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Dynamics of quantum coherence in a spin-star system:
Bipartite initial state and coherence distribution
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We investigate the transient dynamics of quantum coherence for a system of two central spins in a spin-
star environment by employing a numerical procedure based on a Laguerre polynomial expansion scheme. The
dynamics of the total, local, and global coherence are calculated for different values of the anisotropy parameter,
the system-bath interaction strengths, and temperature for different initial bipartite states. Significant dynamical
features of quantum coherence are found as follows: (i) an X state can only have global coherence; (ii) a state with
only initial local coherence gains global coherence during the course of evolution by the induced correlations
between the two-qubit system and the common bath; (iii) an incoherent state gains coherence by interacting
with an external bath. We find there are two primary ways to gain coherence for an incoherent state: one is by
interacting with the external quantum bath and the other is through interconversion of other quantum properties
such as purity into coherence. Finally, we demonstrate that our results for the system in an infinite bath also hold
qualitatively when the system is in contact with a finite bath.
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I. INTRODUCTION

The field of quantum information science has shown nu-
merous advantages of using quantum mechanics over classical
physics in technological applications, such as with quantum
computing algorithms, quantum metrology, quantum simula-
tion, and quantum cryptography. This improvement is due to
the utilization of coherent quantum resources such as entan-
glement and superposition. In any realistic situation, the quan-
tum computer will possess various channels of decoherence,
due to their interaction with the external environment and
hence such systems should be considered as open quantum
systems. One of the best investigated quantum resources in the
context of quantum information processing is entanglement.
While an essential ingredient for many quantum information
processing tasks, it has become more apparent in recent years
that it is not the only quantum resource that can be exploited,
and there are several other quantum resources such as discord
[1,2], coherence [3], steering [4], and contextuality [5], which
can be used for various applications.
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Coherence is a well-known feature of quantum mechanics
since the concept of wave-particle duality was first introduced.
While it was studied intensively in the context of phase-space
distributions and higher-order correlation functions, it was
never quantified in a rigorous sense in terms of a quantum
information quantity. This was performed recently by Baum-
gratz, Cramer, and Plenio [3], and improved upon by many
subsequent works focused on measuring and distribution of
quantum coherence [3,6–14]. It has also been investigated in
a wide variety of systems like Bose-Einstein condensates [15],
cavity electrodynamics [16], and spin systems [17–20].

Recently, there have been many advancements in qubit
technology for various systems [21]. In particular, for qubits
made using quantum dots [22,23] and NV centers [24], the
qubit system is located in a solid-state medium which contains
many other spin systems such as the nuclear spins of the host
material. This naturally leads to a very complex interaction
between the qubit and the neighboring spin systems, which
may also be mutually interacting. Due to the complex dy-
namics induced by the spin environment on the qubits, still
a lot of work has to be done to completely understand the
dynamics of NV centers and quantum dots [25]. In general,
in solid state devices such as quantum dots and NV centers
there is background noise due to the presence of nuclear spins.
The qubit-nuclear spin system can be modeled as a central
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spin in contact with a spin bath. The transient dynamics of
entanglement in such systems has been studied using several
techniques such as perturbative methods [26] and mean-field
approximation [27]. In Ref. [28], the dynamics of a central
spin coupled to a spin-star network through a Heisenberg XX
coupling was studied. This was extended to two central spins
in Ref. [29]. The entanglement dynamics of a very general
Heisenberg XY model was solved using an operator technique
in Ref. [30]. Later a semianalytic model was introduced in
Refs. [31–33] to investigate the dynamics of entanglement in
the anisotropic XY model for an arbitrary initial state. This
model has wide applications in several quantum information
processing systems such as quantum dots and cavity QED
[34–37].

In this paper, we investigate the dynamics of an open two
spin qubit system in a spin-star network with a homogenous
coupling to the environment spins. We consider the two spins
to be separated sufficiently that the direct spin-spin coupling
between them can be neglected. Through the use of Holstein-
Primakoff transformation we convert our model to a spin-
boson Hamiltonian, and compute the dynamics of the two
central spins through a numerical simulation assuming differ-
ent pure and mixed initial states. The dynamics of quantum
coherence is measured using the relative entropy of coherence
[3]. The coherence is decomposed into contributions arising
due to correlations between the qubits or locally, called the
global coherence and local coherence [8,38], respectively. The
manuscript is organized as follows. In Sec. II and Sec. III we
describe the spin model and the coherence measure, respec-
tively. The numerical techniques are explained in detailed in
Sec. IV. The dynamics of pure states are analyzed through
the study of the Bell states, coherent separable state, and
incoherent separable state in Sec. V. The mixed states are
considered in Sec. VI through the investigation of Werner-Bell
states, mixed separable state, and the maximally mixed states.
We present our conclusions in Sec. VII.

