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Entanglement generation via diffraction
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Quantum entanglement is an important resource for next-generation technologies. We show that diffracting
systems can supplant beam splitters and, more generally, interferometric networks for entanglement generation—
systems as simple as screens with pinholes can create entanglement. We then discuss the necessary and sufficient
conditions for entanglement to be generated by states input to any passive linear interferometric network.
Entanglement generated in free space can now be harnessed in quantum-optical applications ranging from
quantum computation and communication to quantum metrology.
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That interacting quantum systems can become entangled
[1] enables numerous applications [2,3]. Entangled photons,
for example, can be used to implement quantum comput-
ers [4–7]. Advantages in teleportation [8–10], cryptography
[11–15], and metrology [16–20] can also be unlocked by
entangled photons. The ability to control the interactions
between photons is thus a major requirement for modern
technologies.

Entangled photons are usually generated by using para-
metric down-conversion with a nonlinear crystal [21,22]. This
interaction, however, is nondeterministic, and the strengths of
the desired nonlinearities limit experimental scalability [7].
An alternative method of inducing nonlinearities is by caus-
ing photons to interfere with each other at beam splitters
[23], as shown in the famous Hong-Ou-Mandel experiment
[24]. Knill et al. took advantage of this idea of using beam
splitters to generate entanglement in their proposed scheme
for quantum computation [5], paving the way for viable all-
optical quantum computing [7]. Similarly, Fiurášek [25], Zou
et al. [26], and Kok et al. [27] showed how to use beam
splitters to conditionally generate arbitrary entangled states of
photons [25], including those useful for cryptography [14] and
metrology [16].

Here we suggest that the use of beam splitters vastly
overcomplicates the infrastructure required for optical en-
tanglement generation. Photons can be made to interfere in
free space following the principles of Fourier optics [28],
leading to entanglement by way of elementary diffraction.
This can be used to enable entanglement-based technologies
using rudimentary optical devices.

Entanglement can seemingly be generated without interac-
tions [29]. We show that photons can become entangled by
using nothing more than diffraction—without photon-photon
interactions and without light-matter interactions. Consider a
single photon diffracting through a pinhole, with two atoms
placed between the pinhole and a perfect detector (Fig. 1).
Suppose further that the photon energy can resonantly drive
a transition between the atomic ground and excited states.
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Remarkably, if the photon does not arrive at the detector,
a scenario reminiscent of interaction-free measurement [30],
the two atoms are projected into an entangled state. We inves-
tigate the entangling properties of diffraction for generating
useful quantum states of light for near-term applications.

As an electric field E (r) propagates through a lens, an
aperture, or free space, it transforms via an impulse response
function h that depends on the geometry of the setup, through
[28]

Eout(r) =
∫

dr0h(r, r0)Ein(r0). (1)

This is mathematically equivalent to a beam splitter: a set of
orthonormal modes {Em(r)} transforms to a superposition of
output modes as Em(r) → ∑

n UmnEn(r), for unitary matrix

Umn =
∫

drdr0E∗
n (r)h(r, r0)Em(r). (2)

The mode transformations (1) and (2) have been explicitly
calculated for numerous systems; for example, a Gaussian
beam diffracting through a circular aperture transforms into
a linear combination of Laguerre-Gaussian beams [31–33].

However, this has all been done with classical light. A
quantized version of this transformation allows us to speak
of input-output relations for the operators â†

m that create
excitations in mode Em, via the relation

â†
m →

∑
n

Umnâ†
n. (3)

In other physical contexts, this type of mathematical trans-
formation has been shown to create entanglement between
the output modes for the vast majority of nonclassical in-
put states [34,35]; here we discuss how it applies to this
physical transformation. A single photon |1〉0 in a Gaussian
beam, for example, can transform into the entangled state
U00|1〉0|0〉1 + U01|0〉0|1〉1, where |n〉i describes a state of n
photons in a Laguerre-Gaussian mode labeled by i. In this
second-quantized sense of modal occupation numbers, the
output photons will similarly be entangled given most non-
classical states of input photons.
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FIG. 1. Schematic of entanglement generated via diffraction. A single-photon mode impinges on a diffracting screen, such as an absorptive
screen with a pinhole, resulting in output field modes that are entangled. Null detection of the photon leaves the atoms in an entangled state.

