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We report on an optical and thermal model that allows one to quantify the local heating effect in a cavity
ring-down spectroscopy (CRDS) experiment. The effect is due to the intracavity absorption of the laser radiation
propagating inside the optical cavity, when this latter is filled with an absorbing gas. The local heating generates
a temperature profile into the volume probed by the laser radiation, thus leading to a systematical deviation in
temperature measurements by means of Doppler-broadening gas thermometry. Exploiting the representation
of the cavity as a linear system for the electric field in the frequency domain, we were able to determine
the spatial and temporal behaviors of the heating source and solve the inhomogeneous Fourier heat transfer
equation using the method of the Green’s functions. The local heating effect is strongly dependent on several
parameters characterizing the CRDS experiment, including the geometrical size of the cavity, the two mirrors’
reflectivity and loss, the absorption coefficient of the intracavity gaseous medium, the incident power, and the
intracavity beam waist. The dynamical behavior of the gas temperature was calculated in three experimental
regimes, depending on the laser switch-on time interval as compared to the cavity decay time and heat diffusion
characteristic time. In the worst case, the local heating provides a systematical shift in Doppler broadening
thermometry of about one part per million.
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I. INTRODUCTION

On May 20, 2019, the most significant revision to the
International System of Units (SI) came into force. It results
from new measurement methods, developed in the past two
decades, including those that use quantum phenomena. The
new SI is based on a set of definitions linked to funda-
mental constants of physics. In particular, the new kelvin
(the unit of thermodynamic temperature) is defined in terms
of a fixed value of the Boltzmann constant, namely, kB =
1.380649 × 10−23 J/K. Reviews of the experiments that led
to this value are reported in Refs. [1,2]. Research efforts of
the international community working in the field of primary
gas thermometry are being devoted to the implementation
of the redefined kelvin [3]. Within this framework, Doppler-
broadening thermometry (DBT) is widely recognized as a
valuable method for the primary realization of the unit kelvin,
even though it has not yet reached the same level of accu-
racy of more consolidated techniques, such as acoustic gas
thermometry [4] and dielectric constant gas thermometry [5].
DBT consists of determining the Doppler width from the
shape of a given atomic or molecular line, as observed from
a highly accurate laser-based absorption-spectroscopy experi-
ment under a linear regime of radiation-matter interaction [6].
Recently, there have been interesting DBT implementations
based on cavity ring-down spectroscopy (CRDS) [6,7]. Unlike
direct detection of laser transmission from a conventional
absorption cell, the high sensitivity of CRDS enables one to
work at low pressures (of the order of 1 Pa) so that it is
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possible to limit the influence of collisions, thus simplifying
the spectral analysis. This is of the utmost importance to
reduce the uncertainty associated to the choice of the line-
shape model that has been one of the major hurdles for a
low-uncertainty implementation of DBT. By recording the
spectrum of C2H2 at 787 nm, the study of [7] demonstrates
a statistical uncertainty of 6 parts per million (ppm), with the
potential of approaching the 1 ppm limit with a proper choice
of molecular target and spectral region. This is confirmed in
Ref. [8], whose temperature determinations on a CO2 gaseous
sample at 1.578 μm show a statistical uncertainty of 8 ppm.
The uncertainty budget of both papers did not consider the
local heating that results from the intracavity light absorption.
This effect may lead to significant systematical deviations
due to the enhancement of the laser power inside a resonant
high-finesse optical cavity. The present paper is aimed at
investigating this issue. Of the two CRDS experiments, the
attention was focused on the one with the highest precision,
namely, the work dealing with the near-infrared spectrum of
acetylene [7].

II. THEORETICAL MODEL

A. Thermal model

In Fig. 1, a sketch of the optical cavity is reported. We
consider the case of an open symmetric stable resonator
constituting of two circular mirrors with reflection coefficient
r1 and r2 and transmission coefficient t1 and t2, respectively.
The mirrors’ radius is ρ0 and the cavity length is L. We denote
with T = T0 + δT (r, t ) the temperature in the position r at
time t , while T0 is the temperature on the walls of the cavity

2469-9926/2019/100(4)/042501(6) 042501-1 ©2019 American Physical Society

https://orcid.org/0000-0003-3908-4689
https://orcid.org/0000-0002-1253-9172
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.042501&domain=pdf&date_stamp=2019-10-02
https://doi.org/10.1103/PhysRevA.100.042501


