
PHYSICAL REVIEW A 100, 042328 (2019)

Quantum memory and quantum cloning in an atomic frequency comb
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An atomic frequency comb (AFC) made of an ensemble of atoms with a periodic optical resonance was
originally proposed as a viable approach for quantum memory for photons. In this paper we examine the quantum
cloning capacity of an AFC in terms of the spectral distribution of the atomic populations in the energy levels
associated with the optical transition. Expressions are derived for the memory readout efficiency, signal to noise
ratio, and fidelity for an input at the single photon level. When applied to a square-toothed AFC, our analysis
shows that there is a region where amplification from the excited state population results in greater than unit
readout efficiency at a cost of fidelity being less than perfect, but still greater than the classical limit. The theory
is developed under the assumption that both AFC and photon wave packets are spatially uniform. This can be
regarded as a single spatial location inside an AFC and can be further expanded to study optically thick AFC
with atomic population in both levels, which may find applications for quantum memory and quantum cloning
machine.
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I. INTRODUCTION

Optical quantum memory at the light-matter interface has
been widely recognized as a critical technology for quantum
information processing and communication [1–5]. Rare-earth
ensembles trapped in inorganic crystals have been extensively
studied in recent years as one of the promising solid-state
systems to implement quantum memory with goals of achiev-
ing high efficiency and fidelity, as well as long storage time,
multimode capacity, high time-bandwidth product, and on-
demand retrieval [6]. Many protocols have been developed,
including CRIB [7–9], GEM [10], AFC [11], and ROSE [12]
based on variations of the photon echo process in atomic en-
sembles with inhomogeneously broadened optical resonances.
Demonstrations have shown the desired memory properties
listed above in separate systems. However, a demonstration of
all these properties in one system has not yet been successful.
All photon-echo based approaches so far have been designed
on a common feature—the inherently high fidelity of the
retrieved photon compared with the input photon. This is
achieved by preventing atoms from populating the exited
state at the time of echo emission, thus avoiding noise due
to spontaneous emission. Although each of these protocols
has its own challenges to overcome, major efforts have been
focused on improving memory efficiency utilizing atoms in
the ground state only. On the other hand, it is well known that
an excited state atomic population can boost echo efficiency
in photon-echo based classical signal processing [13–16].
Unfortunately, a regular two-pulse or three-pulse echo process
with significant excited state population cannot be used as a
quantum memory because the spontaneous emission causes
degradation of the fidelity below the classical limit at the
single photon level [17,18]. While existing memory protocols
all weigh on eliminating excited state population to avoid
spontaneous emission, the effect of the excited state popula-
tion has not been studied. Such an effect on memory efficiency

and fidelity is especially interesting in AFC memory since
the preparation of an AFC involves pumping unwanted atoms
from the ground to excited states, eventually to a long-lived
metastable state. Atoms in the excited state may be helpful in
improving memory efficiency, but they should also be consid-
ered to account for potentially undesirable residual undecayed
population.

An inverted medium with more excited population than
the ground state can be an amplifier: An input optical signal
is amplified through stimulated emission and noise is added
to the output due to spontaneous emission. In the quantum
regime, a photon in an arbitrary state cannot be duplicated
without degradation of its fidelity. This is fundamentally
governed by the no-cloning theorem [19,20]. Nevertheless,
it is allowed that an arbitrary quantum state may be cloned
with certainty and imperfect fidelity, or with less than unit
probability and perfect fidelity. Both types of quantum cloning
machines find applications in quantum information process-
ing and communication [21,22]. A trivial quantum cloning
scheme is to measure the quantum state in an arbitrary eigen-
basis and make copies according to the measurement result.
This sets the lower bound (or the classical limit) for the
fidelity of a useful quantum cloning machine [22–24]. The
measurement-based cloning can also be regarded as a trivial
case of quantum memory with arbitrarily long memory time.
Therefore the classical limit of the fidelity should also apply
to the quantum memory. It has been proven that quantum
cloning can have a fidelity better than the classical limit. The
upper bound of the fidelity for a universal cloning machine
that produces identical output qubits from a pure input state
depends on the number of the input and output qubits [24,25].
An inverted medium is one of the optimal cloning machines
whose fidelity can approach this upper limit [26–29]. An AFC
made of both ground state and excited populations can be
treated as a quantum cloning machine and the regenerated
echo photons as clones of the input with a time delay. The
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FIG. 1. (a) A three-level atom with ground, excited, and
metastable state labeled by |g〉, |e〉, and |m〉, respectively. (b) Spectral
distribution of atomic population in ground and excited state corre-
sponding to an AFC with square-shaped teeth.

