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Macroscopic realism (MR) is the view that a system may possess definite properties at any time independent
of past or future measurements and may be tested experimentally using the Leggett-Garg inequalities (LGIs).
In this work we advance the study of LGIs in two ways using experiments carried out on a nuclear magnetic
resonance spectrometer. First, we addresses the fact that the LGIs are only necessary conditions for MR but
not sufficient ones. We implement a recently proposed test of necessary and sufficient conditions for MR which
consists of a combination of the original four three-time LGIs augmented with a set of 12 two-time LGIs. We
explore different regimes in which the two- and three-time LGIs may each be satisfied or violated. Second, we
implement a recent proposal for a measurement protocol which determines the temporal correlation functions
in an approximately noninvasive manner. It employs a measurement of the velocity of a dichotomic variable
Q, continuous in time, from which a possible sign change of Q may be determined in a single measurement
of an ancilla coupled to the velocity. This protocol involves a significantly different set of assumptions to the
traditional ideal negative measurement protocol, and a comparison with the latter is carried out.
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I. INTRODUCTION

Quantum technologies have shown their potential to impact
a range of sectors, including communications, finance, health,
and security [1]. Harnessing the power of quantum mechanics
into practical quantum technologies will be aided by deeper
understandings of the foundations of quantum mechanics.
Without a true understanding of foundational concepts, fa-
mous quantum breakthroughs such as the BB84 protocol [2]
and Shor’s factoring algorithm [3] would never have been
possible. A propitious question left to explore in quantum
foundations is that, If reality is described by quantum me-
chanics, can these laws be scaled to commonplace objects?
This idea of systems composed of countless atoms existing
in quantum superposition of macroscopically distinct states is
known as macroscopic coherence.

Anthony Leggett and Anupam Garg drew attention to the
study of this subject by first codifying how physicists expect
macroscopic objects to behave into a set of assumptions that
they defined as macroscopic realism (MR) [4,5]. As defined
by Leggett and Garg these assumptions are the following:

(1) Macroscopic realism per se (MRps): A macroscopic
system with two or more macroscopically distinct states avail-
able to it will at all times be in one or the other of these states.
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(2) Noninvasive measurability (NIM): It is possible, in
principle, to determine the state of the system with arbitrarily
small perturbation on its subsequent dynamics.

Leggett and Garg later added the condition that future
measurements should not affect the present state (a condition
they named induction), but this assumption is rarely contested.
Leggett and Garg used these assumptions to derive a set of
inequalities that any macroscopic system should obey. These
are the Leggett-Garg inequalities (LGIs). If measurements on
a system violate the LGIs, then a macroscopic understanding
of the system must be abandoned. In this way the LGIs can
serve as a test of macroscopic coherence.

The violation of the LGIs on microscopic systems remains
a topic of interest for different reasons. For one, violations
on microscopic systems are a necessary stepping stone to-
wards achieving macroscopic coherence. Even at the level
of microscopic systems the study of the LGIs is riddled
with challenges which will need to be addressed before one
can feasibly move to larger systems. A second motivation
for the study of the LGIs is that they serve as a test of
whether a system is behaving quantum-mechanically. The use
of the LGIs in this manner has been adopted in different
fields including quantum transport [6], quantum biology [7],
and quantum computations [8]. (See Emary et al. [9] for an
extensive review of both experimental and theoretical aspects
of the LG inequalities, and Ref. [10] for a critique and analysis
of what LGIs actually test.)
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The formalism of the LGIs is fairly straightforward. First,
consider a dichotomic observable, Q, with outcomes si ∈
{±1} measured at time ti. When measuring this observable
Q at two different times ti, t j[Q(ti ) ≡ Qi], the outcomes will
either be correlated (sis j = 1) or anticorrelated (sis j = −1).
The classical correlation function, Ci j ,

Ci j = 〈QiQj〉 =
∑
i, j

sis j pi j (si, s j ), (1)

assigns a value to this correlation. Ci j is bounded by ±1 corre-
sponding to the cases of perfect correlation and anticorrelation
respectively, and pi j (si, s j ), the two-time probability, is the
probability of obtaining the results si and s j when measure-
ments are made at times ti, t j , respectively. By performing
three experiments that measure the observable Q at pairs of
times (t1, t2), (t2, t3), and (t1, t3) the correlation functions C12,
C23, and C13 can be obtained. For a system which obeys
the assumptions of MRps and NIM it can be shown that
these correlations are bounded by the four three-time LGIs
(LG3s) [4,5]:

1 + C12 + C23 + C13 � 0, (2)

1 − C12 − C23 + C13 � 0, (3)

1 + C12 − C23 − C13 � 0, (4)

1 − C12 + C23 − C13 � 0. (5)

These inequalities can, however, be violated by quantum
systems. For example, consider a spin- 1

2 particle evolving
under a Hamiltonian H = ωX̂/2 and measured by Q̂ = Ẑ ,
where X̂ and Ẑ are the Pauli-x and Pauli-z matrices. For such a
model it is readily shown that for any initial state the quantum
mechanical correlation function is [9]

Ci j = 1

2
〈Q̂1Q̂2 − Q̂2Q̂1〉 (6)

= cos[ω(t j − ti )]. (7)

By using Eq. (7) and considering the case of equidistant time
intervals, t j − ti = t , the four LG3s reduce to three inequali-
ties:

(LG3a) 1 + 2 cos(ωt ) + cos(2ωt ) � 0, (8)

(LG3b) 1 − 2 cos(ωt ) + cos(2ωt ) � 0, (9)

1 − cos(2ωt ) � 0, (10)

the third of which is always satisfied. As shown in Fig. 1, one
of the other two inequalities, Eq. (8) or (9), will be violated for
all but discrete choices of ωt . Thus, the LG3s can be violated
by a quantum system.