The choice of basis in which to investigate modal entangle-
ment depends on computational simplicity and experimental
discernibility. It is straightforward to see the entanglement
generated in the plane-wave basis. A single photon with wave
number k and occupying the plane-wave mode traveling in the
n direction is represented by |1〉n ≡ â†

n|vac〉, and is associated
with the electric field E (r) ∝ eikn·r, where r = (x, y, z). Other,
more general electric fields can be written as

E (r) ∝
∫

d�nφ(n)eikn·r, (4)

associated with annihilation operators â†
φ = ∫

d�nφ(n)â†
n,

where one component of n is allowed to be imaginary to
account for evanescent waves [36,37]. The mode functions
φin(n) and φout(n) give the amplitudes for finding the in-
coming and outgoing electric fields in plane- or evanescent-
wave mode n, and are found by taking Fourier transforms of
the incoming and outgoing electric fields. They respectively
specify which modes are entangled with each other at the
input and output.

As a simple example of entanglement generation via
diffraction, consider a paraxial beam traveling in the +z direc-
tion, impinging on a diffracting screen at z = 0 (Fig. 1). The
transformation at this screen is well described by a response
function h(r, r0) = δ(r − r0)M(r), providing a mask function
M(x, y) that achieves

Eout(x, y, 0) = M(x, y)Ein(x, y, 0). (5)

Defining the Fourier transform of this mask function by
M̃( fx, fy) = ∫

dxdyM(x, y)e−i(x fx+y fy ), we find that

φout(n′)
|kn′

z|
=

∫
d�nφin(n)M̃[k(n′

x − nx ), k(n′
y − ny)]. (6)

This means that various choices of mask functions will en-
tangle specific output modes for a given input mode φin. A
δ function φin implies that the input is a plane wave, and the
output plane-wave modes are entangled for any φout that is not
a δ function.

One mask function that exemplifies entanglement genera-
tion is the cosine grating

M(x, y) =
√

2

|k(uz + nz )| cos(uxx + uyy) (7)

for unit vector u, which has been used in optical-intensity
reconstruction [38]. This mask transforms an input plane
wave φin(ñ) = δ(ñ − n) to a superposition of plane waves
φout(ñ) = [δ(ñ − n − u) + δ(ñ + n + u)]/

√
2, which enacts

a special case of Eq. (3),

â†
n → â†

m + â†
−m√

2
, m ≡ n + u. (8)

This transformation achieves entanglement between plane
waves modes m and −m:

|1〉n → 1√
2
|1〉m ⊗ |0〉−m + 1√

2
|0〉m ⊗ |1〉−m,

|N〉n →
N∑

j=0

√(
N

j

)
| j〉m ⊗ |N − j〉−m, etc. (9)

We see that a single-photon input in a plane-wave mode
leads to modal entanglement between output plane waves (see
Ref. [39] for a discussion of single-particle entanglement), as
do most nonclassical input states, including all Fock states
|N〉n [34]. Similar, arbitrary transformations can be obtained
by appropriately tailoring the mask functions M. Diffraction
can thus be readily implemented instead of a beam splitter for
entanglement generation.

The entangled photons created with transformations (9)
can be used in the thought experiment from Fig. 1. If a
single photon |1〉n is incident on such a screen and a pair
of ground-state atoms with a transition resonant with the
photon energy are placed in the path of output modes m and
−m, unsuccessful detection of the photon projects the pair
of atoms onto a Bell state. This can immediately be used for
quantum computation and quantum communication protocols
in which Bell states are the crucial resource. The idea of
using undetected photons for imaging has been previously
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considered [40], showing the power of such spatially en-
tangled photons. Other entangled states with different coef-
ficients can be created by appropriately altering the mask
function M.