input photon itself may be amplified without the delay as
in a regular amplifier as well. However, we will focus on
how the efficiency and fidelity of the echo depend on the
atomic population in the excited state for both absorptive and
amplifying AFC. A relation between fidelity and efficiency
will be established. The AFC will be analyzed in terms of
balancing the efficiency and fidelity of quantum memory and
compared with an optimal quantum cloning machine.

II. AN AFC IN BOTH GROUND AND EXCITED STATES

We will consider an AFC consisting of an ensemble of
atoms with the ground and excited states |g〉 and |e〉 as shown
in Fig. 1(a). The |e〉 ↔ |g〉 transition of the ensemble is
inhomogeneously broadened with the resonance of an atom
denoted by its frequency detuning � with respect to that of
an incoming photon wave packet. The AFC is formed by both
ground and excited atomic populations. The probability that
an atom is in either of the states is denoted by pg(�) and
pe(�), respectively, as functions of frequency. The AFC as
a mixed state of the ensemble can be defined by a density
operator:

ρ(�) = pg(�)|g〉〈g| + pe(�)|e〉〈e|. (1)

The comb shape of the spectral distribution of atoms in the
ground state can be described by

pg(�) = b + (1 − b)ξ (�) ∗ d (�), (2)

where the Dirac comb function d (�) = ∑∞
n=−∞ δ(� − n�)

sets the AFCs periodic structure defined by a uniform fre-
quency spacing � between the comb teeth. The tooth shape is
defined by the normalized single tooth function ξ (�) and a flat
background b on the spectrum. The * denotes the convolution.

In an untreated atomic ensemble, all atoms are in the
ground state with a flat spectrum [pg(�) = b = 1]. The
ground state AFC in Eq. (2) is usually created by optically
pumping unwanted atoms to the excited state according to the
atomic resonance, which then relax to a long-lived metastable
state |m〉 as shown in Fig. 1(a). It is convenient to assume a
uniform spectral distribution of the ensemble before pumping

and normalize the comb function pg(�) to its peaks, where the
atoms are not affected. In additional, the AFC does not include
spatial dependence, which can be regarded as a location inside
an AFC that may vary along the beam path in an optically
thick medium or along a transverse direction in an angled
beam configuration.

In a two-level system, or three-level system with an unde-
cayed excited state, the population is conserved in the ground
and excited states, i.e., pg(�) + pe(�) = 1. This leads to a pe-
riod spectral distribution of atoms in the excited state pe(�) =
1 − pg(�). Examples of pg(�) and pe(�) are sketched in
Fig. 1(b). The ground state population takes the comb shape
while the excited state shows a reversed comb shape. We will
call both AFCs.

In a three-level system, the atoms in the excited state are
expected to decay to the metastable state. After a portion 0 �
1 − χ � 1 of the excited state population has decayed to the
metastable state, the AFC in the excited state becomes

pe(�) = χ [1 − pg(�)] = χ (1 − b)[1 − ξ (�) ∗ d (�)]. (3)

The AFCs defined in Eqs. (2) and (3) include the case of the
original proposal in Ref. [11] where χ = 0 so that all relevant
atoms are in the narrow teeth in the ground state. The other
extreme is that χ = 1 where all of the atoms in the ensemble
contribute to the AFC either in ground or excited state. More
realistic cases fall in between.