In this work our aim is to advance the study of the LGIs
by addressing two contemporary challenges in the field. The
first concerns the question of conditions for MR that are both
necessary and sufficient, and the second concerns the need
for LGI experiments to adopt a macroscopically noninvasive
measurement protocol.

The first concern we address, of conditions for MR that
are both necessary and sufficient, was originally addressed in

FIG. 1. Two of the LG3s as functions of ωt/π for measurements
made at equidistant time intervals. The red and green regions indicate
where the LG3s are and are not, respectively, violated.

Refs. [11–13] and subsequently in Refs. [14,15]. We follow
the latter papers, which concern a set of augmented LGIs in
which the original LG3s are amended with a set of 12 two-
time LGIs (LG2s) and form a set of necessary and sufficient
conditions for MR. Our first set of experiments demonstrates
a violation of the LG2s, and hence a violation of MR not
detected by the original LG framework, i.e., the LG3s. Note
that LG2s have been considered previously in a number of
experiments, but as simplifications of the LG3s, in which,
for example, one sets 〈Q1〉 = 1 as an initial condition. Here
the LG2s enter in a more fundamental role, as the extra
conditions required to define a set of conditions for MR which
are not only necessary, but also sufficient, and are therefore a
decisive test. Failure to violate the LG3s alone is not sufficient
to ensure that a system can be described macrorealistically,
so MR tests based purely on LG3s are not fully decisive.
Furthermore, the implementation of the decisive test for MR
described here is clearly a desirable goal in the design of any
future LG experiments.

The second challenge we look to address arises from
the need of LGI experiments to adopt a macroscopically
noninvasive measurement protocol. If the measurement was
deemed to be invasive, it could then be argued then that it
was the effect of the measurement and not a failure of MR
which caused the violation of the inequality [16–18]. The
best one can hope to achieve in addressing this argument is
to implement a measurement protocol whose argument for
invasiveness would need to be so contrived that the alternative
explanation of a violation of MR would be more likely. One
strategy to treat this argument is to implement different mea-
surement protocols that are constructed from different sets of
assumptions. The agreement of the results from these different
protocols will further strengthen either protocol’s argument
for being noninvasive. To advance this strategy we perform in
this work an experimental implementation of the continuous
in time velocity measurement (CTVM) protocol [19]. The
CTVM protocol is methodologically different from the more
commonly implemented [20–22] technique of ideal negative
measurements (INMs). We implement both the CTVM and
INM protocols in our second set of experiments and verify
that they do provide similar results under the parameters in
which the CTVM can be faithfully implemented.
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Our experiments will be carried out on a nuclear magnetic
resonance (NMR) spectrometer. NMR tests of the LGIs have
been criticized [9,23], on the grounds that the results can
always be replicated using hidden variable models. However,
the models accomplishing this [23] are of the Bohmian type
(in which the state itself is one of the hidden variables), and,
as stressed in Ref. [10], LG tests can rule out only certain
types of hidden variable theories, and in particular, Bohmian
theories can rarely be ruled out.

The content of this paper is organized into five sections.
Section II contains a review of the necessary theory for this
work. This consists of an introduction to the augmented set
of Leggett-Garg inequalities [14] and to the CTVM proto-
col [19]. This section consists of a review of earlier works.
From there, the details of the experiments performed in this
work are outlined in Sec. III. In this section we outline why
certain initial parameters were chosen, provide an overview of
the different combination of experiments which are required,
and outline the pulse sequences for all the experiments that
were implemented. The data from these experiments are then
presented in Sec. IV along with the theoretically derived
and computer-simulated results. This paper then concludes
in Sec. V with a calculation of the LG2s and LG3s from
the experimental data, a discussion on the different violations
that had occurred, and the significance of implementing the
CTVM protocol.

II. THEORY

A. The augmented set of Leggett-Garg inequalities

Despite years of experimental tests of the LGIs, the ques-
tion of conditions for MR that are both necessary and suf-
ficient has been addressed only recently [11,12,14,15]. The
LG framework was designed in close parallel to tests of local
realism using the Bell and CHSH inequalities [24]. There,
Fine’s theorem [25] ensures that the Bell and CHSH inequal-
ities are both necessary and sufficient conditions for local
realism. The LG framework differs at this point since Fine’s
theorem does not immediately apply, and as a consequence
the usual three-time LGIs are only necessary conditions for
MR and not sufficient ones. The difference arises from the fact
that, for pairs of measurements acting sequentially in time, the
so-called “no-signaling in time” (NSIT) conditions

p j (s j ) =
∑

si

pi j (si, s j ) (11)

do not hold in general. Here pi j (si, s j ) is the two-time proba-
bility defined earlier and p j (s j ) is the single time probability
for obtaining the result s j at time t j in which no earlier
measurement is made. By contrast in Bell tests the analogous
conditions are ensured by locality. As a consequence, pairwise
probabilities of the form p12(s1, s2), for example, are not
in general compatible with the probabilities p23(s2, s3) on
their overlap. This means that Fine’s theorem, which seeks
an underlying joint probability matching a compatible set of
marginals, does not immediately apply.