MORETTI, CASTRILLO, AND GIANFRANI PHYSICAL REVIEW A 100, 042501 (2019)

FIG. 1. Conceptual scheme of the optical cavity and representa-
tion of the electric fields propagating inside the cavity.

and δT is the temperature variation due to the optical power
absorbed by the gas sample, Wabs, which is assumed to be
completely transformed into thermal energy. The evaluation
of the perturbation induced by the local heating on the tem-
perature determination is given by δT/T0, setting T0 at 300 K.
The thermal diffusion inside the optical cavity is ruled by
the inhomogeneous heat-conduction equation with Dirichlet
boundary condition (δT = 0 on the boundary surface, S), that
is, [

1

D
∂

∂t
− �

]
δT (r, t ) = 1

κ
Wabs(r, t ),

(1)
δT (r, t )|S = 0,

where D and κ are the thermal diffusivity and the thermal
conductivity of the gas sample, respectively.

The solution is obtained by the time convolution of the
Green’s function of Eq. (1) with the thermal source, namely,

δT (r, t ) = 1

κ

∫
Vc

d3r′
∫ +∞

−∞
dt ′G(r, r′, t − t ′)Wabs(r′, t ′),

(2)

where G(r, r′, t − t ′) is the solution of the Eq. (1) when a
point source is located at r′ at the time t ′. The geometry of the
system leads us to choose a cylindrical coordinate system with
the origin at the center of mirror 1 and the z axis coincident
with the cavity axis. Therefore, the Green’s function, taking
into account the boundary condition, is given by [9]

G(ρ, z, ρ ′, z′, t − t ′) = D
2π

θ (t − t ′)
∞∑

n=1
s=0

e−Dβns(t−t ′ )

×φn(z)φn(z′)ψs(ρ)ψs(ρ
′), (3)

where θ (t − t ′) is the Heaviside step function; φn(z) and
ψs(ρ) are the orthonormal and complete sets of eigenfunc-
tions of the longitudinal and radial parts of the Laplacian oper-
ator, respectively; and βns’s are the sums of the corresponding
eigenvalues:

φn(z) =
√

2

L
sin

(nπz

L

)
, (4)

ψs(ρ) =
√

2

ρ0J1(ls)
J0

(
lsρ

ρ0

)
, (5)

βns =
(

ls
ρ0

)2

+
(nπ

L

)2
. (6)

Here, J0(x) and J1(x) are the Bessel functions and ls are the
zeros of J0(x). It is worth noting that Eq. (2) describes the
response of the system to a heating source Wabs by means of
the response at a point source. Finally, the temperature inside
the volume (VL) probed by the laser beam can be evaluated as
the spatial average of δT (r, t ):

δTav(t ) = 1

VL

∫
VL

d3r δT (r, t ). (7)

B. Optical model

The electric fields playing a fundamental role in the defini-
tion of the heat source Wabs are reported in Fig. 1. We denote
the incident field (at z = 0) as

Ei(ρ, t ) = E0 gi(t )e
−iωct− ρ2

w2
0 , (8)

that is the time-domain complex representation of a linearly
polarized Gaussian laser field incident on mirror 1. In this
equation, ωc is the laser carrier frequency and w0 is the spot
size of the laser beam. The function gi(t ) describes the pulse
envelope, that, in typical CRDS experiments, is a rectangular
function with a time duration �, defined as the switch-on
time of the laser. The frequency spectrum of the incident
field, Ẽi(ρ, ω), has been found via Fourier transformation of
Ei(ρ, t ). Its general form is

Ẽi(ρ, ω) = E0 g̃i(ω − ωc) e
− ρ2

w2
0 . (9)

The cavity eigenmodes of an open resonator constitute source-
less configurations of the electromagnetic field that satisfy
Maxwell’s relations and the boundary conditions imposed
by the mirrors. As is well known, these modes are uniquely
denoted as transverse electromagnetic (TEM) modes labeled
with eigenfrequency ωqmn. The excited eigenmodes depend on
the overlap of the spectral content of the incident field with
cavity eigenfrequency structure and on the extent to which
the transverse profile of the incident beam overlaps with the
cavity transverse modes [10]. Considering that the transverse
size of the incident beam is very small with respect to the
mirror radius and that the spectral content of the incident
beam includes only the fundamental eigenfrequency of the
cavity, it can be assumed that only the fundamental Gaussian
mode (TEMq00) with eigenfrequency ωq00 = 2πq/τr , where
τr = 2L/c is the cavity round-trip time, is excited. The cavity
eigenmodes propagate unchanged after one round trip inside
the cavity, except for a small intensity loss. Thanks to this
property, we can write the fields emerging from the two
mirrors by considering all cavity round trips:

