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Entangling two microwave modes via optomechanics
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We in theory proposed a hybrid system consisting of a mechanical resonator, an optical Fabry-Pérot cavity,
and two superconducting microwave circuits to generate stationary continuous-variable quantum entanglement
between two microwave modes. We show that the hybrid system can also achieve quantum entanglement of
other bipartite subsystems in experimentally accessible parameter regimes, which has the potential to be useful
in quantum information processing and quantum illumination radar.
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I. INTRODUCTION

As a particular resource of the quantum world, entan-
glement plays an important role in fundamental quantum
mechanics and high-speed development of quantum tech-
nologies, such as quantum internet, quantum communication,
quantum sensing, and quantum computers [1–5]. The real-
ization of the above techniques must rely on the generation
and distribution of entanglement between different quantum
systems, including atoms, spins, photons, ions, phonons, and
superconducting circuits [6–12].

Owing to the strong coupling with an external microwave
field, superconducting circuits can control, store, and read the
quantum information robustly with good scalability, which
makes it a promising candidate for the physical implementa-
tion of quantum computers. Moreover, entangled microwaves
can be used in quantum-enhanced radar schemes, namely,
quantum illumination radar protocols, which utilize quantum
resources to detect targets with low reflectivity hidden in a
strong thermal noise bath. In the case where quantum entan-
glement is destroyed, its detection ability can still maintain
quantum superiority, namely, exceeding the classical counter-
part protocols [13–15]. Nowadays, realization of the prototype
quantum radar has begun to land the ground in the microwave
band, and it shows robustness to the ambient background
noise and loss, which means it may have broad application
prospects [16,17]. The above series of requirements and oth-
ers make the generation of entangled microwaves and the
distribution of their entanglement become research hotspots,
and various theoretical schemes and physical experiments to
realize entanglement between microwaves have emerged one
after another in recent years [18–21].

In this work, we propose a theoretical scheme to achieve
the entanglement of two microwave modes mediated by
optomechanics. This hybrid quantum system consists of a
mechanical resonator, two superconducting circuits, and an
Fabry-Pérot optical cavity. It could be realized with the
help of a lumped-element superconducting circuit, with a
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freestanding mechanical membrane acting as drum-head ca-
pacitor which is capacitively coupled to two microwave cav-
ities simultaneously (see Fig. 1). The drum-head capacitor
could be optically coated to form a Fabry-Pérot optical cavity
with the other side of the micromirror. Therefore, the vibrating
drum-head mechanical membrane could capacitively interface
with two microwave cavities at the same time while the
optical intracavity mode is coupled with the drum head by the
radiation pressure.

This quadripartite optoelectromechanical system has the
potential to be used in quantum computer and quantum
communication networks and quantum illumination radar
systems. The optical intracavity mode is not susceptible to
thermal noise, so it could be used as a flying qubit to interface
with other distant nodes via fibers. The quantum entangle-
ment between microwaves, light, and microwave could be
distributed to other network nodes through the entanglement
swapping protocol [22–25]. In addition, this quadripartite
system can be fabricated on chips [26–28], which proposes
a new approach to realize an integrated microwave source for
quantum illumination radar systems.

This paper is organized as follows. Section II shows the
basic physical model. The quantum Langevin equations with
their linearization for describing the dynamics of the hybrid
system are discussed in Sec. III. In Sec. IV we will derive the
correlated matrix of the quantum fluctuation of the system to
obtain the logarithmic negativity, which is considered as the
entanglement measure in this work. In Sec. V we study the
effects of different parameters on the quantum entanglement
between microwave modes and also analyze the entanglement
between other bipartite subsystems, such as light-microwave
subsystems and so on, while Sec. VI is for the Conclusion.