In the current literature there are two different approaches
to this shortcoming. One involves a set of NSIT conditions
of the form of Eq. (11) (and generalizations to three times)
which simply restricts the parameter space to situations in

which such conditions are satisfied [11,12]. These are quite
strong conditions which, in quantum mechanics, require zero
interference. The other approach, which remains close to
the original LG framework, adopts an indirect procedure for
determining the two-time probabilities in which the averages
〈Qi〉, 〈Qj〉, and the correlation function Ci j are determined,
noninvasively, in three separate experiments [14,15]. They
may then be assembled into a two-time probability if and only
if the following two-time LGIs hold:

1 + si〈Qi〉 + s j〈Qj〉 + sis jCi j � 0, (12)

where i j takes the values 12, 23, 13. These 12 conditions
are clearly much weaker than the NSIT conditions, and in
quantum mechanics require only suitable bounds on the de-
gree of interference. The two-time probabilities themselves
p(si, s j ) are then given by the left-hand side of this expression,
multiplied by 1

4 . The indirect measurement procedure ensures
that different two-time probabilities determined in this way
are then compatible with each other (and so satisfy NSIT in a
formal sense, but this does not say anything about signaling),
and Fine’s theorem then applies. We thus obtain a set of
necessary and sufficient conditions for MR consisting of the
four original LG3s augmented with the 12 LG2s, Eq. (12).

In this work, we experimentally test the definition of
MR using these augmented LGIs. There are four regimes of
interest, depending on whether each of the LG2s and LG3s
is, or are not, satisfied. It would clearly be of interest to
explore all four regimes, but here we restrict to the two most
interesting cases. The first is the case in which the LG3s are
satisfied but the LG2s are violated. This is the previously
unexplored regime in the original LG framework and detects
MR violations not detected by the LG3s alone. The second
is the case in which the LG2s are satisfied but the LG3s
are violated. This is a natural parallel with the Bell case, in
which the situation “looks classical” for the partial snapshots
consisting of the pairwise measurements, but the violation of
MR is apparent only when one looks for a three-time unifying
probability.

B. Continuous in time velocity measurements

A key requirement in all LGI experiments is the use of
a macroscopically noninvasive measurement technique, so
as to avoid the “clumsiness loophole.” The loophole argues
that a violation of the LGIs could have been caused by the
measurement influencing an unknown hidden variable [26].
This loophole can never be entirely closed since other hidden
variables can always exist [9]. Instead, what one hopes to
achieve is to implement a measurement protocol whose argu-
ment for invasiveness would need to be so contrived that the
alternative explanation of a violation of MR would be more
likely.

The difficulty in experimentally implementing noninvasive
protocols along with the critiques of their noninvasiveness
suggests that it remains of interest to implement alternative
approaches. In striving for this aim we perform the first
implementation of the continuous in time velocity measure-
ment (CTVM) protocol [19] and, for comparison, also im-
plement the current benchmark technique of ideal negative
measurements (INMs) [4]. The CTVM and INM methods are
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formulated on very different sets of assumptions, and so they
provide different perspectives on noninvasiveness. Since these
models’ assumptions differ so widely, their agreement on the
outcome of the measured results will provide a much stronger
argument for the noninvasiveness of either protocol.

Common to most methods for measuring the correlation
function is the need to conduct a pair of measurements at
successive times. Such models carry the potential source of
invasiveness from the earlier measurement affecting the later
one. The CTVM protocol avoids this feature. It arose from
the general observation that the correlation function depends
only on whether Q takes the same sign or opposite signs at the
initial and final times [27]. This in turn depends on how many
sign changes Q(t ) makes during the given time interval. Of
course, it could change sign many times in general. However,
we make the simplifying assumption that in the vast majority
of histories, Q(t ) changes sign only once. This assumption
may seem like a rather restrictive one, but it has been argued
that there is in fact a regime in which this assumption is rea-
sonable [19]. A single sign change can then be registered us-
ing a weakly coupled “waiting detector,” which is designed to
click if Q(t ) changes sign, but otherwise remains unchanged.
Because this protocol involves just a single interaction at some
(unknown) time during the given time interval, it is essentially
noninvasive, since there are no later measurements to disturb.
The only possible source of invasiveness is that the single
interaction with the detector when Q changes sign may cause
Q to change sign a second time and hence to interact with
the detector a second time yielding a false detector result.
However, as argued in Ref. [19], for a weakly interacting
detector, the probability for this happening is considerably
smaller than the single click probability we seek.