II. DESCRIPTION OF THE MODEL

We consider a two-qubit subsystem interacting with an
external bath, where both the subsystem and the bath are
composed of two level systems. The spin-star configuration is
a structure in which the two-qubit subsystem is surrounded by
N-spin particles located on the surface of a sphere. The spins
in the subsystem interact with the bath spins through a Heisen-
berg XY -type interaction. In addition, the bath spins interact
between themselves through an XY spin interaction. Here
we assume that each spin in the bath interacts with the two
central spins with equal strengths, similar to that discussed
in Refs. [28,30,39,40]. The Hamiltonian corresponding to the
total system comprising the spin subsystem and the spin bath
can be decomposed into three parts

H = HS + HSB + HB, (1)

where HS and HB are the Hamiltonians of the subsys-
tem and the bath, respectively, while HSB describes the
interaction between the bath and the subsystem. In terms
of the spin operators, the Hamiltonians HS , HB, and HSB

read

HS = μ0
(
σ z

01 + σ z
02

)
, (2)
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2
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01σ
x
i + σ x

02σ
x
i

)
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y
i

)]
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HB = g

2N
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i �= j

[
(1 + γ )σ x

i σ x
j + (1 − γ )σ y

i σ
y
j

]
, (4)

where the σ
x,y,z
i represents the Pauli spin operators and the

index i runs from 1 to N , where N is the number of spins in
the bath. Here σ

x,y,z
01 (σ x,y,z

02 ) represents the Pauli spin operator
corresponding to the first (second) spin of the system. The
coupling between the system and any bath spin is g0, while g
is the coupling between the bath spins. The factor μ0 describes
the coupling between the spin qubit and the external field in
the Ẑ direction. The anisotropy parameter has a range γ ∈
[−1, 1], where γ = 0 means the interaction is of an isotropic
case and γ = 1 represents a strong anisotropic case (Ising type
interaction). The spin-star environment is symmetric in the
parameter γ about the point γ = 0 and hence we will consider
only the regime γ ∈ [0, 1].

The interaction Hamiltonian and the bath Hamiltonian can
be rewritten using the spin raising and lowering operators
σ± = (σ x ± iσ y)/2 as

HSB = g0√
N

[ N∑
i=1

σ+
i (γ σ+

01 + σ−
01) +
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σ−
i (σ+
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]
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HB = g

N

N∑
i �= j

[γ (σ+
i σ+

j + σ−
i σ−

j ) + (σ+
i σ−

j + σ−
i σ+

j )]. (6)

Due to the symmetric coupling of the bath spin operators, we
can introduce the collective angular momentum operator J± =∑N

i=1 σ±
i . Substituting J± into (5) and (6), we get

HSB = g0√
2 j

[J+(γ σ+
01 + σ−

01) + J−(γ σ+
01 + σ−

01)

+ J+(γ σ+
02 + σ−

02) + J−(γ σ+
02 + σ−

02)], (7)

HB = g

2 j
[γ (J+J+ + J−J−) + (J+J− + J−J+ − 2 j)], (8)

where j = N/2. Now we perform a Holstein-Primakoff trans-
formation [41]

J+ = b†(
√

2 j − b†b), J− = (
√

2 j − b†b)b, (9)

to transform the collective angular momentum operators to
bosonic operators b, obeying bosonic commutation relations

042333-2



DYNAMICS OF QUANTUM COHERENCE IN A SPIN-STAR … PHYSICAL REVIEW A 100, 042333 (2019)

[b, b†] = 1. The Hamiltonians (7) and (8) can be recast as

HSB = g0

[
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√
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b

+
√

1 − b†b

N
bb†
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]
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In the thermodynamic limit N → ∞, Eqs. (10) and (11) can
be well approximated by

HSB = g0[b† (γ σ+
01 + σ−

01 + γ σ+
02 + σ−

02)

+ b (σ+
01 + γ σ−

01 + σ+
02 + γ σ−

02)], (12)

HB = g[γ (b†2 + b2) + 2b†b]. (13)

Thus we find that the initial Hamiltonian describing a two-
qubit spin system in a spin-star environment is transformed to
a Hamiltonian describing a two-qubit system interacting with
a single-mode thermal bosonic bath field. This can be equally
considered to be a nontrivial problem in cavity quantum
electrodynamics.

III. MEASUREMENT OF QUANTUM COHERENCE

We now turn to analyzing the dynamics of coherence of
the bipartite spin system immersed in a common spin environ-
ment, as described by the Hamiltonian in the last section. To
investigate the quantum coherence we use the relative entropy
of coherence measure given by [3]

CT (ρs) = min
σ∈I

S(ρs‖σ ) = S(ρd ) − S(ρs), (14)

where we denote the set of incoherent states by I and ρd is
the diagonal matrix corresponding to the density matrix of the
two-qubit subsystem ρs. The coherence quantified by (14) is
the total coherence of the subsystem. Unlike entanglement,
coherence can either be localized within the qubits (local
coherence) or may exist as correlations between the qubits
(global coherence) [8]. The local coherence can be measured
using the relation

CL = S(π (ρs)‖[π (ρs)]d ), (15)

where π (ρs) = ρ1 ⊗ ρ2 is the product state of the two central
spins and ρ1,2 = Tr2,1ρs. The global coherence can be found
from the total coherence (14) and the local coherence (15) by
considering their difference

CG = CT − CL. (16)

IV. NUMERICAL CALCULATION PROCEDURE

We now describe the numerical methods used in this work
to find the time evolved density matrix ρ(t ) from an initial

density matrix. We take the initial density matrix to be of the
form

ρ(0) = ρs(0) ⊗ ρB(0), (17)

where ρs(0) = |ψ (0)〉〈ψ (0)| and ρB(0) are the initial density
matrices corresponding to the two-qubit spin subsystem and
the spin environment, respectively.