III. PHOTON ECHO, SPONTANEOUS EMISSION,
AND ABSORPTION

After the AFC is set by the optical pumping and/or pop-
ulation relaxation, an input pulse of a few photons at t =
0 interacts with the AFC in the mixed state described by
Eq. (1). As the result, a photon echo pulse is generated at
t = 2π/� containing the retrieved photons. This is similar to
the three-pulse photon echo process described in [18] where
an input photon and a π/2 classical pulse create a mixed
state in the ensemble and another π/2 pulse interacts with
the mixed state to generate an echo. However, there is a major
difference in the conventional three-pulse echo compared to
the echo in AFC: The input photons form one of the pulses
that create the atomic ensemble’s mixed state while the AFC is
created in a separate process, independent of the input photon.
Another important difference is that the pulse responsible for
regenerating the echo is a strong classical pulse in Ref. [18]
compared to the few input photons in the AFC. Nonetheless,
we can follow a similar theoretical treatment to analyze the
process, including absorption of the input photon, generation
of the echo, and spontaneous emission. In fact, the process
in which we are interested in this paper is simpler than that
in Ref. [18]: We only need to focus on the regeneration of
the photon echo using a preset mixed state atomic ensemble
described by Eqs. (1) through (3). The only input pulse is the
wave packet of the few incoming photons near the |e〉 ↔ |g〉
resonance.

The interaction Hamiltonian between atomic transition
|e〉 ↔ |g〉 of dipole moment μ and the electric field E cos ωt
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of an input pulse is

H = h̄

2

(
0 −μE/h̄

−μE/h̄ 0

)
. (4)

The corresponding evolution operator is U =
exp(−iHτ/h̄) for a pulse duration τ . Assuming that the input
pulse to be stored is brief and weak so that the pulse area
satisfies θ = μEτ/h̄ � 1, the evolution operator becomes a
rotation by a small angle θ = 2ε:

U =
(

1 iε

iε 1

)
. (5)

In this paper, the pulse area is considered as constant for all
atoms in the ensemble. In an optically thick medium, the pulse
area varying along the beam path can be calculated according
to the area theorem [30].

Without an input field, the atomic ensemble evolves due to
the relative detuning during a time span t according to a free
rotation operator,

Ut =
(

1 0

0 e−i�t

)
. (6)

And the density matrix of the ensemble after interacting with
the input pulse followed by a free rotation becomes

ρ(�, t ) = UtUρ(�)U +U +
t

=
(

pg −iεei�t (pg − pe)

iεe−i�t (pg − pe) pe

)
. (7)

Assuming a uniform spectrum of the input pulse much
wider than the comb spacing, the corresponding macroscopic
polarization can be calculated as

(t ) = μN
∫

〈e|ρ|g〉d� = iμNε

∫
e−i�t (pg − pe)d�,

(8)

where N denotes the spectral density of atoms in the ensem-
ble. Both pg and pe are periodic functions of frequency that
repeat at the comb spacing � as described in Eqs. (2) and (3).
The induced polarization in Eq. (8) consists of a sequence of
pulses centered periodically at 2nπ/� for n = 0, 1.2.... The
assumption that the spectrum of the incoming wave packet
covers several teeth of the frequency comb also implies that
the time separation 2π/� between the pulses is longer than
the single pulse duration. Therefore, the discrete peak value
of the pulses in Eq. (8) can be calculated by Fourier transform
of the AFC functions:

n = iμNε( p̃gn − p̃en), (9)

where n = (t = 2nπ/�). The Fourier components of the
AFCs are defined as

p̃gn =
∫

pg(�)e−i2nπ�/�d� =m[b�δ(n) + (1 − b)anγ ],

(10)

p̃en =
∫

pe(�)e−i2nπ�/�d� =χ [m�δ(n) − p̃gn], (11)

where the Fourier transform of single tooth function is de-
noted by anγ = ∫ ∞

−∞ ξ (�)e−i2πn�/�d�. The coefficient an

depends on the single tooth function with γ as its full width at
half maximum (FWHM). The total number of teeth covered
by the input photon spectrum is denoted by m.