Ẽ f (ρ, ω) = ε t1
1 − r1r2eiδ

Ẽi(ρ, ω) = Hf (ω)Ẽi(ρ, ω), (10)

Ẽb(ρ, ω) = ε t1r2eiδ/2

1 − r1r2eiδ
Ẽi(ρ, ω) = Hb(ω)Ẽi(ρ, ω), (11)

where δ = (ω/c + iα/2)2L is the phase shift due to a single
round trip of the electric field, α is the absorption coefficient
of the gas sample at the frequency ω, and ε is the coupling
coefficient between the incident field and the fundamental
cavity mode. For an excitation frequency near the fundamental
transverse mode of any longitudinal mode, ωq00 (|�ω|τr =
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|ω − ωq00|τr � 1), and for an optical thin sample (αL � 1),
it is possible to simplify Eqs. (10) and (11) so that the response
functions Hf (ω) and Hb(ω) are closely approximated by the
familiar dispersion functions:

Hf (ω) � A f
1

γ f − i�ω
, (12)

Hb(ω) � −Ab
γb + i�ω

γ f − i�ω
, (13)

where γ f = [(1 − r1r2)/(r1r2) + αL]/τr , γb = (2 − αL)/τr ,
A f = εt1/(τrr1r2), and Ab = εt1/(2r1). The electromagnetic
flux energies, I f and Ib from the mirrors 1 and 2, respectively,
are given by the squared modulus of the electric fields in the
time domain. After the inverse Fourier transform, we obtain

I f (ρ, t ) = Ii(ρ)|F−1[Hf (ω)g̃i(ω + ωc)]|2 = Ii(ρ)h f (t ),

Ib(ρ, t ) = Ii(ρ)|F−1[Hb(ω)g̃i(ω + ωc)]|2 = Ii(ρ)hb(t ),

(14)

where Ii(ρ) = 2Pi/(πw2
0 )e−2ρ2/w2

0 represents the incident in-
tensity and Pi is the overall incident power. In summary,
there are two counterpropagating optical fields that induce
an absorption and consequently a local perturbation of the
temperature inside the cavity, each of them depending on the
incident light intensity multiplied by the transfer functions h f

and hb. These latter can be defined as the power enhancement
factors for the forward and backward fields, respectively. The
absorbed power density, in the approximation of an optically
thin sample, is given by [11]

Wabs(ρ, z, t ) = α{I f (ρ, t )(1 − αz) + Ib(ρ, t )[1 − α(L − z)]}.
(15)

In CRDS experiments, the mirrors’ reflectivity is quite high
(r1, r2 ≈ 1); this feature jointly with the optically thin sam-
ple condition leads to Hf (ω) ≈ −Hb(ω), being γb ≈ 2/τr �
|�ω| and Abγb/A f ≈ 1. Taking into account this approxi-
mation, from Eq. (15) it emerges that Wabs is independent
of z:

Wabs(ρ, t ) � αI f (ρ, t )(2 − αL)
(αL�1)� 2αIi(ρ)h f (t ). (16)

We remind the reader that h f (t ) is the squared modulus of the
inverse Fourier transform of Hf (ω)g̃i(ω + ωc). The transfer
function h f (t ) has been calculated exactly; however, an idea
of the qualitative behavior can be obtained considering that
Hf (ω) is the response of the cavity to the incident field. After
switching on the laser beam, the electric field E f inside the
cavity grows with an exponential law, E f (t ) ∝ eγ f t until it
reaches the stationary value. Obviously, because I f ∝ |E f |2, it
rises with a characteristic time τc = 1/(2γ f ). When the laser
beam is switched off, the intracavity intensity decays in an
exponential way with same time constant τc. Therefore, from
Eqs. (3)–(7), (14), and (16), we obtain δTav(t ) as a series of
time functions, namely,

δTav(t ) = 2

κw2
0L

∞∑
n=1
s=0

AnBs fns(t ), (17)

An = 2α

(∫ L

0
dzφn(z)

)2

, (18)

FIG. 2. Behavior of τms as function of eigenvalue labels m and s.
The values have been normalized at τ00.