We assume the external bath is initially at thermal equilib-
rium, such that it obeys the Boltzmann distribution

ρB(0) = exp(−HB/kBT )

Z
, (18)

where Z = Tr exp(−HB/kBT ) is the partition function of the
bath. For the sake of simplicity, we use units of energy and
temperature such that kB = 1. The time evolved density matrix
of the entire system can be computed through the expression

ρ(t ) = exp(−iHt )ρ(0) exp(+iHt ). (19)

To find the time evolved density matrix ρ(t ), we adopt
the procedure introduced in Ref. [42]. Here the thermal bath
state ρB(0) is expanded in terms of the eigenstates of the
environment Hamiltonian HB as follows:

ρB(0) =
M∑

m=1

ωm|φm〉〈φm|, (20)

where |φm〉, m = 1, . . . , M are the eigenstates of HB with
corresponding eigenenergies Em. The Boltzmann weight ωm

reads

ωm = exp(−Em/T )

Z
,

Z =
M∑

m=1

exp(−Em/T ). (21)

In the above discussion the index M represents the total
number of eigenstates. Since we used a Holstein-Primakoff
transformation to convert the spin bath to a single mode
thermal bath field, for consistency we must take the M → ∞
limit. For energy states with Em/T � 1, the Boltzmann factor
is negligible and thus we may approximate the bath state in
practice with a cutoff mc:

ρB(0) ≈
mc∑

m=1

ωm|φm〉〈φm|. (22)

Taking into account all these considerations we can write the
density matrix ρ(t ) as

ρ(t ) =
mc∑

m=1

ωm|	m(t )〉〈	m(t )|, (23)

where

|	m(t )〉 = exp(−iHt )|	m(0)〉 = U (t )|	m(0)〉, (24)

and the initial state is

|	m(0)〉 = |ψ (0)〉|φm〉. (25)

Now we find the evolution operator U (t ), which describes
the dynamics of the two qubit central spins. There are several
different methods to find the evolution operator. An operator
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(a) (b) (c)

FIG. 1. Coherence of the steady state corresponding to ρ(t → ∞) is given above for μ0 = 2g and g = 1. In (a) we calculate the variation
of coherence with γ for different values of g0 keeping T = g. The variation of coherence with respect to g0/g is given in (b) for different values
of γ and the value of T = g. The coherence variation with respect to temperature is given in (c) for different values of γ and g0 = g.

based technique was introduced in Ref. [30] to study the
dynamics of X states. An alternative to this is to use a
polynomial based scheme, which was introduced in Ref. [43]
and further developed in Ref. [44]. In the current work we
use the Laguerre polynomial based expansion method intro-
duced in Ref. [45] and used extensively in Ref. [46]. This
method is suitable for many quantum systems and can give
accurate results with much smaller computational overhead.
The evolution operator based on the Laguerre polynomial of
the Hamiltonian is

U (t ) =
(

1

1 + it

)α+1 ∞∑
k=0

(
1

1 + it

)k

Lα
k (H ). (26)

Here Lα
k (H ) is the Laguerre polynomial of type α and H

is the Hamiltonian. The index α ∈ (−1,∞) distinguishes
different types of Laguerre polynomials and k is its order.
In the case of a spin-star environment we take α = −1/2,
while for other models it can have different values with regard
to the numerical convergence speed [46]. Though the order
of the Laguerre polynomial k → ∞, in actual calculations
we truncate this to kmax, an optimal value. In our present
work we choose this optimal value through an investigation
of the numerical stability in the recurrence of the Laguerre
polynomial and the speed of the calculation. Once the order
of the expansion is fixed at kmax, the time step is selected
keeping in mind the accuracy of the evolution operator and the
run time of the numerical simulation. The numerical stability
is tested at each step by confirming whether the trace of the
density matrix is 1 with an error less than 10−12. In practice
the polynomial method is much more efficient than that of
the Runge-Kutta algorithm used in Ref. [42] under the same
conditions of accuracy.

From the time evolved state |	m(t )〉, we can always obtain
the density matrix ρ(t ) using (23). The reduced density matrix
of the bipartite system can be calculated by tracing out the
environment degrees of freedom

ρs(t ) = TrB ρ(t ), (27)

and can be expressed in the Hilbert space spanned by the
orthonormal vectors |11〉, |10〉, |01〉, |00〉.

One of the interesting features is the steady-state behavior
of quantum coherence. For the sake of illustration we con-
sider the long-time limit of quantum coherence (t → ∞) to

describe the steady-state behavior of quantum coherence (see
Fig. 1). From the plots we find that the quantum coherence
increases logarithmically with an increase in the anisotropy
parameter γ . On enhancing the spin-spin coupling ratio g0/g,
we observe from Fig. 1(b) that the coherence increases
very rapidly satisfying a law CT ∼ (g0/g)n, n � 3. Finally, in
Fig. 1(c), we show the change in quantum coherence as a
function of temperature. We find that the coherence initially
increases and attains a maximal value and then slowly decays.
The maximal value attained is a function of the anisotropy
parameter and the higher the value of γ , the greater is the
maximal value of coherence.