II. MODEL

The proposed scheme is depicted in Fig. 1. On the one
hand, the mechanical resonator with resonate frequency ωm

is capacitively coupled to two superconducting circuits si-
multaneously, with the two superconducting circuits with
resonate frequency ωw1, ωw2, respectively. On the other hand,
the mechanical resonator is coupled to a Fabry-Pérot optical
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FIG. 1. Simple schematic diagram of the hybrid system.

cavity with resonate frequency ωc. The optical and microwave
cavities are driven at the frequencies ω0c = ωc − �0c, ω0w1 =
ωw1 − �0w1, and ω0w2 = ωw2 − �0w2, respectively. The ef-
fective Hamiltonian for the quadripartite system is [29–31]

H = p̂2
x

2m
+ mω2

mx̂2

2
+ �̂2

1

2L1
+ Q̂2

1

2[C1 + Cd1(x)]
− e1(t )Q̂1

+ �̂2
2

2L2
+ Q̂2

2

2[C2 + Cd2(x)]
− e2(t )Q̂2 + h̄ωcâ†â

− h̄G0câ†âx̂ + ih̄Ec(â†e−iω0ct − âeiω0ct ), (1)

where (x̂, p̂x ) are the canonical position and momentum of a
mechanical resonator, (�̂ j, Q̂ j ) are the canonical coordinates
for the two microwave cavities ( j = 1, 2 is a notation for the
two superconducting microwave circuits), indicating the flux
through equivalent inductors Lj and the charge on equivalent
capacitors Cj , respectively. (â, â†) is the annihilation and
creation operator of the optical cavity mode, which satis-
fies [â, â†] = 1, and Ec = √

2Pcκc//h̄ω0c is related to the
laser input, where Pc is the power of the input laser and
κc describes the damping rate of the optical cavity. G0c =
(ωc/l )

√
h̄/mωm is the coupling between optical cavity and

mechanical resonator, with l the length of the optical Fabry-
Pérot cavity and m the effective mass of the mechanical mode.
The coherent driving of the superconducting microwave cav-
ities with damping rates κw j is given by the electric poten-
tial e j (t ) = −i

√
2h̄ωw jL jEw j (eiω0w j t − e−iω0w j t ), where Ew j =√

2Pw jκw j/h̄ω0w j . The reason for the coupling between the
mechanical resonator and microwave cavities is that the ca-
pacities are functions of the resonator displacement, namely,
Cdj (x). We expand these functions around their equilibrium
positions d j for two superconducting microwave cavities,
and then we have Cdj (x) = Cdj[1 − x j (t )/d j]. Expanding the
capacitive energy as a Taylor series, we find to first order

Q̂2
j

2[Cj + Cdj (x j )]
= Q̂2

j

2C� j
− μ j

2d jC� j
x̂ j (t )Q̂2

j , (2)

where C� j = Cj + Cdj and μ j = Cdj/C� j . In this manner, the
Hamiltonian of Eq. (1) can be reshaped in the terms of the
annihilation and creation operators of the superconducting mi-
crowave cavities’ field (b̂ j, b̂†

j ) and the dimensionless position

and momentum operators of the mechanical resonator (q̂, p̂),
which satisfy [b̂ j, b̂†

j] = 1 and [q̂, p̂] = i, as

H = h̄ωcâ†â + h̄ωw1b̂†
1b̂1 + h̄ωw2b̂†

2b̂2 + h̄ωm

2
( p̂2 + q̂2)

− h̄G0w1

2
q̂(b̂1 + b̂†

1)2 − h̄G0w2

2
q̂(b̂2 + b̂†

2)2

− h̄G0cq̂â†â − ih̄Ew1(eiω0w1t − e−iω0w1t )(b̂1 + b̂†
1)

− ih̄Ew2(eiω0w2t − e−iω0w2t )(b̂2 + b̂†
2)

+ ih̄Ec(â†e−iω0ct − âeiω0ct ), (3)

where

b̂ j =
√

ωw jL j

2h̄
Q̂ j + i√

2h̄ωw jL j
�̂ j, (4)

q̂ =
√

mωm

h̄
x̂, p̂ = p̂x√

h̄mωm
, (5)

G0w j = μ jωw j

2d j

√
h̄

mωm
. (6)