The waiting detector is readily modeled by assuming that
the primary system may be assigned a velocity v = Q̇ and
then weakly coupling this to an ancilla with which it interacts
continuously in time. It is readily shown that the ancilla then
responds to the quantity

∫ t j

ti

v(t ) dt = Qj − Qi. (13)

From this, the correlation function is then readily found from
the formula

〈[Qj − Qi]
2〉 = 2(1 − Ci j ). (14)

The existence of a velocity is an assumption stronger than
what is normally supposed in LG tests (which typically take
a “black box” approach to the system and its dynamics as
much as possible), but in practice LG tests are carried out on
specific systems for which a velocity is readily identified. We
will discuss the above two assumptions in more detail in what
follows.

The quantum-mechanical implementation of such a pro-
tocol will require a Hamiltonian which reflects the charac-
teristics outlined above. We consider the previously defined
spin model with H = ωX̂/2 and operator Q = Ẑ . We also
define a velocity operator Q̇ = ωŶ . The total system-detector
Hamiltonian then for the system (S) and ancilla (A) is

HD = ω

2
XS ⊗ IA + λωYS ⊗ XA. (15)

The first term represents the evolution under the desired
Hamiltonian of the system, and the second term represents the
coupling of the velocity operator with X on the ancilla, where
λ corresponds to the strength of the coupling. The X gate acts
as a flipping operator on the ancilla when the ancilla is in the Z
basis. The ancilla will be initialized to the +1 eigenstate of Z
(|0〉) that flips to the −1 eigenstate of Z (|1〉) when Q changes
sign.

The value of Ci j can be extracted from the final value
of the ancilla. First, note that H2

D = (�2/4)I , where � =
ω

√
1 + 4λ2. From this it is easy to show that

e−iHDt = cos

(
�t

2

)
I − 2i

�
sin

(
�t

2

)
HD. (16)

The total state of the system at time t is then

|�t 〉 = e−iHDt (|ψ〉 ⊗ |0〉)

= Â0(t )|+〉 ⊗ |0〉 + Â1(t )|+〉 ⊗ |1〉
for

Â0(t ) = cos

(
�t

2

)
IS − iω

�
sin

(
�t

2

)
XS, (17)

Â1(t ) = −2iλω

�
sin

(
�t

2

)
YS; (18)

thus the probability of the ancilla being in the state |1〉 after a
time t evolution is

p(1) = 〈+|Â1(t )†Â1(t )|+〉 (19)

= 2λ2ω2

�2
[1 − cos(�t )]. (20)

For a sufficiently small λ,

p(1) ≈ 2λ2[1 − cos(ωt )] (21)

= 2λ2(1 − C12). (22)

Thus, Ci j can be calculated with a single measurement that
determines the probability of Q changing signs over the time
interval [ti, t j].

C. Two regimes of interest

In this work we carry out two sets of experiments which
explore the two regimes of LGI violations of greatest inter-
est (see Table I). In both sets of experiments the require-
ment of noninvasiveness is primarily accomplished by using
ideal negative measurements. However, in the second set of
experiments the CTVM protocol is also implemented for
comparison.

1. First set of experiments

As mentioned, the goal of the first set of experiments is
to demonstrate a violation of the LG2s while the LG3s are
satisfied. We will first consider the requirement of satisfying
the LG3s. As was shown in Fig. 1, for the case of equidistant
time intervals, the LG3s will be satisfied only for ωt = n π

2
for n ∈ Z. Still for the case of nonequidistant time intervals,
the LG3s are only satisfied for discrete values of ωt . Thus,
to experimentally satisfy the LG3s we will require a means
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TABLE I. An overview of the goal of each set of experiments
in this work. The check marks indicate that the specified set of
inequalities are all satisfied, while the crosses indicate that they
are violated. The check marks are also used to designate which
measurement protocol is being implemented (either INM or CTVM).

Experiments LG3s LG2s INM CTVM

Previously tested

Set 1

Set 2a

Set 2b

of widening the range of values of ωt in which the LG3s are
satisfied.

As shown by Athalye et al. [28], this may be accomplished
by taking advantage of the small amount of decoherence natu-
rally present in the system due to the unavoidable interactions
with the surroundings. The decoherence dampens the magni-
tude of the correlation functions with time as shown in Fig. 2.
This will in turn dampen the LG3s [Eqs. (8) and (9)] as shown
in Fig. 3. This gradual dampening leads to progressively larger
ranges of ωt , centered around multiples of ωt = π

2 , in which
the LG3s are satisfied (above the LGI bound). An alternative
approach here would be to explore definitions of MR which
work with the four-time LG inequalities [15] (LG4s), instead
of the LG3s, since these do in fact have nontrivial regimes in
which all LG4s are satisfied (although involve more measure-
ments). This will be explored elsewhere. The next question
is then—Do there exist parameters in these ranges of ωt in
which the LG2s can still be violated even when accounting
for the effect of the decoherence on the LG2s?