These results can easily be extended to multimode cases,
in which diffraction is similarly able to entangle multiple
output modes for separable inputs. Consider the same plane
wave impinging on a circular aperture of radius R. The mask
function is given by M(x) ∝ �(R2 − x · x), where � is the
Heaviside step function, yielding

φout(n′) ∝
∣∣∣∣n′

z

nz

∣∣∣∣ jinc
(
R|k|

√
(nx − n′

x )2 + (ny − n′
y)2

)
,

(10)
where jinc(x) = J1(x)/x and J1(x) is the Bessel function of
the first kind. A continuum of output plane-wave modes n′ are
coupled to by the initial plane wave, with amplitudes given by
(10):

â†
n →

∫
d�n′φout(n′)â†

n′ . (11)

Each photon incident in mode n is output in a superposition
over modes n′ with amplitudes given by φout(n′). Just as in
the Hong-Ou-Mandel effect, nonclassical states of photons
incident in this single mode will cause the output photons to
be modally entangled. Diffraction can thus be used to replace
beam splitters.

A modal decomposition that is more amenable to exper-
imental techniques involves Gaussian beams. As mentioned
previously, a Gaussian beam with nonclassical photon statis-
tics incident on a circular aperture yields an outgoing beam
with entanglement between Laguerre-Gaussian modes, which
has also been studied by Ref. [41]. This entanglement can
be harnessed by using the vast array of classical techniques
for controlling structured light [42], including recent results
for mode sorting without postselection [43–45]. The notion
of quantum-mechanical transformations at apertures has been
probed in Ref. [46], where it was shown that quantum entan-
glement can be preserved between photons passing through
a subwavelength circular aperture, without any significant
hindrance due to photon loss or other dissipative effects that
might stem from the system being open [47]. These results
are especially promising due to the general lack of noise in
photonic systems [7]. Diffraction by way of metamaterials
[48] has been proven capable of generating entanglement, and
some transformations using diffraction at double slits [49]
have been investigated. These show the viability of using
arbitrary mode transformations for achieving experimentally
useful quantum entanglement.

One may establish an arbitrary transformation Ein → Eout

by tailoring an appropriate impulse response function. Defin-
ing the two-dimensional Fourier transform in the z = 0 plane
by F , the convolution theorem applied to Eq. (1) yields

h(r − r0) = F−1

[F (Eout)

F (Ein)

]
. (12)

This can immediately be used to entangle a desired set of
orthogonal modes. For example, Eq. (12) can be readily
calculated for any desired transformation Em → ∑

n UmnEn

when the mode functions are Hermite-Gaussian modes; when

Em is the fundamental Gaussian mode, the function h(r − r0)
is a Gaussian function multiplied by a polynomial. A suitably
constructed function h(r − r0) will thus entangle the output
modes {En} for the correct nonclassical input states in mode
Em.

We next discuss the requirements for input states to yield
entangled output states, which have not been discussed in the
context of diffraction. Reference [34] studied the conditions
for a finite-dimensional multimode transformation on pure
states to leave the output state fully separable between all of
the modes:

|ψ1〉1⊗|ψ2〉2 ⊗ · · · ⊗ |ψN 〉N → |φ1〉1⊗|φ2〉2⊗ · · · ⊗ |φN 〉N .

(13)

One can express this requirement in the language of creation
operators for each mode by using the Fock-Bargmann repre-
sentation to identify an analytic function B(z1, . . . , zN ) on CN

with every N-mode pure state |�〉 [50–53]:

|�〉 = B(â†
1, . . . , â†

N )|vac〉. (14)

In this language, states that generate separable outputs corre-
spond to products of functions of creation operators for each
mode that transform under (3) to products of new functions of
creation operators for each mode:

B(z) = B1(z1) · · · BN (zn) → B̃1(z1) · · · B̃N (zN ), (15)

without any mixing between the modes such as B̃(zi, z j ) 
=
B̃i(zi )B̃ j (z j ). Such a transformation happens if and only if the
input state is a classical state, i.e., a multimode coherent state
with Bi(z) ∝ exp(αiz) for all i [53,54], or a particular type of
squeezed state with equal squeezing in each mode [Bi(z) ∝
exp(−λz2) for all i]. All other input states yield entangled
outputs.