Typically, ωm � ωc, ωw j , since the mechanical resonant fre-
quency is approximately 10 MHz while the optical and mi-
crowave cavity resonant frequency are the order of 10 GHz
and 100 THz, respectively. Therefore, it is convenient to move
into the interaction picture with respect to H0 = h̄ω0câ†â +
h̄ω0w1b̂†

1b̂1 + h̄ω0w2b̂†
2b̂2, and neglect fast oscillating terms at

±2ω0c,±2ω0w j . In this case, the corresponding Hamiltonian
of the system becomes

H = h̄�0câ†â + h̄�0w1b̂†
1b̂1 + h̄�0w2b̂†

2b̂2 + h̄ωm

2
( p̂2 + q̂2)

− h̄G0w1q̂b̂†
1b̂1 − h̄G0w2q̂b̂†

2b̂2 − h̄G0cq̂â†â

− ih̄Ew1(b̂1 − b̂†
1) − ih̄Ew2(b̂2 − b̂†

2) + ih̄Ec(â† − â).

(7)

III. QUANTUM LANGEVIN EQUATIONS AND THEIR
LINEARIZATION

However, the system would inevitably interact with the sur-
rounding environment, bringing damping and noise to affect
each mode. We can describe them with the help of the quan-
tum Langevin equation where the Heisenberg equations for
the system operators is revised by inserting the corresponding
damping and noise terms. In this way, the nonlinear quantum
Langevin equations of the system are given by

˙̂q = ωm p̂, (8)

˙̂p = −ωmq̂ − κm p̂ + G0câ†â + G0w1b̂†
1b̂1 + G0w2b̂†

2b̂2 + ξ,

(9)

˙̂a = −(i�0c + κc)â + iG0cq̂â + Ec +
√

2κcâin, (10)

˙̂b1 = −(i�0w1 + κw1)b̂1 + iG0w1q̂b̂1 + Ew1 +
√

2κw1b̂in,1,

(11)

˙̂b2 = −(i�0w2 + κw2)b̂2 + iG0w2q̂b̂2 + Ew2 +
√

2κw2b̂in,2,

(12)
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where âin and b̂in, j are the input noise terms of optical and
microwave modes, respectively, which could be considered
as zero-mean Gaussian processes, satisfying the following
correlation [32]:

〈âin(t )â†
in(t ′)〉 = [N (ωc) + 1]δ(t − t ′), (13)

〈â†
in(t )âin(t ′)〉 = N (ωc)δ(t − t ′), (14)

〈b̂in, j (t )b̂†
in, j (t

′)〉 = [N (ωw j ) + 1]δ(t − t ′), (15)

〈b̂†
in, j (t )b̂in, j (t

′)〉 = N (ωw j )δ(t − t ′), (16)

in which N (ωc) = 1/[exp(h̄ωc/kBT ) − 1] and N (ωw j ) =
1/[exp(h̄ωw j/kBT ) − 1] are the mean thermal excitation num-
bers of optical and microwave fields, respectively, where
kB is the Boltzmann constant and T is the temperature of
the surrounding environment. Since h̄ωc/kBT � 1 at optical
frequencies, we can safely assume that N (ωc) → 0, while
N (ωw j ) cannot be ignored even at quite low temperatures.
What is more, in Eq. (9), κm is the mechanical damping
rate and ξ (t ) is the quantum Brownian noise acting on the
mechanical resonator, with the correlation function [33]

〈ξ (t )ξ (t ′)〉 = κm

ωm

∫
dω

2π
e−iω(t−t ′ )ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
.

(17)

ξ (t ) is not δ correlated obviously and therefore does not
describe a Markovian process. But the mechanical quan-
tum effects are achieved only for a high mechanical qual-
ity factor (Qm = ωm/κm � 1); in this limit, ξ (t ) becomes
δ correlated [34], i.e., 〈ξ (t )ξ (t ′) + ξ (t ′)ξ (t )〉/2 ≈ κm(2n̄m +
1)δ(t − t ′), where n̄m = 1/[exp(h̄ωm/kBT ) − 1] is the mean
thermal excitation number of the mechanical resonator, like
the microwave and optical counterparts mentioned above.