Unlike the LG3s, the LG2s also depend on the initial state,
ρ = 1

2 (I + 	v · 	σ ), in addition to the value of ωt . This is due
to the LG2s [Eq. (12)] being functions of 〈Qi〉. For our spin
model the 〈Qi〉 is equal to

〈Qi〉 = tr[eiHti Ze−iHtiρ] (23)

= tr[Ze−iωtiX ρ] (24)

= tr

{
[cos(ωti )Z + sin(ωti )Y ]

1

2
(I + 	v · 	σ )

}
(25)

= vz cos(ωti ) + vy sin(ωti ). (26)

FIG. 2. A simulation of the effect of the decoherence on the
correlation functions as a function of ωt .

FIG. 3. Equations (8) and (9) are plotted with the dampening
effect of the decoherence. As ωt increase the LG3s gradually have
larger regions in which they exist above the LGI bound. The deco-
herence is exaggerated for clarity.

Thus, for any choice of ωt one can search over all possible
initial states to find parameters in which the LG2s are satisfied.
The results of such a search for ωt = π/2 are presented in
Fig. 4. Of the possible initial states generated from such a
search, we choose one which is experimentally simple to
prepare. The state

ρ1 = 1

2

(
I + Y√

2
+ Z√

2

)
(27)

satisfies these criteria.
Having chosen an initial state ρ1 and ωt = π/2, the effect

of the decoherence on the LG2s and the LG3s can be sim-
ulated [29]. A segment of the results of such a simulation
are provided in Fig. 5. Figure 5 depicts the existence of a
regime in which the LG2s are violated (exist below the LGI
bound) and the LG3s are satisfied (exist above the bound). In
this work we use a delay of 0.1 s between each measurement
interval to achieve the desired dampening effect. The details
of how this is achieved are provided in Sec. III.

FIG. 4. The results of a search over the values of vy, vz for which
all LG2s are, or are not, satisfied for ωt = π/2. The blue region (dark
gray labeled A) depicts the initial states in which the LG2s are all
satisfied, the red region (gray labeled B) the states in which the LG2s
are not satisfied, and the gray (light gray labeled C) depicts initial
states which do not exist (i.e., outside the bound of v2

y + v2
z � 1).
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FIG. 5. One of the 12 LG2s and the LG3s [Eqs. (8) and (9)] are
plotted as functions of ωt with the effect of the decoherence. The
figure shows that there exists a region of ωt in which at least one
of the LG2s is violated (exists below the bound) while the LG3s are
satisfied (exist above the bound). The same decoherence parameter
is used as in Fig. 3.

2. Second set of experiments

The second set of experiments has two goals. The first
is to demonstrate a violation of the LG3s while the LG2s
are satisfied. As discussed, the LG3s are always violated
except for discrete choices of ωt . Of the possible values of ωt
available to us we will choose, as will be justified in Sec. III B,
ωt = 3π/10. As was done for the previous set of experiments,
a search is performed over the possible values of vy, vz to find
the regions in which the LG2s are all satisfied. Again, for
experimental ease we will select one that is experimentally
simple to prepare,

ρ2 = 1

2
[I + (0.951)X + (0.309)Z]. (28)

This choice of initial state and ωt will provide a set of initial
conditions which will violate the LG3s and satisfy the LG2s
as desired.

The second set of experiments has the additional goal of
implementing the CTVM protocol. This was not done in the
first set of experiments since the CTVM protocol requires
a much smaller value of ωt than those available to choose
from in the first set of experiments. In the second set of
experiments the ωt , as we show in Sec. III B, is sufficiently
small for implementing the CTVM protocol. Thus in the
second set of experiments the CTVM and INM protocols
are both implemented, and a comparison of the results is
performed.

III. EXPERIMENTAL DESIGN

All the experiments performed in this work are carried out
at 298 K on a Bruker DRX spectrometer with a nominal 1H
frequency of 700 MHZ. The NMR sample consisted of 13C-
chloforom dissolved in acetone to produce a heteronuclear
two-spin system. The 1H was used as the ancilla qubit, and
the 13C was used as the primary qubit. Both spins were placed
on resonance so that the Hamiltonian consisted of only the
spin-spin coupling, which has a value of 215.15 Hz. The
measured relaxation times were T1 = 6.63 s and T2 = 0.76 s

for 1H and T1 = 8.66 s and T2 = 1.10 s for 13C. An interscan
delay of 90 s was used to ensure that the spins began each
experiment close to their thermal state.

Furthermore, a point can be made clearer regarding the
primary qubit in question. In NMR experiments it is not
guaranteed, nor is it necessary, that the “same” collection of
nuclei are to be measured in each run of the experiment. In
NMR experiments the nuclei are distinguished by their Lar-
mor frequencies. Since all the 13C nuclei in this sample have
identical Larmor frequencies, they are thus indistinguishable
from one another. As such, the fair sampling assumption in
these terms is justified.

A. Ideal negative measurement

In both the first and second set of experiments we require
implementing the INM protocol. In the INM protocol the an-
cilla is coupled to only one of the two measurement outcomes.
If an experiment is performed and the ancilla changes states,
then those measurements are discarded. If the ancilla does not
change states, then it can be inferred that the system was in
the orthogonal space and those results are kept. This entire
procedure is then repeated with the ancilla being coupled to
the other measurement outcome. This protocol thus provides
a macroscopic argument for the system-ancilla interaction not
being a potential source of invasiveness.