In the next section we investigate the dynamics of quantum
coherence of the central spins considering different initial
states. In all the numerical studies, we assume that μ0 = 2g
and g = 1, with the other parameters being varied.

V. DYNAMICS OF COHERENCE IN PURE STATES

In this section, we investigate the coherence dynamics of a
two-qubit system due to an external environment for various
pure initial states. The following three kinds of initial states
are considered: (a) bipartite pure states initially containing
only global coherence (e.g., Bell states); (b) bipartite pure
state initially possessing only local coherence (e.g., coherent
separable states); (c) bipartite pure states initially without any
coherence (e.g., incoherent separable states).

A. Maximally entangled coherent states

The dynamics of quantum coherence in the two-qubit
system is analyzed when the initial state is prepared in
the form of Bell states. We investigate the dynamics of
two Bell states |φ+〉 = (|00〉 + |11〉)/

√
2 and |ψ+〉 = (|01〉 +

|10〉)/
√

2, which are shown in Fig. 2. For the Bell states, the
entire coherence in the system can be attributed to the global
coherence distributed between the qubits. The local coherence
is zero because the product state constructed from a Bell state
is a completely incoherent state.

In Figs. 2(a) and 2(d), we show the variation of coherence
with different anisotropy parameters for the states |φ+〉 and
|ψ+〉, respectively. From both the plots, we observe that the
collapse and revival of coherence with large amplitudes is
more pronounced for γ = 0 than for γ = 1, which is inde-
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(a) (b) (c)

(f)(e)(d)

FIG. 2. Dynamics of quantum coherence of the two-qubit system initialized to the Bell states |φ+〉 = (|00〉 + |11〉)/
√

2 and |ψ+〉 =
(|01〉 + |10〉)/

√
2. We set g0 = g and T = g and calculate the time evolution of quantum coherence for different values of γ as shown in

(a) and (d) for the states |φ+〉 and |ψ+〉, respectively. Similarly setting γ = 0.25 and T = g we show the variation of the dynamics with respect
to the parameter g0 for |φ+〉 and |ψ+〉 in (b) and (e), respectively. Finally, we show the temperature dependence of the dynamics of the states
in (c) and (f) for |φ+〉 and |ψ+〉 for the constant values γ = 0.25 and g0 = g.

pendent of initial Bell states. It indicates that the increase of
anisotropy of the bath and interaction leads to a smaller time
to reach stable coherence. In contrast to the time evolution
of entanglement in Ref. [31], the coherence is more robust.
The time dynamics of coherence for various values of g0 (the
subsystem-bath interaction) is described in Figs. 2(b) and 2(e),
respectively. The oscillatory frequency of coherence becomes
much larger when the value of g0 is increased. This is due to
the fact that a higher value of g0 implies a stronger interaction
with the spin-star environment, which leads to a higher speed
of exchange of information between the two-qubit subsystem
and surrounding spin environment.

We also study the effect of temperature on the coherence
dynamics. The corresponding results are shown for |φ+〉 and
|ψ+〉 in Figs. 2(c) and 2(f), respectively. It is observed that
the revival of coherence for different temperatures happens,
but the amount of coherence revived is dependent on the
temperature of the bath. As the temperature increases, the
degree of coherence revival decreases due to the decoherent
effects of the temperature.

B. Coherent separable state

We now turn to the case of the two-qubit subsystem ini-
tialized to a separable state. In our discussion below, we look
into the coherence dynamics of the following product state
|χ〉 = | + +〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2, which is not
entangled. The numerical results are shown in Figs. 3 and 4.

Since the two-qubit subsystem is coupled with a common
bath, the state of the qubits becomes entangled in the course
of evolution which can be measured through a numerical cal-
culation of concurrence, an entanglement monotone [31–33].
Figure 3 shows the dynamics of the entanglement (E), total
coherence (TC), local coherence (LC), and global coherence
(GC) of the subsystem. From the plots it is seen that, while
the entanglement and global coherence are initially zero,

they attain a finite value during evolution and also have a
similar time dependence. This is because of the interqubit
correlations introduced in the quantum system by the common
bath. We also should note that the entanglement disappears
at gt ≈ 13, but the global coherence generated always exists
during the evolution. Meanwhile, the local coherence which
initially takes its maximal value tends to decrease with time.
The entanglement and local coherence have complementary
behaviors, such that the entanglement increases when the local
coherence decreases and vice versa. This indicates that local
coherence is transferred to global coherence through the bath,
and at particular times there is only interqubit correlation
and entanglement between the two qubit, but no intraqubit
coherence.