The induced polarization in Eq. (8) includes all impulsive
responses from the atomic ensemble when interacting with the
input pulse. The induced electric field is proportional to i(t ),
which is also a sequence of pulses centered periodically at t =
2πn/� with amplitudes proportional to Eq. (9). The overall
output field is the sum of the input and the impulsive feedback
from the atomic ensemble. The feedback pulse centered at
t = 0 with peak amplitude proportional to ( p̃e0 − p̃g0) is in
the same spatiotemporal mode as the input and has the same
timing as well. The output field at t = 0 (the feedback added
to the input) can be regarded as the transmitted input that
can be attenuated or amplified depending on the sign of
( p̃e0 − p̃g0). According to Eqs. (10) and (11), N p̃e0 and N p̃g0

are the total numbers of atoms in the excited and ground
states, respectively. The ground state population absorbs and
reduces the field while the excited state population adds to
the field through stimulated emission and causes noise due to
spontaneous emission. This process can be treated as universal
symmetric quantum cloning in an inverted medium [29].
However, we are interested in the gain and fidelity of the
regenerated photons in the pulse centered at t = 2π/�.

The peak intensity of the photon echo emitted at t = 2π/�

can be written as

I1 = i0N2ε2( p̃e1 − p̃g1)2, (12)

where i0 is the intensity absorbed or emitted by a single atom
in the same spatiotemporal mode as the input photon. The
photons in the echo pulse have the same spatiotemporal mode
and quantum state, such as polarization, of the input except
for a time delay. Both ground and excited state populations
contribute to the number of photons in the echo output.

Besides the pulses generated from the atomic ensemble
included in Eq. (8), the excited state population N p̃e0 also
causes spontaneous emission, adding more photons to the
output. The intensity from the spontaneous emission into the
same spatiotemporal mode as the echo at t = 2π/� can be
expressed as

Is = i0N p̃e0, (13)

which is named noise in the sense that it always exists
regardless of the input. The noise is the same for all possible
polarizations, or qubit states, in general. With Eqs. (12) and
(13), we will further analyze the signal-to-noise ratio and
fidelity of the photons in the echo pulse.

It is well known that the storage efficiency of a ground
state AFC without the excited population is maximized only
if the input pulse is completely absorbed [11]. In order to
study the impact from atoms in the excited state, we always
compare the echo intensity with the input intensity absorbed
by the ground state population:

Iabs = i0N2ε2 p̃2
g0, (14)

which is independent of the excited population. This is also
treated as the input to the quantum cloning machine that
generates the clones in the echo.
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IV. MEMORY READOUT EFFICIENCY,
SIGNAL-TO-NOISE RATIO, AND FIDELITY

In a quantum memory, the memory efficiency can be
treated as the product of the storage and readout efficiencies.
The storage efficiency can be defined by the ratio between
the numbers of absorbed and input photons while the readout
efficiency is the ratio between the numbers of output and
absorbed photons. The readout efficiency of an AFC can be
calculated as the ratio between the echo intensity in Eq. (12)
and the absorbed intensity in Eq. (14), which relates to the
AFC’s Fourier components in Eqs. (10) and (11) as

η = I1

Iabs
=

(
p̃e1 − p̃g1

p̃g0

)2

=
(

(1 + χ )(1 − b)a1

b�/γ + (1 − b)a0

)2

. (15)

In this way, the number of photons retrieved in the form of
the echo is always compared to the same number of absorbed
photons for a given AFC structure defined in Eq. (2). This
is also consistent with the efficiency definition for the case
with an empty excited state. The efficiency does not depend
on the input, but the AFC structure. The fraction 0 � χ � 1
signifies the ratio between the number of atoms in the excited
state and those removed from the ground state. Equation (15)
shows the efficiency proportional to (1 + χ )2. When the frac-
tion increases from χ = 0 (all excited atoms decayed to the
metastable state |m〉) to χ = 1 (all excited atoms in |e〉), the
efficiency is enhanced by a factor of 4 regardless the AFC’s
actual shape.