Before describing the full details of the INM, we first con-
sider a general qubit that is evolving in time and is measured
along Ẑ at times ti, t j . This system begins in some initial state
ρ at time 0 and evolves freely for time ti. The state ρ at time ti
can be written generally as

ρi =
[

a b
b∗ 1-a

]
, (29)

where a is real, b is complex, and a(1 − a) � |b|2 (with the
equality for a pure state). At this time the first measurement of
Z is conducted, and the states |0〉 and |1〉 will be returned with
probabilities a and (1-a), respectively. Once the measurement
is completed the state will update to |0〉〈0| or |1〉〈1| depending
on the measured out come. The system then evolves freely
again until time t j . This second evolution can be written
generally as the mapping between states

|0〉〈0| →
[

a′ b′
b′∗ 1-a′

]
, |1〉〈1| →

[
a′′ b′′
b′′∗ 1-a′′

]
.

At this point the second measurement of Z is conducted.
If the measurement outcome at ti was |0〉 then the states |0〉
and |1〉 will be returned at t j with probabilities a′ and (1-a′),
respectively. If the measurement outcome at ti was |1〉 then
the states |0〉 and |1〉 will be returned at t j with probabilities
a′′ and (1-a′′) respectively. Thus the two-times probabilities
p12(si, s j ) for all possible measurements are equal to

p12(+,+) = aa′, p12(+,−) = a(1-a′),

p12(−,+) = (1-a)a′′, p12(−,−) = (1-a)(1-a′′),

and, using Eq. (1), the correlation function can be written as

Ci j = aa′ − a(1-a′) − (1-a)a′′ + (1-a)(1-a′′). (30)
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FIG. 6. The quantum circuit used for implementing the INM
protocol. The evolutions U (ti ) = e−iHti and U (t j − ti ) = e−iH (t j−ti )

behave exactly as defined in Sec. III A.

It is shown in Appendix A that the diagonal entries of
the final output of the circuit in Fig. 6 are precisely
aa′, a(1-a′), (1-a)a′′, and (1-a)(1-a′′). Thus a single mea-
surement of these diagonal entries can be done to determine
Ci j .

This procedure to measure Ci j can be modified to imple-
ment the INM protocol. From a macrorealistic perspective the
primary system in Fig. 6 would be completely undisturbed
before being measured, were it not for the potential interac-
tions with the controlled NOT (CNOT) gate. However, from this
perspective the ancilla does not interact with the CNOT gate if
the primary system is in the state |0〉. Therefore, to implement
a noninvasive protocol the experiment is run twice. Once is
when the experiment is run with the CNOT gate and only the
results in which the primary system was in the state |0〉 are
kept [p12(+,+) and p12(+,−)]. Then the experiment is run
again with an anti-CNOT gate and only the results where the
primary system was in the state |1〉 are kept [p12(−,+) and
p12(−,−)]. Together these two experiments provide all the
information necessary to determine Ci j . Appendix B shows
that the numerical result from this measurement procedure
matches the theoretical result of Ci j = cos[ω(t j − ti )] for the
simple spin model.

B. Continuous in time velocity measurements

As mentioned, the second set of experiment will also im-
plement the CTVM protocol. The successful implementation
of this protocol will require selecting values of λ and ωt
which

(1) Minimize the error from multiple sign changes of Q
(2) Justify the approximation made to determine Ci j

(3) Minimize the effect of the back action
(4) Produce a detectable signal.
The first condition depends only on the choice of ωt , the

second condition depends only on the choice of λ, and the
last two conditions will depend on both. Our objective in this

FIG. 7. The probability of Q undergoing multiple sign changes
as a function of ωt .

FIG. 8. The probability of error from the back action of the
ancilla on the system as a function of λ and ωt .

section is to present a procedure which identifies a choice
of parameters that suitably minimize the sources of error to
faithfully implement the CTVM protocol.

1. Single sign change

Given that the LGIs are designed to rule out certain types
of hidden variable models, we need to assess the assumption
of a single sign change of Q from that perspective as well as
from a quantum mechanical one. As shown in Ref. [19], in a
simple hidden variable model, the value of Q(t ) is determined
by the direction of a unit vector rotating around a single axis.
Our system is evolving under the Hamiltonian H = ωX/2,
i.e., the vector representing the state is rotating with frequency
ω around the x axis. If the vector lies in the half of the
hemisphere corresponding to Q = +1, then the vector can
rotate into the opposite hemisphere but not come back out
if the total time of the evolution is less than π/ω. Since the
measurements are made at regular time intervals, t (t3 − t2 =
t2 − t1 = t ), then the longest time which we require only one
sign change to occur in is 2t (for determining C13). Thus in a
simple hidden variable description of the system there will be
a maximum of one sign change if ωt � π/2.

FIG. 9. The values of λ and ωt for which the value of p(1) from
Eq. (41) is greater than 0.01 are highlighted in blue.
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FIG. 10. The effect of the different values of λ on the LG3s.