While the mathematical results of Ref. [34] explain how to
generate entanglement between some output modes, they do
not specify which modes will be entangled. We thus extend
these results to give necessary and sufficient conditions for
generating entanglement between specific output modes. For
example, we can ask what input states yield output states that
remain separable between the first two modes, such as

|ψ1〉1 ⊗ |ψ2〉2 ⊗ · · · ⊗ |ψN 〉N → |φ1〉1 ⊗ |φ2〉2 ⊗ |
〉3,...,N .

(16)

The conditions are again related to coherent and squeezed
states, with some important generalizations.

We answer this question in the Appendix and summarize
the main results here. The key insight of Ref. [34] was
recognizing that separable modes have separable functions
B that are products of functions for each mode, and thus
inspecting whether the logarithm G(z) = ln B(z) separates
into sums of functions for each mode is equivalent to identify-
ing whether those modes are separable. Furthermore, unitary
transformations given by (3) effect the transformation z →
Uz, where the unitary matrix U has elements Umn. Comparing
the series expansions of G(z) and G(Uz) conclusively tells
us whether a given state will generate entanglement under a
given transformation.

A subset of output modes will be separable if and only
if the input modes that couple to them are associated with
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functions (see Appendix)

Bi(z) ∝ exp(αiz − λz2). (17)

Other input modes m that couple to none of the desired output
modes n, i.e., modes for which Umn = 0 for all of the specified
output modes n, have no restrictions on their functions Bm(z).

In the language of quantum states, when inspecting a
specific subset of output modes, coupled to by a set of input
modes {â1, . . . , âM}, the output modes are separable if and
only if the input state is of the form

|�〉 = D̂(α)Ŝ1(λ) · · · ŜM (λ)B(â†
M+1, . . . )|vac〉. (18)

Here, D̂(α) = ∏M
i=1 eαi â

†
i −α∗

i âi is the M-mode displacement op-
erator that creates multimode coherent states when acting on
the vacuum, Ŝi(λ) = eλ(â†

i
2−â2

i )/2 is the squeeze operator for the
ith mode (we take the squeezing strength λ to be real without
loss of generality by appropriately rephasing the input and
output modes), and B(â†

M+1, . . .) = B1(â†
M+1)B2(â†

M+2) . . . is
any separable function of operators for the remaining input
modes. Equation (18) is the necessary and sufficient condition
for an input state to generate no entanglement at a multimode
interferometric network, of which diffraction is our current
example.

By inspecting Eq. (18) we see that classicality of the input
modes 1 to M is the important consideration for whether
entanglement will be generated between a specific subset of
output modes. Classical states D̂(α)|vac〉 generate no entan-
glement, and most other states generate entanglement. The
only nonclassical states that generate separable outputs in the
particular n output modes need every input mode that couples
to these output modes to be squeezed by the same amount,
such as Ŝ1(λ) · · · ŜM (λ)|vac〉; all other separable input states
that are nonclassical will generate entangled outputs.

The conditions for generating separable outputs limit the
sets of input modes that can be unoccupied. An input state
that is squeezed in a few modes but unpopulated in other
modes that could couple to the specific output modes will
still generate entanglement in the output modes, because it has
Bi(z) ∝ exp(−λz2) for the first few modes but Bj (z) = 0 for
the others. For nonclassical states to generate separable out-
puts, even some of the input vacuum modes must be squeezed,
thus the conditions for a nonclassical state to generate no
entanglement are rather stringent. In contrast, if some of the
vacuum modes that couple to the specified output modes are
empty, only classical states will generate separable outputs.
Since the vacuum state of each mode is a coherent state,
coherent-state inputs suffice to generate separable outputs, as
expected from their classicality.

In the continuum case [see, e.g., (10) and (11)], an infinite
number of modes may couple to every subset of output modes.
This is seen by the continuum of nonzero coefficients in
the mode functions φ(n). All of these modes would need to
be squeezed by the same amount to achieve the particular
type of squeezed state that generates no entanglement at
beam splitters [as per (18)], which is infeasible in practice.
A nonclassical state in the continuum case would thus need
an infinite number of equally squeezed modes to generate
separable outputs.