In order to achieve stationary and robust entanglement
in continuous-variable systems, we would like to choose a
working point where the cavities are intensely driven. In
this way, the intracavity fields are strong enough to do the
following approximation: â = αs + δâ, b̂ j = β js + δb̂ j , p̂ =
ps + δ p̂, and q̂ = qs + δq̂, in which αs, β js, ps, qs and δâ, δb̂ j ,
δ p̂, δq̂ are the fixed semiclassical points and their quantum
fluctuation around the semiclassical points of quadripartite
system, respectively. Then we insert the above approximation
into Eqs. (8)–(12) and let the derivatives be zero, getting the
fixed points

ps = 0, (18)

qs = G0c|αs|2 + G0w1|β1s|2 + G0w2|β2s|2
ωm

, (19)

αs = Ec

κc + i�c
, (20)

β js = Ew j

κw j + i�w j
, (21)

where �c = �0c − G0cqs and �w j = �0w j − G0w jqs are the
effective detunings of the optical and microwaves fields, re-
spectively. As mentioned above, the optical and microwave

intracavity fields are intensely driven, namely, |αs| � 1 and
|βs j | � 1; thus, we can securely linearized Eqs. (8)–(12)
around the fixed semiclassical points and get the following
linear quantum Langevin equations for the quantum fluctua-
tions of the hybrid system:

δ ˙̂q = ωmδ p̂, (22)

δ ˙̂p = −ωmδq̂ − κmδ p̂ + G0cαs(δâ† + δâ)

+ G0w1β1s(δb̂†
1 + δb̂1) + G0w2β2s(δb̂†

2 + δb̂2) + ξ,

(23)

δ ˙̂a = −(κc + i�c)δâ + iG0cαsδq̂ +
√

2κcâin, (24)

δ ˙̂b1 = −(κw1 + i�w1)δb̂1 + iG0w1β1sδq̂ +
√

2κw1b̂in,1,

(25)

δ ˙̂b2 = −(κw2 + i�w2)δb̂2 + iG0w2β2sδq̂ +
√

2κw2b̂in,2,

(26)

where we have chosen the appropriate reference phases for
the three input optical and microwaves fields so that αs and
β js can be taken as real and positive.

IV. CORRELATED MATRIX OF QUANTUM
FLUCTUATIONS

The continuous-variable entanglement between the two
microwave cavities is generated by the microwave cavi-
ties’ interaction mediated by the optomechanical bipartite
system, in other words, the quantum correlations between
the quadratures of three intracavity fields and the position
and momentum of the mechanical resonator. Based on this
reason, it is favorable to introduce the fluctuation quadra-
tures δX̂c = (δâ + δâ†)/

√
2 and δŶc = (δâ − δâ†)/i

√
2 for

the optical field, and δX̂w j = (δb̂ j + δb̂†
j )/

√
2 and δŶw j =

(δb̂ j − δb̂†
j )/i

√
2 for the two microwave fields. The corre-

sponding input noise operators are X̂c,in = (δâin + δâ†
in )/

√
2,

Ŷc,in = (δâin − δâ†
in )/i

√
2, X̂w j,in = (δb̂in, j + δb̂†

in, j )/
√

2, and

Ŷw j,in = (δb̂in, j − δb̂†
in, j )/i

√
2. In this way, from Eqs. (22)–

(26), the linearized quantum Langevin equations become

δ ˙̂q = ωmδ p̂, (27)

δ ˙̂p = −ωmδq̂ − κmδ p̂ + GcδX̂c + Gw1δX̂w1 + Gw2δX̂w2 + ξ,

(28)

δ ˙̂Xc = −κcδX̂c + �cδŶc +
√

2κcX̂c,in, (29)

δ ˙̂Yc = −κcδŶc − �cδX̂c + Gcδq̂ +
√

2κcŶc,in, (30)