In Fig. 4, we show the global and local coherence for
various values of the anisotropy parameter γ , system-bath

FIG. 3. Time evolution of entanglement (E), global coherence
(GC), local coherence (LC), and total coherence (TC) for the state
|χ〉 with γ = 0.25, g0 = g, and T = g.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Time evolution of global and local coherence for the state |χ〉. In (a) and (d) we show the dynamics of global and local coherence
respectively for different values of γ with the other parameters being maintained at g0 = g and T = g. For different values of g0 we show the
time variation of coherence for the global and local coherence in (b) and (e), respectively, keeping γ = 0.25 and T = g. The time variation of
coherence is shown in (c) and (f) for the global and local coherence, respectively, with the values of γ = 0.25 and g0 = g.

couplings g0, and temperature T . We see from Fig. 4(a) that
the global coherence is initially zero for all values of γ , but
it increases with time, attains a maximum value, and again
decreases. In the case of local coherence, the coherence is
maximum initially, which falls to zero and then revives as
observed in Fig. 4(d). For γ = 0 (the isotropic case), both
the local coherence and the global coherence attain their
maximum and minimum value compared with other values
of the anisotropy parameter. Also the time taken for the
fall and revival of coherence is longer for larger values of
the anisotropy parameter. It indicates that the increase of
anisotropy hinders the generation of global coherence and loss
of local coherence for |χ〉. For the system-bath coupling g0,
in Fig. 4(b) we see that the initial global coherence is always
zero for any value of g0 and is generated at a later time due
to the interaction with the bath. While it initially increases,
it again decreases and the rate of this change in coherence is
entirely dependent on the value of g0. The dynamics of local
coherence is shown in Fig. 4(e). Its initial value is always
the maximal value of 2, and it decreases and then revives.
This change is also dependent on the value of g0 and happens
faster for higher values of the coupling g0. The larger the
value of g0, the faster the change in coherence, because the
subsystem and the bath interact more strongly when g0 is
higher. The transient dynamics of both the global coherence
and local coherence for different temperatures is shown in
Figs. 4(c) and 4(f). The global coherence which is initially
zero increases and reaches a maximum value which is in-
versely proportional to the temperature as shown in Fig. 4(c).
As for the local coherence it is initially at a finite value which
reaches zero and then revives. This collapse and revival of
coherence is dependent on the temperature and the maximum
value of the coherence revived is inversely proportional to
the temperature as displayed through Fig. 4(f). The amount
of maximal coherence and the revived value of coherence
is inversely proportional to the temperature because of the
thermal decoherence effects. Therefore, the total coherence

decreases with the temperature. In the present part, we do not
consider the dynamics of the total coherence which is a sum
of the local and global coherence. This is because the response
of total coherence to the different interaction parameters such
as γ , g0, and T will be just an additive combination of the
local and global effects.

C. Incoherent separable state

We now turn to examining the transient dynamics of
quantum coherence for initially incoherent separable states.
We consider the two initial states |00〉 and |01〉, which do
not have any coherence since they have a diagonal density
matrix (in the σ z basis). As the two-qubit subsystem evolves
in time, it gains coherence as can be observed from the plots
in Fig. 5. From Figs. 5(a) and 5(c), we find that the maximum
value of coherence is attained for γ = 0 in the case of |01〉
but for γ = 1 in the case of |00〉. The subsystem gains little
coherence when γ = 1 for |01〉 as well as for |00〉. The
variation of coherence with time for the different values of g0,
the system bath interaction parameters, is shown in Figs. 5(b)
and 5(d) for the states |00〉 and |01〉, respectively. The increase
of the coupling to the bath helps to increase the global
coherence.

Throughout the entire dynamics the only coherence formed
in the subsystem is the global coherence, which signals the
introduction of only interqubit correlations. Hence, in Fig. 5,
we show the dynamics of the total coherence, which is
equal to the global coherence in this case. Thus we find
that quantum coherence can be introduced in an incoherent
state in contact with the common bath, an effect which can
be described as bath-induced coherence. This is because
the common bath introduces quantum correlations to the
incoherent state, which manifests itself as coherence of the
subsystem.

When we observe the dynamics of the Bell states |φ+〉
and |ψ+〉 we can notice that |φ+〉 has a chaotic dynamics,
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(a) (b)

(c) (d)

FIG. 5. Time evolution of the total coherence for the states |00〉
and |01〉. In (a) and (c) we show the dynamics of total coherence
of the states |00〉 and |01〉 respectively for various values of γ

fixing g0 = g and T = g. Setting γ = 0.25 and T = g we show the
dynamics of total coherence for states |00〉 and |01〉 in (b) and (d),
respectively.

whereas in |ψ+〉 the dynamics is more regular. In the case
of the quantum state |φ+〉, the revival state is not exactly the
same and hence the nature of the dynamics is chaotic, since
the quantum state keeps changing throughout the evolution.
The state |ψ+〉 exhibits a periodic behavior since the revival
state is close to |ψ+〉. In contrast the state |00〉 has periodic
dynamics, since its revival state is close to itself. However,
the state |01〉 presents a rather chaotic dynamics since the
quantum state changes throughout the evolution. The results
which are well established for the entanglement and fidelity
dynamics in Ref. [31] are also confirmed for the coherence
dynamics through our present work.