In such a situation, the only feasible input states that
generate no entanglement are coherent states, because these
can have the other input modes in their vacuum states. All
practically feasible nonclassical input states, squeezed in a
finite number of modes, will generate entanglement. Along
the lines of the assertion by Refs. [55,56] that all nonclassical
states yield quantum entanglement, we thus posit that the only
physically realizable states that generate no entanglement in
the continuum case are coherent states,

|�〉 = D̂(α)|vac〉. (19)

All other input states will yield entangled outputs, even from
setups as simple as diffraction.

The discussion so far has focused solely on pure quantum
states. In the context of mixed states, there exist another set of
two-mode nonclassical states that generate no entanglement
when undergoing the mode transformations (3). This set com-
prises the SU(2)-unpolarized states, formed from arbitrary
incoherent sums of projections onto different photon-number
subspaces, which can be both nonclassical and non-Gaussian
[35]. In the case of N > 2 modes, only some such sums
of projectors are separable, of which the set of thermally
occupied modes at identical temperatures

ρ(T ) =
∞∑

m,n,...p=0

e− m+n+···+p
kBT |m〉〈m| ⊗ |n〉〈n| ⊗ · · · ⊗ |p〉〈p|

(20)

is the only known example. As in Ref. [35], arbitrary multi-
mode displacements combined with equal multimode squeez-
ing of this state will also produce states that generate no
entanglement. The continuum case again requires that these
properties hold for an infinite number of modes. It may be pos-
sible for this continuous set of modes to be thermally occupied
at similar temperatures (the state will generate entanglement
if the temperatures are not identical). However, a combination
of thermal states is classical, so the only known nonclassical
states in N > 2 modes that generate no entanglement are
those requiring the squeezing conditions from above, which
we have already discussed as being prohibitive. This strongly
suggests that all experimentally relevant nonclassical states
will generate entanglement via diffraction in both the pure-
and mixed-state scenarios.

The photons output from this type of protocol display true
quantum entanglement. The spatial modes occupied at the
output are distinguishable, allowing for nonlocal interactions
between the modes. Although our initial examples focused
on plane-wave modes, our treatment can be extended to any
set of orthogonal modes using (12), including those carrying
orbital angular momentum (OAM) such as Laguerre-Gaussian
modes. OAM can further be converted to spin angular mo-
mentum by using q-plates [57,58] and other straightforward
systems [59], creating nonlocal polarization entanglement
between photons.

A final note regarding the types of entanglement that can
be created by passive linear optics is warranted. Generalized
beam splitters can enact arbitrary unitary transformations (3)
on the input creation operators, which is not equivalent to
arbitrary unitary operators acting on the quantum states; these
photon-number-conserving operators are restricted to SU(N )
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transformations. The entangled states that can be created with
passive linear optics alone are thus a subset of all entangled
states (as shown explicitly in Ref. [60]). In the case of a
two-mode transformation, for example, the output states from
an arbitrary N-photon separable input state |ψin〉 = |m〉a ⊗
|N − m〉b are parametrized by the four parameters m, n ≡
N − m, θ , and φ:

|ψout〉 ∝
m∑

k=0

n∑
l=0

(
m

k

)(
n

l

)√
(n + k − l )!(m + l − k)!

× cosk+l θ

2
sinm+n−k−l θ

2
ei(m−n+l−k)(−1)n−l

× |n + k − l〉a ⊗ |m + l − k〉b; (21)

the “NOON” states |ψout〉 ∝ |N〉a ⊗ |0〉b + |0〉a ⊗ |N〉b are
only included in this set for N = 2 total photons. The gen-
eration of multiphoton GHZ-type states, as another example,
cannot be achieved in this way. Extra processing steps could
be used to convert the entangled states generated by diffrac-
tion to other desired entangled states.

We have shown that entanglement can be generated by
using the impulse response functions of simple optical de-
vices. Since optical devices act like beam splitters by unitarily
transforming electromagnetic field modes, they can be used
in other applications requiring interference of various modes
of light, ranging from interaction-free measurement to boson
sampling. Diffracting screens are but examples of systems
that can be tailored for achieving arbitrary beam-splitter-like
transformations; similar results are achievable by using the
entirety of Fourier optics. This remarkably straightforward
technique for controlling effective photon-photon interactions
can be immediately implemented in the vast array of quantum
optical experiments that utilize beam splitters.