δ ˙̂Xw1 = −κw1δX̂w1 + �w1δŶw1 +
√

2κw1X̂w1,in, (31)

δ ˙̂Yw1 = −κw1δŶw1 − �w1δX̂w1 + Gw1δq̂ +
√

2κw1Ŷw1,in,

(32)
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δ ˙̂Xw2 = −κw2δX̂w2 + �w2δŶw2 +
√

2κw2X̂w2,in, (33)

δ ˙̂Yw2 = −κw2δŶw2 − �w2δX̂w2 + Gw2δq̂ +
√

2κw2Ŷw2,in,

(34)

where

Gw j =
√

2G0w jβs j = μ jωw j

d j

√
Pw jκw j

mωmω0w j
(
κ2

w j + �2
w j

) ,

(35)

Gc =
√

2G0cαs = 2ωc

L

√
Pcκc

mωmω0c(κ2
c + �2

c )
, (36)

are the effective the electromechanical and optomechanical
couplings, respectively. Equations (27)–(34) can be rewritten
as a matrix form

v̇(t ) = Av(t ) + n(t ), (37)

in which v(t )=[δq̂(t ), δ p̂(t ), δX̂c(t ), δŶc(t ), δX̂w1(t ), δŶw1(t ),
δX̂w2(t ), δŶw2(t )]T (the notation T means matrix trans-
port), n(t ) = (0, ξ (t ),

√
2κcδX̂c,in,

√
2κcδŶc,in,

√
2κw1δX̂w1,in,√

2κw1δŶw1,in,
√

2κw2δX̂w2,in,
√

2κw2δŶw2,in )T , and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0 0 0

−ωm −κm Gc 0 Gw1 0 Gw2 0

0 0 −κc �c 0 0 0 0

Gc 0 −�c −κc 0 0 0 0

0 0 0 0 −κw1 �w1 0 0

Gw1 0 0 0 −�w1 −κw1 0 0

0 0 0 0 0 0 −κw2 �w2

Gw2 0 0 0 0 0 −�w2 −κw2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

and the solution of Eq. (37) is

v(t ) = M(t )v(0) +
∫ t

0
dsM(s)n(s), (39)

where M(t ) = exp(At ).
In order to test the stability of the hybrid system, we use

the Routh-Hurwitz criterion [35,36]. If the real part of all
eigenvalues of matrix A is negative, then we can assume that
the system is stable and will approach a steady state. However,
the explicit expression is too cumbersome, so we omit it here.
With no special statement (Fig. 2 has), the parameters used
in the numerical simulation for logarithmic negativity, i.e.,
entanglement, of the hybrid system will satisfy the Routh-
Hurwitz criterion, that is, our numerical simulation is carried
out under the condition that the system is always stable.

As we know, the quantum noise terms in Eq. (37) are
zero-mean Gaussian and the dynamics are linear so that the
steady state of the quantum fluctuations is a continuous-
variable quadripartite Gaussian state, entirely characterized
by the 8 × 8 correlation matrix. This matrix has components
Vi j = 〈ui(∞)u j (∞) + u j (∞)ui(∞)〉/2. When the system is
stale, by using Eq. (39) we can get

Vi j =
∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds′M(s)ikM(s′) jl�(s − s′)kl , (40)

in which �kl (s − s′) = 〈nk (s)nl (s′) + nl (s′)nk (s)〉/2 is
the matrix of stationary noise correlation functions. Here
�kl (s − s′) = Dklδ(s − s′), where D = diag[0, κm(2n̄m + 1),
κc, κc, κw1(2N (ωw1) + 1), κw1(2N (ωw1)+1), κw2(2N (ωw2)+
1), κw2(2N (ωw2)+1)] is an eight-dimensional diagonal

matrix; in this way, Eq. (40) becomes

V =
∫ ∞

0
dsM(s)DMT (s). (41)

Under the condition that the system is stable M(∞) = 0, by
Lyapunov’s first theorem [33], Eq. (41) is equivalent to

AV + V AT = −D. (42)