Bs =
∫ ρ0

0
ρ ′dρ ′ψs(ρ

′)
∫ w0

0
ρdρ ψs(ρ

′)Ii(ρ
′), (19)

fns(t ) = D
∫ ∞

−∞
dt ′θ (t − t ′)e−Dβns(t−t ′ )h f (t ′), (20)

where An and Bs represent the overlapping coefficients be-
tween the eigenmodes of the heat equation, ψs and φn, with
the spatial distribution of the heat source Wabs; on the other
hand, fns(t ) represents the combined effect of the temperature
rise due to Wabs and the heat diffusion with the decay time
1/(βnsD). After a straightforward calculation of the integrals
of Eqs. (18) and (19), considering that An is equal to zero for
even values of n and that Bs cannot be calculated analytically,
we obtain

δTav(t ) = 128αPi

κw3
0ρ0π3

∞∑
m=0
s=0

Cms f̂ms(t ), (21)

where

Cms =
gsJ1

( lsw0
ρ0

)
lsJ1(ls)2(2m + 1)2

, (22)

gs =
∫ ρ0

0
ρ ′dρ ′e−2ρ ′/w2

0 J0

(
lsρ ′

ρ0

)
, (23)

f̂ms(t ) = f2m+1 s(t ). (24)

In order to determine the number of eigenmodes that are
needed to have a good approximation of δTav, namely, Ns ×
Nm, we calculate τms = 1/(β2m+1 sD), which determines the
weight of each eigenmode in the sum in Eq. (21) as a function
of m and s. To this purpose, we consider the experimental
configuration of Ref. [7]: L = 50 cm, ρ0 = 1 cm, and w0 =
0.3 mm. Figure 2 shows the diffusion time τms for a variety of
eigenmodes normalized to the value of τ00. It is clear that τ00

is the bottleneck for the heat diffusion process since it gives
the dominant characteristic time limiting fast heat dissipation.
The value of τms for s � 20 is about 2 × 10−3 times smaller
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TABLE I. Summary of the experimental conditions of Ref. [7]
used for the aims of the theoretical calculations.

Operation conditions

Laser power, Pi 10 mW
Intracavity beam waist, w0 0.3 mm
Mode matching parameter, ε2 2.5 × 10−3

Empty cavity finesse ≈60 000
Mirror’s radius, ρ0 1 cm
Cavity length, L 50 cm
Gaseous medium C2H2

Absorption coefficient, α (@50 Pa) 4.22 × 10−6 cm−1

than its value at s = 0. In terms of m, the truncation value,
Nm, has been chosen equal to 50, for which τms/τ00 is about
0.1. In summary, the time evolution of δTav(t ) is strictly
related to three characteristic times involved in the process:
�, τ00 and τc, which obviously depend on the experimental
conditions.

III. RESULTS AND DISCUSSION

As already stated above, our model is applied to the CRDS
experiment of Ref. [7], in order to quantify the possible
systematic deviation arising by the local heating produced by
the laser beam. Therefore, we assumed r1 = r2 = 0.999975.
The sample gas is acetylene at room temperature, T =
300 K, with a pressure between 1 and 100 Pa. The incident
wavelength is 787 nm, while the absorption coefficient per
unit pressure is α0 = 8.45 × 10−8 cm−1 Pa−1. The thermal
properties of acetylene adopted in our calculation are [12]
κ = 19.2975 mW/(m K), heat capacity at constant pressure
cp = 1580 mJ/(g K), and thermal diffusivity given by D =
κ/(cpd ), with being d the gas density. A summary of the
experimental parameters values adopted in the calculation are
reported in Table I. We are now ready to calculate the three
characteristic times. Since ρ2

0 � L2 and the thermal diffu-
sivity is inversely proportional to the gas pressures, τ00 can
be easily found by doing the following approximation τ00 =
1/(β10D) ≈ ρ2

0 p/(l2
0D0), where p is the pressure expressed

in Pa and D0 is the thermal diffusivity at the pressure of
1 Pa. If τ00 increases with the pressure, the cavity decay time,
τc, has an opposite behavior with the pressure, as shown in
Fig. 3. In fact, it can be easily demonstrated that the following
equation holds: τc = τrr1r2/[2(1 − r1r2 + α0 pr1r2L)]. It must
be noted that the heat diffusion time is significantly larger
than the cavity decay time, for almost the entire pressure
range under investigation. Because of the strong difference
between τc and τ00, it is possible to distinguish among
three different dynamical heating regimes depending on the
magnitude of �. In order to describe the heating effect
in the various regimes, we set the gas pressure at 50 Pa,
thus obtaining τc = 1914 τr ≈ 6.4 μs and τ00 = 206786 τr ≈
0.69 ms. Then, we calculate the behavior of δTav(t ) as a
function of �.