Due to the challenge of characterizing mixed-state en-
tanglement, our discussion of the necessary and sufficient
conditions for entanglement generation was mainly restricted
to pure states. Some progress has been made regarding the
conditions for bipartite mixed states to generate entanglement
[35]; we hope to extend this to the multimode case in the
near future. We again speculate that all physically realizable
nonclassical states impinging on a diffracting screen will lead
to entangled output modes, even when the inputs are mixed
states.

This work was supported by the NSERC Discovery Award
Fund No. 480483 and by the Alexander Graham Bell Schol-
arship No. 504825.

APPENDIX

Here we show the necessary and sufficient conditions for
a finite-dimensional unitary transformation of a separable N-
mode input state to yield an N-mode output state in which a
particular subset of output modes is separable. The condition
is that all of the input modes that couple to the particular
output subset must be squeezed coherent states, with equal
magnitudes of squeezing in these input modes. This extends
the results of Ref. [34], which showed that equal squeezing in

every input mode is a necessary and sufficient condition for
all output modes to be fully separable.

Following Ref. [34], we consider connected unitary trans-
formations âi → ∑N

k=1 âkUk j for orthogonal modes â j and
unitary matrix U . Connectivity dictates that the unitary trans-
formation cannot be decomposed into a set of disconnected
transformations on the subset modes, implying that |Uk j | <

1 ∀ k, j. For our general transformations, our unitary matrices
are sizable; one must consider all of the output modes coupled
to by the specific input modes, all of the other input modes
that can lead to those output modes, the other output modes
coupled to by the extra input modes, and so on. Having equal
squeezing in all N of these input modes is a large restriction on
the separable inputs that will generate fully separable outputs;
we investigate how this condition is relaxed when only a
particular subset of output modes is to remain separable.

Using the Fock-Bargmann (or Segal-Bargmann) represen-
tation, we can represent every N-mode pure state by an
analytic function on CN [50–53]:

|�〉 = B(â†
1, . . . , â†

N )|vac〉,

B(z1, . . . , zN ) =
∑

n1,...,nN

〈n1, . . . , nN |�〉√
n1! · · · nN !

zn1
1 · · · znN

N .
(A1)

The unitary transformation effects Bout(z) = Bin(Uz) for z ≡
(z1, . . . , zN ). To gain insight into the separability of the input
and output states, we consider the function G(z) = ln[B(z)],
which for a pure product input state takes the form

Gin(z) =
N∑

k=1

Gk (zk ). (A2)

For a particular n output modes to remain separable, we
require that

Gout(z) =
n∑

k=1

G̃k (zk ) + G̃(zn+1, . . . , zN ). (A3)

We will analyze the conditions for this separability to hold,
given the relation Gout(z) = Gin(Uz).

We start by taking the Maclaurin expansion of the input
and output functions:

Gin =
∞∑

d=0

N∑
j=1

λ
(d )
j zd

j (A4)

for input functions Gj (z) = ∑∞
d=0 λ

(d )
j zd and, similarly,

Gout(z) =
⎛
⎝ ∞∑

d=0

n∑
j=1

ξ
(d )
j zd

j

⎞
⎠ + G̃(zn+1, . . . , zN )

=
∞∑

d=0

N∑
j=1

λ
(d )
j

(
N∑

k=1

Ujkzk

)d

. (A5)

This Maclaurin expansion can be made valid, even when
Bin(0) = 0, by appropriately displacing the vacuum and leav-
ing entanglement properties unchanged [34].

The above equations must match order by order in d .
We are looking for conditions on the input state expansion

042332-5



AARON Z. GOLDBERG AND DANIEL F. V. JAMES PHYSICAL REVIEW A 100, 042332 (2019)

coefficients {λ(d )
k } that will generate output states with no

entanglement between modes 1 through n.
The d = 0 conditions can always be satisfied for any

zeroth-order input coefficients λ
(0)
k :

N∑
k=1

λ
(0)
k =

n∑
k=1

ξ
(0)
k + G̃(0, . . . , 0). (A6)

The d = 1 coefficients also always satisfy the separability
requirements. They yield the relations

N∑
j=1

λ
(1)
j Ujk = ξ

(1)
k , k ∈ {1, . . . , n}, (A7)

which simply specify the particular output coherent states in
modes 1 through n that would be generated by input coherent
states.