From our investigations of the pure states, we should point
out some interesting features. When the initial state is either
the Bell state |φ+〉 and |ψ+〉 or the incoherent state |00〉 and
|01〉, we observe the dynamics of only global coherence. This
is because the local coherence which is initially zero is never
generated due to the interaction between the subsystem and
the bath. Both the Bell states and the incoherent states belong
to the class of states known as the X states in which the
density matrix has elements only along the diagonal and the
antidiagonal. It is well known [47] that under time evolution
an X state will evolve into another X state. Further, it is
also known that the product state corresponding to an X state
[π (ρ)] is diagonal and hence incoherent. Hence an X state
contains only global coherence and since it always evolves
into another X state [47], no local coherence is generated
in its evolution. In the case of the separable state, the state
|χ〉 can be written in a product form and hence it does not
have global coherence. But the product state is not necessarily
diagonal, and local coherence can be present in the system.
The interaction of the subsystem with the environment gives
rise to quantum correlations between the two qubits. This
quantum correlation generates the global coherence which
does not exist in the initial system. Since the product state

is not strictly an X state, there is a complex relationship
between the X -state (diagonal and antidiagonal) elements and
the remaining elements giving rise to the observed dynamics
of the local and global coherence.

VI. DYNAMICS OF COHERENCE IN MIXED STATES

In this section, we explore the dynamics of quantum co-
herence when it is initially prepared in a mixed state. This is
relevant from a practical point of view since it is generally
difficult to prepare a perfectly pure state experimentally. We
consider mixed states of the form

ρ� = 1 − μ

4
I4 + μ|�〉〈�|, (28)

where |�〉 is a pure state and μ is the mixing parameter. Here
I4 is the maximally mixed two-qubit state and corresponds
to a classically maximum entropy probability distribution.
As such it has no quantum correlation and thus has zero
quantum discord [1]. We present the results for the entangled,
separable, and maximally mixed states below.

A. Werner Bell states

The time evolution of quantum coherence for the mixed
state defined in (28) with |�〉 = |ψ+〉 is shown in Figs. 6(a)
and 6(b). For the values of the parameters γ = 0.5, g0 = g,
and T = g, we show the total coherence dynamics in Fig. 6(a)
for various values of the mixing parameter μ. We observe
that the amount of coherence generally increases with the
mixing parameter, as expected for a state of higher purity.

(a) (b)

(c) (d)

FIG. 6. Time evolution of quantum coherence from an initially
mixed state of Werner form given in (28), for |ψ+〉 and |χ〉 states.
(a) For the state |ψ+〉, we display the total coherence dynamics for
different values of the mixing parameter μ setting γ = 0.5, g0 = g,
and T = g. (b) At a fixed time gt = 5 we show the monotonic change
of the coherence with the mixing parameter fixing γ = 0.75, the
values of g0 and T being shown in the plot. (c) For the mixed
state with |χ〉 we investigate the time dynamics of global and local
coherence for γ = 0.5, g0 = g, and T = g. (d) The variation of
coherence with μ at a fixed time gt = 5.0 is given for γ = 0.75 and
g0 = g for different values of temperature.
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It is because the quantum coherence is present only for the
Bell state, and is zero for a completely mixed state I4/4. It is
known from past studies that the Werner-Bell state (28) has
nonzero entanglement in the range μ > 1/3, and hence for
0 � μ � 1/3 the state has no entanglement [48]. The global
quantum coherence is a consequence of both quantum corre-
lations due to entanglement and interqubit quantum correla-
tions (i.e., quantum discord). Therefore, the global quantum
coherence is nonzero even when the state is separable. We
demonstrate the variation of coherence as a function of the
mixing parameter μ for fixed values gt = 5 and γ = 0.75,
and for various choices of spin-bath coupling parameter g0

and temperature T in Fig. 6(b). We see that the coherence
increases monotonically with increasing the mixing parameter
for all parameter choices.

B. Separable mixed state

We now consider the separable state |�〉 = |++〉 in (28)
as the initial condition for the time-dependent coherence
dynamics. Such a quantum state presents very rich time
dynamics since the evolution causes a change in both global
and local coherence of the system. Selecting a fixed value of
parameters γ = 0.5, g0 = g, T = g, we examine the dynam-
ics for different values of μ in Fig. 6(c). We find that the
coherence dynamics is more subdued for both the local and
global coherence with the decrease in the mixing parameter
μ. The reason is that we are mixing the separable state with
a classical correlated state. For a fixed value of gt = 5 with
γ = 0.75 and g0 = 2g we also find the variation of local
and global coherence with the mixing parameter in Fig. 6(d).
The calculation is carried out for different values of the
temperature for the sake of consistency. We find that both
local and global coherence displays monotonic decrease with
decreasing mixing parameter μ. Also we can observe finite
temperature decoherence effects in the dynamics of local and
global coherence.

C. Maximally mixed incoherent state

We finally consider the maximally mixed state correspond-
ing to μ = 0 in (28). This state has zero purity and is incoher-
ent for any basis choice. The time dynamics of this state for
various parameters are shown in Fig. 7. Naively, one might
expect that a maximally mixed state would be invariant to any

(a) (b)

FIG. 7. Time dynamics of the initially maximally mixed state
I4/4. (a) Time evolution of the total coherence for various anisotropy
parameters γ , setting g0 = 2g and T = g. (b) Time evolution of
the total coherence for various system-bath couplings g0, setting
γ = 0.25 and T = g.

time dynamics because it has no coherence. In Fig. 7(a), the
time variation of coherence is shown for g0 = 2g and T = g
with various values of the anisotropy parameter. Contrary to
the naive expectation, the total coherence is initially zero,
but starts to increase after the system interacts with the bath
and reaches a finite value and then decreases. The maximal
value attained depends on the anisotropy parameter and is
higher for the isotropic situation when γ = 0 and is the least
for γ = 1, the transverse field Ising model. Analogously, we
see, in Fig. 7(b), that when the value of spin-bath interac-
tion g is increased, the coherence dynamics becomes more
prominent. The reason is that a higher value of g implies
a stronger interaction between the bath and the system and
hence the coherence is generated by interacting with the
environment.