The signal-to-noise ratio (SNR) in the echo output is
defined as

SNR = I1

Is
= Nε2( p̃e1 − p̃g1)2

p̃e0
. (16)

This shows that high input supports high SNR. An input pulse
at the single photon level results in the lowest SNR. We
will analyze the case where the single input photon is fully
absorbed by the ground state population, i.e., N p̃g0ε

2 = 1. The
SNR becomes

SNR = ( p̃e1 − p̃g1)2

p̃g0 p̃e0
= p̃g0

p̃e0
η

= (1 + χ )2(1 − b)a1
2

χ [b�/γ + (1 − b)a0](�/γ − a0)
. (17)

Both readout efficiency and SNR depend on Fourier coeffi-
cients a0 and a1 of the single tooth function, background level
b, and finesse �/γ of the AFC in the ground state, as well as
on the fraction of population remaining in the excited state χ .
The fidelity of the quantum state of an output photon can be
calculated from the SNR by [18,29]

F = (SNR + 1)/(SNR + 2). (18)

In an ideal quantum memory where any output photon
carries the same input state, SNR approaches infinity and
F = 1. This can only be achieved when the excited state is
unoccupied (χ = 0). However, this does not make a perfect
quantum cloning machine since the ratio of output and input
cannot be more than unity. Equation (17) indicates that SNR is
proportion to (1 + χ )2/χ , which reduces monotonically with
χ and minimizes at χ = 1. A quantum memory will lose its

meaning if its fidelity is lower than the maximum threshold
that can be achieved by a classical memory. A classical storage
of an arbitrary qubit is optimal at SNR = 1, which sets a
lower bound of fidelity Fcl = 2/3 for a meaningful quantum
memory. This lower bound is also consistent with the fidelity
of an optimal measurement-based quantum cloning [22–24].

The background b in the ground state AFC’s spectrum
causes a drop in both readout efficiency and SNR. At the
extreme: b = 1, the periodic structure of the AFC disappears,
no photon echo is generated, and efficiency vanishes. The best
case is an AFC without background (b = 0) regardless of the
tooth shape and finesse, in which the upper limits of readout
efficiency and SNR are, respectively,

η = (1 + χ )2

(
a1

a0

)2

, (19)

SNR = η
a0

χ (�/γ − a0)
. (20)

In general, Fourier transform of any single tooth func-
tion will results in a1 � a0 provided the comb spacing is
at least twice the tooth width (�/γ � 2). The optimized
tooth shape and finesse can make a1 ≈ a0, which maximizes
the readout efficiency. For three tooth shapes usually con-
sidered: Lorentzian, Gaussian, and square, the ratio a1/a0

is exp(−πγ /�), exp[−3.56(γ /�)2], sin(πγ /�)/(πγ /�), re-
spectively. While the ratio approaches to 1 with increasing
finesse for all three shapes the curve for square rises much
faster than that of Lorentzian. The curve for Gaussian is
slightly slower than that of square, but comparable. Ampli-
tude/phase modulated laser pulses have been used to make
the tooth shape close to square [31,32]. The actual shapes in
experiments turned out to be between Gaussian and square.
We apply the theory developed in this paper to analyze an
AFC of square-shaped teeth in the next section.

Under the condition a1 ≈ a0, the readout efficiency can
vary between 100% and 400% depending on the fraction of
excited state population χ . It should be noted that 100% read-
out efficiency at χ = 0 corresponds to the upper limits of the
memory efficiency in the original proposal in Ref. [11], which
are 54% and 100%, respectively, for forward and backward
retrieval. The difference is caused by the propagation effect. In
Ref. [11], the atoms in an AFC spread out in space along the
path of the pulse propagation. An input photon has a higher
chance to interact with the atoms at the front end than those
at the back end of the ensemble due to the absorption. In
a forward retrieval process, an echo photon generated at the
front end has higher chance to be reabsorbed by the ensemble
than one generated at the back end. As result, the memory
efficiency can only be optimized to 54%. The analysis in
this paper does not consider the propagation effect, thus an
input photon interacts with all atoms in the ensemble with an
equal probability. The region η > 1 corresponds to possible
quantum cloning provided the fidelity is above the classical
limit.