Since we expect our system to conform to the laws of quan-
tum mechanics, we can use a quantum model to determine
the fraction of histories where Q will have two sign changes.
By using H = ωX/2, Q = Z and defining the Z eigenstates
by |±〉, the probability that Q takes values of +1,−1,+1 at
times 0, t, 2t is

p123(+,−,+) = |〈+|e−iHt |−〉|2|〈−|e−iHt |+〉|2 (31)

= sin4

(
ωt

2

)
, (32)

and similarly the probability that Q takes the value of +1 at
all times to be

p123(+,+,+) = cos4

(
ωt

2

)
, (33)

which gives us the ratio of paths with two sign changes to
paths with none as

p123(+,−,+)

p123(+,+,+)
= tan4

(
ωt

2

)
. (34)

This probability is plotted as a function of ωt in Fig. 7.

2. Ci j approximation

In the derivation of the correlation functions an approxima-
tion is necessarily made that√

1 + 4λ2 ≈ 1. (35)

The degree of the accuracy of this approximation can be
considered as another probability of error. To stay true to the
spirit of the CTVM protocol we will need to choose a λ for
which this approximation is reasonable.

3. Back action

As mentioned before we must consider the potential effect
of the back action from the ancilla on the system. Consider the
probability that an experiment is conducted for time 2t where
the expected result for the ancilla is |1〉 (i.e., one sign change)
but due to the effect of back action the detected result is |0〉.
The probability that the ancilla is in the state |0〉 → |1〉 → |0〉
at times 0, t, 2t follows from Eq. (17) to be

P|0〉→|1〉→|0〉 = 〈ψ |(Â1(t )†Â1(t ))2|ψ〉 (36)

= 16λ4 sin4

(
ωt

2

)
; (37)

similarly the probability that the ancilla is in the state |0〉 →
|1〉 → |1〉 at times 0, t, 2t is

P|0〉→|1〉→|1〉 = 〈ψ |[Â0(t )†Â1(t )]2|ψ〉 (38)

= 4λ2 sin2

(
ωt

2

)
, (39)

and the ratio of these probabilities is

P|0〉→|1〉→|0〉
P|0〉→|1〉→|1〉

= 4λ2 sin2

(
ωt

2

)
. (40)

This probability of error from the back action [Eq. (40)] is
plotted as a function of λ and ωt in Fig. 8.

4. Detectable signal

For the last two conditions that we considered it was
most favorable to minimize λ to the furthest degree possible.
Unfortunately, as λ decreases so too will the probability of
measuring the value of p(1) that is required for determining
Ci j . If p(1) is too small, then it cannot be accurately measured.
The error on the measurement can be limited to occur on the
third decimal place with the use of multiple scans, so we will
restrict p(1) � 0.01. Since experiments are conducted at both
time t and 2t we need to consider two values of p(1):

p(1)t = 〈1|[Tr1(e−iHtρeiHt )]|1〉, (41)

p(1)2t = 〈1|[Tr1(e−2iHtρei2Ht )]|1〉. (42)

It is easy to check algebraically that Eq. (41) is strictly less
than Eq. (42). Intuitively this is also straightforward, since a
longer time of coupling between the system and the ancilla
can lead only to a greater probability of flipping the ancilla.
Thus we need only to consider the lower bound on Eq. (41).
The values of λ and ωt in which Eq. (41) is greater than 0.01
are plotted in Fig. 9.

FIG. 11. The pulse sequence used for producing the pseudo-pure state. X (n) and Y (n) depict rotations of n radians around the X and Y axis
(X (n) = e−iX n

2 and Y (n) = e−iY n
2 ). ZZ (n) depicts the free evolution of the system that will provide an n radian rotation of ZZ (ZZ (n) = e−iZZ n

2 ),
and G represents the application of a gradient.
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FIG. 12. A pulse sequence for implementing the CNOT gate in
NMR. The full sequence will be referred to as Uc.

Our approach in addressing these different conditions was
to first prioritize justifying the approximation from Eq. (35) to
stay true to the spirit of the initial CTVM proposal. As shown
in Fig. 9, as our choice of λ decreases, our choice of ωt must
subsequently increase to maintain having a detectable signal.
Subsequently, as depicted in Fig. 7, our value of ωt can only
increase so much before the error of multiple sign changes
becomes too large. Last, as was mentioned, the probability of
error from the back action remains significantly smaller than
the other sources of error for the range of ωt and λ which
are feasible. With these considerations in mind we choose
a λ = 0.11 and ωt = 3π/10. This provides a probability of
error from multiple sign changes of ≈0.067, a probability of
error from the back action of ≈0.01, the approximation of√

1 + 4λ2 = 1 being satisfied to within 0.02 and the produc-
tion of a detectable signal.

5. Bounds on the violation

A final consideration that we must make is the effect of
our choice of parameters on the LG3 violation. As noted,
the derivation of the correlation functions with the CTVM
protocol requires the approximation

√
1 + 4λ2 ≈ 1. The the-

oretical values for Ci j from the CTVM protocol will differ
to some extent from the ideal values of Ci j = cos(ωt ). The
larger this difference is, the greater of a violation of the
LG3s we must have for the source of this violation to not be
caused by the approximation. Figure 10 compares the LG3s
constructed using the ideal Ci j with those constructed using
the theoretical correlation functions of the CTVM protocol for
different choices of λ. For the first LG3 in Fig. 10 the greater
values of λ create larger violations of the inequality, but for the
second LG3 the opposite is true. Thus, we need to worry only
about potential violations coming from nonzero λ for the first
case. For our choice of λ = 0.11 and ωt = 3π/10 the LG3 is
0.0028 less than the ideal value. So to have a violation of the
LG3s we will need to use a bound of −0.0028 instead of 0.

