test if the inclusion of the relativistic corrections sig-
nificantly improves the agreement between the calculated and
experimental results for the 3 1D → 4 1D transition energy.
The calculated and experimental values of the transition en-
ergy agree with each other within the experimental error bar.
A significant improvement is indeed achieved. Calculations of
higher bound D states of beryllium, as well as of other small
atomic systems, are forthcoming.
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APPENDIX

The general form of the basis functions for describing the L = 2 states used in this work is

φ
(L=2)
k = (rT Wkr) exp[−rT Akr] = (rT Wkr)ϕ(L=0)

k ≡ (rT Wkr)ϕk . (A1)

ĤMV. The matrix elements that need to be calculated are

〈
φ

(L=2)
k

∣∣ĤMV

∣∣φ(L=2)
l

〉 = −1

8

(
1

m3
0

〈∇T
r J∇rφ

(L=2)
k

∣∣∇T
r J∇rφ

(L=2)
l

〉 + n∑
i=1

1

m3
i+1

〈∇T
r Jii∇rφ

(L=2)
k

∣∣∇T
r Jii∇rφ

(L=2)
l

〉)
, (A2)

where square matrix J (with no indices) is a matrix whose all elements are equal one, Jαβ = 1. Square matrix Ji j is defined as

Ji j =
{

Eii, if i = j,

Eii + E j j − Ei j − E ji, if i �= j.
(A3)

Only the following one type of integral appears in the expression for the ĤMV matrix element: 〈∇r
T D∇rφk|∇r

T D∇rφl〉, where
D is either J or Jii. In order to calculate the expectation value of ĤMV, the following result is used in bra and ket:

∇r
T D∇rφ

(L=2) = −2 Tr [AD](rT Wr) ϕ + 4 (rT Al D Ar)(rT Wr) ϕ + Tr [WD]ϕ − 2 (rT A D Wr)ϕ − 2(rT W D Ar)ϕ,

(A4)

where W = WT + W and where φ(L=2) is either φ
(L=2)
k or φ

(L=2)
l .

ĤD. To calculate the expectation value of the Darwin operator we need the matrix elements of the following Dirac delta
function: 〈

φ
(L=2)
k

∣∣δ((a ⊗ I3)T r)
∣∣ φ

(L=2)
l

〉 = 〈ϕk | (rT Wkr)δ((a ⊗ I3)T r)(rT Wlr) | ϕl〉, (A5)

where a = ei aaT ⊗ IT
3 = Jii and a = ei − e jaaT ⊗ IT

3 = Ji j . Using the following representation of the delta function:

δ((a ⊗ I3)T r) = lim
β→∞

(
β

π

)3/2

exp[−βrT (aaT ⊗ I3)r], (A6)

we can express (A5) as follows:〈
φ

(L=2)
k

∣∣ δ((a ⊗ I3)T r)
∣∣ φ

(L=2)
l

〉
= lim

β→∞

(
β

π

)3/2

〈ϕk | (rT Wkr) exp[−βrT (aaT ⊗ I3)r](rT Wlr) | ϕl〉

= lim
β→∞

(
β

π

)3/2
π3n/2

|Akl + βaaT |3/2

1

2

{
1

2
Tr [[Akl + β(aaT ⊗ I3)]−1Wl ] Tr [[Akl + β(aaT ⊗ I3)]−1Wk]

+ Tr [[Akl + β(aaT ⊗ I3)]−1Wl [Akl + β(aaT ⊗ I3)]−1Wk]

}
, (A7)
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where we used the following mathematical “trick”:

〈ϕk | (rT Wkr) (rT Wlr) | ϕl〉 = ∂

∂αk

∂

∂αl

∫
dr exp[−rT (Akl + αkWk + αlWl )r]

∣∣∣∣
αk=αl =0

= π3n/2

|Akl |3/2

1

2

{
1

2
Tr [A−1

kl Wl ] Tr [A−1
kl Wk] + Tr [A−1

kl WlA−1
kl Wk]

}
,

〈ϕk | (rT Wkr) (rT Wlr) exp[−rT Xr] | ϕl〉 = ∂

∂αk

∂

∂αl

∫
dr exp[−rT (Akl + X + αkWk + αlWl )r]

∣∣∣∣
αk=αl =0

= π3n/2

|Akl + X |3/2

1

2

{
1

2
Tr [(Akl + X)−1Wl ] Tr [(Akl + X)−1Wk]

+ Tr [(Akl + X)−1Wl (Akl + X)−1Wk]

}
. (A8)

ĤOO. The matrix element of the ĤOO operator is calculated analogically as described in our previous paper [28]. In the
derivation the following partial derivatives are used:

∂α ∂βφ
(L=2)
k = {−2(Ak ) α

β (rT Wkr) + (Wk ) α
β + 4(rAk ) α (Akr)β (rT Wkr) − (rAk ) α (Wkr)β − (rWk ) α (Akr)β}ϕk,

(A9)

∂ρ ∂α ∂βφ
(L=2)
k = [+4 (Ak ) ρ

α (Akr)β (rT Wkr) + 4 (Akr)α (Ak ) ρ
β (rT Wkr) − 2 (Ak ) ρ

α (Wkr)β − 2 (Akr)α (Wk ) ρ
β

− 2 (Wk ) ρ
α (Akr)β − 2 (Wkr)α (Ak ) ρ

β

+ 4(Ak )αβ (rAk )ρ (rT Wkr) − 2 (Wk )αβ (rAk )ρ − 8 (Akr)α (Akr)β (rAk )ρ (rT Wkr) + 4 (Akr)α (Wkr)β (rAk )ρ

+ 4 (Wkr)α (Akr)β (rAk )ρ − 2 (Ak )αβ (rWk )ρ + 4 (Akr)α (Akr)β (rWk )ρ]ϕk . (A10)

More details concerning the calculations of the elementary integrals contributing to the above-described matrix elements can be
found in the Supplemental Material [29].
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