The knowledge on the coherence dynamics of the mixed
states leads us to similar results for the case of X -type state.
Both the Werner-Bell state and the maximally mixed state are
X states and hence we observe only the time evolution of
global coherence. No local coherence exists or is generated in
the system throughout the course of evolution. This is because
any given X -state evolves only into another X state [47] and
such states have a product form which always has a diagonal
density matrix, and is incoherent. Therefore, there is no gener-
ation of local coherence since it needs the product states to be
nondiagonal. In the case of an initially mixed separable state,
the local coherence is much more dominant than the global
coherence. Due to the interaction with the environment, the
global coherence of the state increases, leading to the dynam-
ics of local and global coherence observed in the present work.
For the case of maximally mixed state we find that it initially
does not have any coherence, but later on there is coherence
introduced in the system by the environment. We find that the
maximal value of coherence is far smaller (typically one order
of magnitude) than the amount of coherence introduced in
other states. This is because the entire coherence gained by the
maximally mixed state which is classically correlated comes
from its interaction with the environment which is quantum
by nature. On increasing the temperature the quantum nature
of environment decreases and so the amount of coherence
introduced by the bath decreases and becomes negligible
at high temperatures. On the contrary the pure incoherent
states |00〉 and |01〉 possess a higher amount of coherence
generated during the course of the transient dynamics. It is
noticed that these states have a purity equal to one, while
the maximally mixed state has zero purity. Such states have
the opportunity to convert their inherent quantum property
(i.e., purity) into coherence during the course of evolution,
while maximally mixed states do not have this opportunity,
and can only become coherent unless coherence is introduced
externally. To illustrate this point we compare the dynamics
of coherence and purity. Using Eq. (14), we measure the
quantum coherence of the states |00〉 and |01〉. The connection
between purity and quantum coherence of a system has been
investigated through several works [49,50]. The purity of a
quantum state is measured as its distance to the maximally
mixed state. Using the relative entropy distance measure, the
purity of a quantum system is

P = S(ρ‖Id/d ) ≡ log2 d − S(ρs), (29)
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(a) (b)

FIG. 8. Time dynamics of total quantum coherence and purity of
the system for the (a) |01〉 and (b) |00〉 quantum states. The value
of the parameters used are γ = 1, T = g, and g0 = g. The values of
coherence are multiplied by 10.

where P is the purity and d is the dimension of the Hilbert
space. From the plots (see Fig. 8), we observe that initially the
coherence is zero and the purity is at a maximal value. Then
the loss of purity is accompanied by an increase in quantum
coherence of the system. The purity and coherence exhibits
complementary dynamics, where increase (decrease) of one
quantity is accompanied by the decrease (increase) of the
other. This gives credence to our point that the purity can be
converted to quantum coherence in a given quantum system.

D. Central spins in a finite bath

In our work so far we have studied the dynamics of quan-
tum coherence of a two qubit system exposed to an infinite
spin bath. Hence it is natural to ask the question as to what
is the dynamics of coherence when the number of spins in
the bath is finite. To answer this question we investigate the
dynamics of coherence in the entangled states |φ+〉 and |ψ+〉
as well as in the incoherent separable states |00〉 and |01〉 for
a bath size of N = 40 spins. The results are shown in Fig. 9.

FIG. 9. Dynamics of quantum coherence of the two-qubit system
initialized to the Bell states |φ+〉 = (|00〉 + |11〉)/

√
2 and |ψ+〉 =

(|01〉 + |10〉)/
√

2 for N = 40. We set g0 = g and T = g and calcu-
late the time evolution of quantum coherence for different values of
γ as shown in (a) and (b) for the states |φ+〉 and |ψ+〉, respectively.
In (c) and (d) we show the dynamics of total coherence of the states
|00〉 and |01〉 respectively for various values of γ fixing g0 = g and
T = g.

The coherence in the state |φ+〉 is initially at a maximal
value and then it starts decreasing with time. It decreases to
a minimal value and then revives again. The minimal value
attained is lower for higher values of the anisotropy parameter
γ . However, we notice that the dynamics of the state is
chaotic. In the case of the state |ψ+〉, there is also a fall and
revival of coherence and the extremal values are higher for
smaller values of the anisotropy parameter. The periodicity
is also well marked for the lower values of the anisotropy
parameter. The state |φ+〉 is not very periodic, whereas the
state |ψ+〉 has a nice periodic behavior. This is because in
|φ+〉 the revived state is not close to that of the original state
[31] and so the dynamics is chaotic. But in |ψ+〉 the original
state and revived state are closer to each other [31] and so the
dynamics is periodic in nature.