By solving Eq. (42), the 8 × 8 matrix V can be obtained. Then
we can calculate the entanglement of the interested bipartite
systems, like two superconducting microwave circuits, light-
microwave subsystems, and so on, by tracing out the uninter-
ested rows and columns of V . After this kind of operation, the
induced correlation matrix of the interested bipartite system is
a 4 × 4 matrix as follows:

Vbi =
(

V1 V3

V T
3 V2

)
. (43)

Furthermore, we use the logarithmic negativity to quantify the
entanglement of the interested bipartite system [37,38]

EN = max[0,− ln 2η−], (44)

where η− ≡ 2−1/2[�(Vbi) −
√

�(Vbi )2 − 4 det Vbi]1/2 and
�(Vbi ) ≡ detV1+detV2 − 2detV3. The corresponding
numerical simulation is discussed in the next section.

V. RESULTS

For the purpose of the hybrid system described herein,
which can be realized by existing experimental approaches,
the following simulation parameters are based on Refs.
[39,40] and their feasible extension.
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FIG. 2. Entanglement between two microwaves with different
frequency. (Full black line: ωw1/2π = 9 GHz and ωw2/2π = 3 GHz.
Dashed red line: ωw1/2π = 30 GHz and ωw2/2π = 3 GHz. Dotted
blue line: ωw1/2π = 30 GHz and ωw2/2π = 9 GHz.) The surround-
ing temperature T is fixed at 15 mK, the optical detuning �c =
ωm, while the other parameters are λ0c = 1550 nm, κc = 0.08 ωm,
Pc = 30 mW, m = 10 ng, ωm/2π = 10 MHz, κw1 = κw2 = 0.02 ωm,
Pw1 = Pw2 = 30 mW, d1 = d2 = 100 nm, μ1 = μ2 = 0.008, and
�w1 = −�w2 ≡ �w . (a) The microwave detuning range is from
−0.8 to 0 �w/ωm, (b) The microwave detuning range is from 0.1
to 0.8 �w/ωm.

The simulation parameters are listed as follows. For the
optical part, the driven laser wavelength λ0c = 1550 nm, the
damping rate κc = 0.08 ωm, the driving power Pc = 30 mW,
and the length of the cavity L = 1 mm. For the mechanical
part, the resonator mass m = 10 ng, the resonate frequency
ωm/2π = 10 MHz, and its quality factor Q = 5 × 104. For
the microwave circuits part, we assume their damping rates
κw1 = κw2 = 0.02 ωm, the input power Pw1 = Pw2 = 30 mW,
the parameter related to the coupling d1 = d2 = 100 nm,
and μ1 = μ2 = 0.008. The frequency of the two microwave
circuits and the optical detuning �c will show up in the
bottom of the figures as well as the surrounding temperature.
What is more, the microwave detunings are set to be opposite
�w1 = −�w2 ≡ �w.

Figure 2 shows the entanglement between two different fre-
quency microwave modes. We chose three pairs of microwave
frequencies for simulation, 9–3 GHz, 30–3 GHz, 30–9 GHz.

FIG. 3. Entanglement between two microwaves with the same
frequency. (Full black line: ωw1/2π = ωw2/2π = 3 GHz. Dashed
red line: ωw1/2π = ωw2/2π = 9 GHz. Dotted dash blue line:
ωw1/2π = ωw2/2π = 30 GHz. Dotted purple line: ωw1/2π =
ωw2/2π = 300 GHz.) The other parameters are the same as Fig. 2.

The biggest feature in Fig. 2 is that in an interval where
the microwave detuning is larger than zero, the entanglement
described by the three curves is abruptly going to zero, and for
the beauty of the drawing, we blocked this part and divided
it into two parts, respectively showing the characteristics of
entanglement in the case where the microwave detuning is
positive and negative. This is because the system does not
satisfy the Routh-Hurwitz criterion in this interval, but the
stationary and robust entanglement we discuss in this work
is under the condition that the system is stable. If the system
is unstable, the stationary and robust entanglement cannot be
achieved. What is more, the width of these intervals varies
with the frequencies of the entangled microwave pair, and the
maximum entanglement is obtained on either side of the inter-
val. There is a method to keep away from the adverse effects
of the system instability caused by microwave tuning on the
system; we chose the two microwave resonant frequencies to
be the same. As we can see below, this can avoid the unstable
situation and enable the system to be wideband tuned to adapt
to a wider range of application scenarios.