A. Case 1: � � τc � τ00

Equation (14) allows one to calculate analytically the
function h f (t ) that determines the time evolution of the in-

FIG. 3. Behavior of cavity time constant, τc, and heat diffusion
time, τ00, as function of gas pressure in the cavity.

tracavity heating power. For small values of t , a quadratic
approximation holds for h f (t ), as shown graphically in the
inset of Fig. 4. This figure plots δTav(t ) and h f (t ) in units of �,
assuming � = 4 × 102 τr (namely, about 1.33 μs). For t = �,
h f (t ) reaches its maximum value, that is, h f (�) ≈ |A f �|2.
This value is significantly lower than we should expect when
a standing wave condition is established in the cavity. As a
consequence of the small intracavity power, the temperature
variation, δTav, does not exceed 0.57 μK. Since the effective
temperature variation is the mean value of δTav(t ) over the
time span of a few τc, the net effect of local heating is
absolutely negligible. This is true even though the recovery
time, calculated as the time to fall from 90% to 10% of the
peak value of δTav maximum of signal (that is, t0.9 − t0.1) is
relatively large, being about 60 μs, and the repetition rate of
the ring-down events is set at the maximum value of the order
of 1/τc.

FIG. 4. Temporal dynamics of δTav(t ) and hf (t ) in the case of
� = 4 × 102τr . The inset shows the quadratic behavior of hf (t )
during the time in which the laser is on. The recovery time is about
of 60 μs.
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FIG. 5. Temporal dynamics of δTav(t ) and hf (t ) in the case of
� = 4 × 104τr . The cavity enhancement factor reaches its maximum
value (|Af /γ f |2) that is about 730. The recovery time of δTav(t ) is
about 0.21 ms.

B. Case 2: τc � � � τ00

Setting � = 4 × 104 τr (≈ 133 μs), a standing wave is
established inside the cavity before the laser light is switched
off and the cavity enhancement factor reaches its stationary
value, h f max = |A f /γ f |2. Heat dissipation occurs with a char-
acteristic time much larger than �; therefore δTav(t ) increases
up to the value of 0.24 mK, as shown in Fig. 5. The effective
temperature variation is of the same order of magnitude since
the mean value is calculated over a time interval during which
δTav(t ) exhibits a small variation.

C. Case 3: τc � τ00 � �

This case is described in Fig. 6. We set � = 4 × 106 τr

corresponding to about 13 ms. In this experimental condition,
light absorption takes place for a long time, during which
the power builds up into the cavity and the produced heat
propagates throughout the medium. Therefore, δTav reaches
the value of 0.4 mK, thus leading to a perturbation in the gas
temperature of about 1.3 ppm.

IV. CONCLUSIONS

An optical and thermal model to quantify the local heating
in DBT experiments, based on the CRDS technique, has been

FIG. 6. Temporal dynamics of δTav(t ) and hf (t ) in the case of
� = 4 × 106τr . The maximum deviation of temperature is 0.4 mK.
The recovery time is 0.85 ms.

presented. This effect is caused by light absorption from the
intracavity gaseous medium. The temperature maps have been
calculated by using the Green’s functions method for heat dif-
fusion. The temperature perturbation depends on several pa-
rameters, such as the size of the optical cavity, the reflectivity
of the mirrors and the thermal and optical characteristics of the
probed gas. It turns out that three dynamical regimes can be
identified. The worst case in terms of temperature perturbation
occurs when the incident laser is switched on for a time in-
terval that is larger than the heat diffusion time and the cavity
decay time. In this condition, which is quite common in CRDS
experiments, the perturbation at room temperature amounts
to about 1 ppm. In each regime, the temperature perturbation
increases linearly with the incident power and the absorption
coefficient, which, in turn, is proportional to the gas pressure.
Consequently, there might be experimental situations in which
the local heating is far from being a negligible source of
systematical uncertainty in Doppler broadening thermometry.
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