The quantum state |00〉 is initially incoherent and is also
a separable state. But on interacting with the bath, the sys-
tem gains coherence and this coherence exhibits a periodic
dynamics. The amount of coherence gained depends on the
anisotropy parameter and is higher for higher values of γ .
Similarly, the state |01〉 is also an incoherent inseparable state,
but on evolution it exhibits a chaotic dynamics. The amount
of coherence gained is higher for higher values of γ . The
state |00〉 is periodic because the revived state is closer to
the original state, but the state |01〉 is chaotic because the
revival state is not closer to the original state. Comparing these
results with the ones corresponding to those for the infinite
bath system, we find that the results agree qualitatively with
each other. Hence we claim that our results which have been
discussed for quantum systems in an infinite bath also hold
qualitatively when the systems are in a finite bath.

VII. SUMMARY AND CONCLUSIONS

An investigation of the time dynamics of quantum co-
herence of two central spins in a finite temperature external
environment was carried out. The dynamics were investigated
for a variety of initial conditions of the two central spins,
from pure to mixed states. For pure states we consider the
Bell state and a coherent and incoherent separable state. The
mixed state properties were explored through the study of
Werner-Bell state, the mixed separable state, and the maxi-
mally mixed state. The coherence was decomposed into its
local and global coherence contributions to analyze the origins
of the coherence. Also the time evolution was examined
by varying important parameters like the anisotropy of the
spin interaction and the interaction strength between the bath
and the central spin, as well as the temperature. From our
investigation we notice that the Bell state |ψ+〉 presents a
dynamics which is more regular compared to the dynamics
of the Bell state |φ+〉. This is because the revival state of the
|ψ+〉 is closer to the initial state and hence it gives rise to
periodic dynamics. In the case of |φ+〉, the revival state is not
the same as the initial state and hence it has chaotic dynamics.
Similarly in the case of the separable states, the state |01〉
exhibits a chaotic dynamics since its revival state is not the
same as the initial state. But the quantum state |00〉 has a much
more periodic behavior since the revival state is close to the
initial state. Hence the periodicity or its lack thereof depends
on how close the revival state is to the initial state. While the
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results have been investigated for systems in contact with an
infinite bath, we also establish that similar qualitative results
hold for systems in contact with a finite number of spins. (See
Fig. 9.)

From the numerical results corresponding to the mixed Bell
states and mixed separable state we notice that all kinds of
coherence decrease on mixing with incoherent states. Further
in the case of Werner-Bell states we find that the coherence is
also present at values less than μ = 1/3, which is the standard
Werner separability criteria. In the case of the Werner-Bell
state the total coherence is equal to the global coherence
since the entire correlations are due to interqubit correlations.
Below the Werner separability criteria μ < 1/3, the global
coherence can be attributed to the presence of quantum corre-
lations, in agreement with the results that the quantum discord
is nonzero for any μ > 0. We also showed that, at a fixed time
step, the coherence decreases monotonically with decreasing
the mixing parameter for both the Werner-Bell state and the
mixed separable state. Finally, as expected the thermal effects
present an overall decoherence effect on the dynamics of the
central subsystem.

The observations of the dynamics of quantum coherence
give rise to the following conclusions. (i) An X state will
always have global coherence. The reason is a combination
of two factors, namely an X state will always evolve into
an X state and the product form of the X state is always
diagonal in nature and is therefore incoherent. We demon-
strate this result by the calculations of the Bell states, incoher-
ent states |00〉, |01〉, Werner-Bell states, and the maximally
mixed states. (ii) A state with only initial local coherence
gains global coherence during the course of evolution. This
is because the interaction between the two-qubit subsystem
and the common bath creates interqubit correlations, which
give rise to the global coherence between the two qubits.
(iii) It is possible for a completely incoherent state to gain
coherence by interacting with an external bath. Here we note
that there are two ways through which an incoherent state
can gain coherence: one is by interacting with the external
bath and the second is through an interconversion of other
quantum properties into coherence. One such convertible
quantum feature is the purity of the system and through the
course of dynamical evolution part of the purity might get

converted into coherence. A comparison between the pure
incoherent states |00〉, |01〉 and the maximally mixed state
shows that, while both these states gain global coherence
during evolution, the amount of coherence gained in the
pure incoherent states is much larger (typically one order of
magnitude) than that gained by the maximally mixed state. In
the pure incoherent state both the interaction with the external
bath and the interconversion of purity creates the global co-
herence. But in the case of the maximally mixed state the only
source of coherence is the correlation with the environment.
To illustrate it further we calculate the purity and coherence
of the quantum states |01〉 and the state |00〉, where we notice
the complementary dynamics of purity and coherence. We
note that, in Ref. [51], an experimental interconversion be-
tween coherence and quantum correlations was demonstrated
through the use of ancillary qubits. In the present work we
showed the possibility of interconversion between coherence
and purity of a system by subjecting the system to a time
evolution process. An experimental demonstration of such
interconversion would be very interesting in our opinion. An
interesting extension of the current work will be to describe
the dynamics of coherence and its distribution in systems
with more than two spins, which would lead to more complex
behavior.
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