The SNR deteriorates while the excited state popula-
tion helps to increase the efficiency. The SNR reduces to
4a0/(�/γ − a0) with an excited state fully populated between
the comb teeth as shown in Fig. 1(b). However, it is still
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FIG. 2. Readout efficiency vs the background level b and finesse
�/γ from a square-tooth AFC with an unoccupied excited state (χ =
0). The ten contour bands illustrate the efficiency increase (from right
to left) from 0 to 100% with an increment of 10%.

possible to choose a tooth function and finesse to make the
SNR � 1 so that the fidelity is still above the classical limit.

V. AFC WITH SQUARE TEETH

A square function is one of the tooth shapes for optimal
memory efficiency in a ground-state-only AFC. The single
tooth is defined by the function

ξ (�) =
{

1, |�| � γ /2,

0, |�| > γ/2.
(21)

The relevant Fourier coefficients are calculated:

a0 = 1, (22)

a1 = sinc(πγ /�), (23)

where sinc(x) = sin x/x.
The readout efficiency and SNR become, respectively,

η =
[

(1 + χ )(1 − b)

b�/γ + 1 − b
sinc

(
π

γ

�

)]2

, (24)

SNR = (1 + χ )2(1 − b)

χ (b�/γ + 1 − b)(�/γ − 1)
sinc2

(
π

γ

�

)
. (25)

The efficiency is plotted in Fig. 2 at various background
levels and comb finesse for a fully decayed excited state
(χ → 0). The efficiency strongly depends on the background
and finesse. The efficiency approaches 100% provided both
zero background (b = 0) and high finesse (�/γ 
 1) are
satisfied. According to Eq. (25), it is also confirmed that SNR
approaches infinity and F = 1 regardless of the finesse and a
background 0 � b < 1.

With an undecayed excited state (χ = 1), both efficiency
and fidelity depend on the background and finesse. The effi-
ciency plot has the same shape as Fig. 2 with the efficiency
axis scaled up by a factor of 4. The fidelity plotted in Fig. 3
decreases with the increase of both background and finesse.
At zero background, the efficiency increases from 162% at
�/γ = 2 to 400% at �/γ → ∞ while the fidelity degrades

FIG. 3. Fidelity vs the background level and finesse from the
same AFC as that in Fig. 2 except for an undecayed excited state
(χ = 1). The contour bands illustrate the fidelity increase (from
top-right to bottom-left) from 0.53 to to 0.73 with an increment
of 0.1.

from 0.724 at �/γ = 2 to the classical limit at around �/γ =
4, and eventually to 0.5 at �/γ → ∞.

As mentioned above, perfect fidelity is only possible with
an empty excited state. However, it is still possible for the
fidelity to be better than the classical limit while the read-
out efficiency is larger than the optimal efficiency from a
ground state AFC (η � 100%). Figure 4 shows the fidelity
vs efficiency for zero background at different fractions of
the excited state population and the comb finesse. The top
curve represents the case of an empty excited state where
the fidelity is constant F = 1 and the efficiency η � 100%,
depending on the finesse. All curves are monotonic. On any
given curve with fixed χ , high finesse always results in high
efficiency and low fidelity. The shaded area indicates the
region where both F > 2/3 and η � 100% are satisfied. The

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 0.5 1 1.5 2 2.5 3 3.5 4

0b

F

0.1

0.2

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

0

FIG. 4. Fidelity vs readout efficiency from the AFC without
background (b = 0) at different excited decay fractions (1 − χ ) and
finesse. Ten dots on each solid curve represent the fidelity values for
finesse ranging from 2 to 11 from left to right along the curve. The
shaded area indicate the region where η � 100 and F > 2/3. The
dashed line represents the optimal cloning.
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0.50

0.55

0.60

0.65
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FIG. 5. Fidelity vs readout efficiency from the AFC with a
background (b = 0.1) at different excited decay fractions (1 − χ )
and finesse. Ten dots on each solid curve represent the fidelity values
for finesse ranging from 2 to 11 from top to bottom along the curve.
The shaded area indicate the region where η � 100 and F > 2/3.