The reason why we set the frequency of the two microwave
cavities to be the same to avoid the instability of the system
can be explained in mathematical form. As we can see above,
the parameters of the two microwave cavities are set to be
the same except for the resonant frequencies, and the two
microwave detunings are the same value except for a minus
sign. If two microwave resonant frequencies are same, the
two microwave circuits behave like twin circuits because the
structure parameters of two microwave circuits are completely
the same. When we red-detune one microwave circuit, the
other one is blue detuned and vice versa, which means under
this condition the entanglement is an even function of the
detuning, namely, the entanglement on the red sideband is
symmetrical to the one on the blue sideband. With this idea,
we chose the microwave frequencies to be the same and show
their entanglement properties in Fig. 3.

As shown in Fig. 3, each curve is symmetrical based on
the line of zero detuning, and the higher the frequency of the
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FIG. 4. Entanglement between two microwaves with the same
frequency with different d . (Full black line: d1 = d2 = 20 nm. Dotted
dash blue line: d1 = d2 = 100 nm. Dashed red line: d1 = d2 =
500 nm.) The microwave frequency ωw1/2π = ωw2/2π = 9 GHz.
The other parameters are the same as Fig. 2.

selected microwave pair, the larger the entanglement between
the two microwave modes, and the maximum entanglement
is obtained near the zero detuning. At this time, the system
instability will not occur during the microwave broadband
tuning process, that is, the Routh-Hurwitz criterion is always
satisfied.

Next, we study the effect of architecture parameters of
the hybrid system on microwave entanglement. In Fig. 4, the
smaller d1(d1=d2) contributes the better entanglement at the
same microwave frequency ωw1/2π = ωw2/2π = 9 GHz.
This could be explained by Eq. (35). The two microwave cir-
cuits are connected by the interaction with the optomechanical
subsystem, and the electromechanical couplings Gw j increase
with the d j decreases. When we increase the coupling Gw j

of two microwave circuits to the optomechanical subsystem,
it also indirectly enhances the coupling between the two
microwave circuits, which enlarges the entanglement between
them.

Figure 5 shows the entanglement of two microwave cav-
ities versus the surrounding temperature at three pairs of
different microwave frequencies: 3, 30, and 300 GHz, and the
criterion of choosing the microwave detunings is to maximize
entanglement. As Fig. 5 depicts, the higher the frequency
of two microwave cavities, the better the temperature toler-
ance of entanglement between two microwaves. When the
microwave frequency is selected to be 300 GHz, entanglement
still exists above 10 K; this is because the microwave photon
has higher energy and is more tenacious facing the thermal
noise environment.

Now we turn to study the entanglement between light and
microwaves in this hybrid system. As shown in Fig. 6, it is
known that the optical detuning �c = ωm, and when �c =
ωm ≈ �w, the entanglement between light and microwave
reaches its maximum, while the entanglement between other
subsystems, such as mechanical resonator-microwave circuits,
microwave circuits, and the other one, are compressed. This
is because, in this case, the optical cavity and the microwave
cavities are resonated through the optomechanical resonance

FIG. 5. Entanglement between two microwaves with different
frequency for temperature. (Full black line: ωw1/2π = ωw2/2π =
3 GHz, �w = −0.05ωm. Dashed red line: ωw1/2π = ωw2/2π =
30 GHz, �w = −0.12ωm. Dotted blue line: ωw1/2π = ωw2/2π =
300 GHz, �w = −0.13ωm.) The other parameters are the same as
Fig. 2.

and the electromechanical resonance, in other words, the
entanglement between light and microwaves mediated by a
mechanical resonator is at the expense of optomechanical and
electromechanical entanglement.