To create output states that are separable between modes 1
through n, the second-order conditions require that no terms of
the form zkzk′ , k′ 
= k be created, where again k ∈ {1, . . . , n}.
This yields the conditions

N∑
j=1

λ
(2)
j UjkUjk′ = ξ

(2)
k δk,k′ ∀ k ∈ {1, . . . , n} ∀ k′. (A8)

Then, rewriting the right-hand side and using the unitarity
condition δk,k′ = ∑N

j=1 U ∗
jkUjk′ , we can rearrange to find the

conditions

N∑
j=1

c jkUjk′ = 0 ∀ k ∈ {1, . . . , n} ∀ k′,

c jk ≡ (
λ

(2)
j Ujk − ξ

(2)
k U ∗

jk

)
. (A9)

This implies that vectors formed by ck = (c1k, . . . , cNk ) are
orthogonal to all N rows of the unitary matrix U , and so the
former must be zero vectors; i.e.,

λ
(2)
j Ujk = ξ

(2)
k U ∗

jk, k ∈ {1, . . . , n}, (A10)

which immediately yields our desired result. For input modes
labeled by j that do not connect to output modes 1 through
n (Ujk = 0 for k ∈ {1, . . . , n}), any squeezing λ

(2)
j can still

generate separable output modes 1 through n. For input modes
that do couple to output modes 1 through n,∣∣λ(2)

j

∣∣ = ∣∣ξ (2)
k

∣∣, ∀ j ∀ k ∈ {1, . . . , n}, (A11)

implying that all of these input modes must be squeezed by
the same amount.

Satisfying the d > 2 conditions

The order d > 2 equations are much more difficult to
satisfy. For generating fully separable output states, one can
use matrix norms to show that the d > 2 equations can never
be satisfied, thus requiring λ

(d )
k = 0 for d > 2 [34]. We next

show that the relaxed condition of n-mode separability at the
output requires that only the specific input modes â j that
couple to the subset of n output modes must have λ

(d )
j = 0

for all d > 2.
The conditions for separability of output modes 1 through

n are ( j1 ∈ {1, . . . , n})

ξ
(d )
j1

δ j1, j2 · · · δ j1, jd =
N∑

k=1

λ
(d )
k Uk j1 · · ·Uk jd . (A12)

The same orthogonality condition as before yields

ξ
(d )
j1

U ∗
k j1δ j1, j3 · · · δ j1, jd = λ

(d )
k Uk j1Uk j3 · · ·Uk jd , (A13)

where we have replaced δ j1, j2 , rearranged, and set every
coefficient of Uk j2 to zero.

If there is no higher-order input term, i.e., λ
(d )
k = 0, then

(A13) is automatically solved. If input mode k couples to
none of the output modes 1 through n, then Uk j1 = 0 for
j1 ∈ {1, . . . , n}, and (A13) is again solved. However, when
neither of the above conditions holds, i.e., when λ

(d )
k 
= 0 and

Uk j1 
= 0, (A13) cannot be solved. For example, when all of
the indices j4, . . . , jd are equal to j3, our equation can only
be solved by Uk j3 = 0 ∀ j3 
= j1. Since there is more than
one possible value for j1 (entanglement is not a property of
single-mode states), this condition implies Uk j3 = 0 for all
values of j3. However, no row of U can be identically zero, so
our assumptions λ

(d )
k 
= 0 and Uk j1 
= 0 cannot both hold. We

thus find that the only way to satisfy (A13) is by forbidding
d > 2 terms for input modes that are connected to output
modes 1 through n.

We have thus shown that the necessary and sufficient
conditions for a fully separable N-mode input state to generate
no entanglement between a particular n-mode subset of output
modes is that all of the input modes coupling to those output
modes are squeezed coherent states with equal squeezing.
This includes all classical (coherent) states and some nonclas-
sical (squeezed) states. All other nonclassical pure-state inputs
will generate entanglement in these output modes.
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