plot shows that in the full range of 0 � χ � 1, the fidelity can
be made above the classical limit by choosing proper finesse.
The general trend indicates a trade-off between efficiency and
fidelity. The shaded region is also where quantum cloning
occurs if the photons in the echo pulses are treated as the
clones of the input photon. An optical amplifier made of a
fully inverted medium where the absorption is eliminated is
an optimal quantum cloning machine [24,25,29]. According
to Eq. (6) in Ref. [29], the numbers of clones in the same
and orthogonal states of an input photon are, respectively,
μV = 2η − 1 and μH = η − 1, where η is the amplification
gain corresponding to the echo efficiency for η � 1. These
lead to an optimal fidelity Fopt = (2η − 1)/(3η − 2) as plotted
in Fig. 4 (dashed line). The quantum cloning in the AFC is not
optimal due to the absorption from the ground state population
that is required for echo generation. The point closest to the
optimal curve is F ≈ 0.70 at η = 2.74, χ = 1, and �/γ = 3
while Fopt = 0.72.

As expected, both efficiency and fidelity degrade with the
background level. Figure 5 shows the fidelity vs efficiency
for b = 0.1. At this slightly elevated background, only a few
curves fall into the quantum cloning regime (shaded area).
Moreover, no curves are monotonic. The efficiency peaks
roughly at 3 < �/γ < 4, beyond which point the efficiency
starts decreasing while the fidelity falls below the classical
limit as well. The undecayed excited state still produces a
curve closest to the optimal cloning.

According to Eq. (24), there is a general upper limit of
the background level to ensure that η � 1. The necessary
requirement is

(1 + χ )(1 − b)

b�/γ + (1 − b)
� 1, (26)

which can be simplified to

1 − b

b
� �

γχ
. (27)

The minimum of the right-hand side is 2 at �
γ

= 2 and
χ = 1. This leads to a necessary condition b � 1/3 for a gain
(η � 1) in the output compared with the input. The actual
condition may be more stringent. For an AFC of a square-
shaped tooth, the readout efficiency falls below 100% around
b = 0.18. Beyond this point, the memory readout efficiency
is below unity and quantum cloning in the AFC loses its
meaning.

VI. DISCUSSION AND CONCLUSION

This paper was initially motivated by the question: is an
AFC still useful if the excited state is populated? Which is
usually considered a nonideal situation for quantum memory.
We have taken the first and essential step to develop a the-
ory to analyze such an AFC for applications as a quantum
memory and a quantum cloning machine. In both cases, the
efficiency and fidelity of photon echo regeneration are of great
importance. The developed theory allows us to calculate both
regeneration efficiency and fidelity for a given AFC struc-
ture under the assumption that the atom-photon interaction
is spatially uniform. This assumption is valid for optically
thin samples or a single location inside an optically thick
sample. We found that both efficiency and fidelity depends
on the AFC’s spectral structure and excited state population
as the main results shown in Eqs. (15), (17), and (18). In
general, a populated excited state boosts the efficiency while
degrading the fidelity as expected. However, there exists a
region where the regeneration efficiency can be greater than
unity and the fidelity still beats the classical limit as shown in
Fig. 4. This is a promising region where an AFC should be
further studied according to the application requirements as
a quantum memory or cloning machine. An optimal balance
between the efficiency and fidelity may be reached by adjust-
ing the AFC’s tooth shape, the finesse, and the excited state
population. It also should be noted that a nonzero background
in the AFC function, as defined in Eq. (2), is detrimental to
both efficiency and fidelity. The emphasis should be given to
eliminate the background in an AFC creation process through
optical pumping.

The theory presented in this paper is valid under the con-
dition that the AFC is spatially uniform and all atoms “sees”
the same pulse area. This allows us to focus on the photon
regeneration process without considering further absorption
and amplification due to the propagation through an optically
thick medium. However, the average absorption length of an
AFC may be significant along the photon propagation path.
A theory can be further developed by making the pulse area
depending on propagation inside the AFC. Applying the area
theorem may suffice to include the propagation effect for an
extremely low pulse area for the input at the single photon
level. The overall input-to-output efficiency and fidelity can be
evaluated as functions of the optical thickness, AFC’s spectral
function, and excited state population.
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