In this section, we show the entanglement between two
microwave circuits with different resonate frequencies, the
influence of different parameters on the entanglement between
two microwave modes with the same resonate frequency,
and the entanglement of light and microwaves in the hybrid
system. As shown in Fig. 2, though the stationary and robust
entanglement between two microwave circuits with different
frequencies cannot be achieved in a small microwave detuning
interval, we could make the microwave detuning controlled
in a small interval, like from -0.4 to -0.1 on the �w/ωm

axis, and still obtain the stationary and robust entanglement,
which has the potential to correlate different nodes in quantum
computers, be they entangled microwave sources for quantum
illumination radar sor other applications. From Figs. 3–5, we
can know that increasing the coupling of the two microwave
cavities can acquire the larger entanglement between two
microwave modes, and raising the energy of microwaves
can make the entanglement more tenacious in the thermal
noise bath. Last but not least, Fig. 6 shows the entanglement
between microwaves and light is at the expense of optome-
chanical and electromechanical entanglement. In this way, we
can obtain the entanglement of different bipartite subsystems
in the hybrid quadripartite system under different microwave
detunings by changing the detuning of the microwave circuit.
For example, we set the microwave detuning �w = ±ωm, and
the hybrid system now is used to generate the entanglement
between light and microwave modes. Furthermore, we set the
microwave detuning �w = ±0.1ωm and the hybrid system
now is used to generate the entanglement between two mi-
crowave modes.

Now let us briefly discuss the promising experimen-
tal approach to realize the hybrid quadripartite system. As
mentioned in Ref. [40], a vibrating Si3N4 membrane coated
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FIG. 6. The EN plot for five bipartite subsystems. (Full red and
black line: two subsystems consist of optical cavity and one of the
microwave circuits. Dashed blue and purple line: two subsystems
consist of mechanical resonator and one of the microwave circuits.
Dotted orange line: the subsystem consist of two microwave circuits.
“Opto” means optical cavity, “Micro1” and “Micro2” mean the two
microwave cavities, and “Mecha” means the mechanical resonator.)
(a) The full plot, and for clarity, (b) is a part of (a). ωw1/2π = ωw2/2π

= 9 GHz, κc = 0.01 ωm, and the other parameters are the same as
Fig. 2. (a) Full plot, the microwave detuning range is from −2 to 2
�w/ωm, (b) Partial plot, the microwave detuning range is from −1.5
to −0.5 �w/ωm.

in part with niobium interacts with an inductor-capacitor
(LC) circuit that forms the microwave resonate cavity and
couples by radiation pressure to an optically driven Fabry-
Pérot cavity. Our scheme could be an extension of the scheme
mentioned above; the niobium could coat on the two sides
of the membrane and interact with two microwave circuits
simultaneously, which builds the connection between the two
microwave circuits with optomechanics.

VI. CONCLUSION

In this work, we theoretically proposed a scheme to build
a hybrid system with the purpose of generating entanglement
between two microwave modes, and the entanglement is mea-
sured by logarithmic negativity. The hybrid system consists
of a Fabry-Pérot cavity, a mechanical resonator, and two su-
perconducting microwave circuits. It not only can generate the
entanglement between the two microwave modes, but also can
realize the entanglement of interested bipartite subsystems in
the system, such as light and microwave modes, microwave
modes, microwave mode and mechanical resonator, and so
on. Further, with different microwave detunings, the different
bipartite subsystems of the hybrid system behave entangled.
This means that we can choose proper microwave detuning
to complete the requirements in the quantum information
process, which microwave cavities are used to interface with
solid-state qubits and light modes used for quantum commu-
nication, or act as an entangled microwave source to realize
quantum illumination radar. Compared with previous theoret-
ical work using logarithmic negativity as the measurement of
entanglement [31,41–43], our maximum entanglement value
EN is larger, which means we can in theory realize more
entanglement than their schemes.
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