The analysis of the possible errors coming from more than
one sign change or from back reaction are purely theoretical
estimates. However, given that the single sign change assump-
tion is key to the CTVM method, it would clearly be of interest
to check it using a set of control experiments in which the
relevant quantities such as Eqs. (34) and (40) are determined

FIG. 13. A pulse sequence for implementing the time delay
while undoing the effect of the j coupling. D( aτ

2 ) depict waiting for
time aτ

2 . The full sequence will be referred to as Daτ .

FIG. 14. The pulse sequence used to implement the system-
detector evolution. The parameters α1 = 4.9751, β1 = 1.8335, and
γ1 = 0.1035 are used for implementing Uv1, and the parameters α2 =
5.2433, β2 = 2.1018, and γ2 = 0.1998 are used for implementing
Uv2.

experimentally. We do not do this here, but it will be pursued
in future works.

C. Pulse sequences

In this subsection we will outline the pulse sequences
for the two sets of experiments. In total, this will consist
of 21 different pulse sequences that are each composed of
a combination of 20 to 30 different individual pulses, free
evolutions, and gradients. We first group together different
pulse sequences into components and label these components
according to their function. We then use these components to
construct pulse sequences which are easier to interpret.

1. Components

The first component of each experiment will be a pulse
sequence for preparing the pseudo-pure state (pps) [30,31].
The pps is the analog of the |0〉⊗n state for NMR experiments.
The pulse sequence used to prepare the pps in this work is
given in Fig. 11, and we define this component as P . Preparing
the pps is the first step in preparing our desired initial states.
Recall in Sec. II C that we chose to use pure initial states;
this was done since a pure state can be prepared from the
pps with a single pulse. Preparing the state ρ1 [Eq. (27)], for
the first set of experiments, requires preparing the pps and
then performing a X ( −π

4 ) rotation, and we define this entire

FIG. 15. The first set of experiments. Experiments 1–3 are used
to measure the values of 〈Qi〉, and experiments 4–9 are used to
measure the values of Ci j using the INM protocol.
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FIG. 16. The second set of experiments. Experiments 10–12 are
used to measure 〈Qi〉, experiments 13–18 are used to measure the
values of Ci j using the INM protocol, and experiments 19–21 are
used to measure the values of Ci j using the CTVM protocol.

procedure as

P1 ≡ (P )
[
X ( −π

4 ) ⊗ I
]
. (43)

Likewise, preparing the state ρ2 [Eq. (28)], for the second set
of experiments, requires preparing the pps and then perform-
ing a Y ( 2π

5 ), and we define this entire procedure as

P2 ≡ (P )
[
Y ( 2π

5 ) ⊗ I
]
. (44)

Thus the components P1 and P2 represent the full preparation
procedures for the first and second set of experiments, respec-
tively.

The implementation of the INM protocol broadly consists
of two components. The first is the CNOT and anti-CNOT gates.
The pulse sequence used to implement the CNOT in this work
is given in Fig. 12, and we define this component as Uc.
The anti-CNOT can be performed by implementing Uc with a
preceding and succeeding X (π ) on the first qubit. We define
this sequence for implementing the anti-CNOT as

Uac ≡ (X (π ) ⊗ I )(Uc)(X (π ) ⊗ I ). (45)

The second component for the INM protocol consists of the
evolution of the system between measurements. For a system
with a Hamiltonian H = ωX being measured at equidistant
time intervals the system will undergo a X (ωt ) or X (2ωt )

TABLE II. The values of 〈Qi〉 and Ci j that are determined from
the experimental data from the first and second set of experiments
[Ideal simulation (I); Noisy simulation (N); Experimentally deter-
mined (E)].

I N E

First Set of Experiments

Expectation values

〈Q1〉 0.71 0.70 0.69 ± 0.02
〈Q2〉 0.45 0.45 0.43 ± 0.02
〈Q3〉 −0.61 −0.60 −0.58± 0.02

Correlators (INM)

C12 0.00 0.00 −0.01 ± 0.02
C23 0.00 0.00 −0.01 ± 0.02
C13 −0.86 −0.86 −0.83 ± 0.02

Second Set of Experiments

Expectation values

〈Q1〉 0.31 0.31 0.30 ± 0.02
〈Q2〉 0.18 0.18 0.18 ± 0.02
〈Q3〉 −0.10 −0.09 −0.06 ± 0.02

Correlators (INM)

C12 0.59 0.59 0.57 ± 0.03
C23 0.59 0.59 0.56 ± 0.02
C13 −0.31 −0.31 −0.29 ± 0.02

Correlators (CTVM)

C12 0.59 0.54 0.52 ± 0.07
C23 0.59 0.54 0.51 ± 0.08
C13 −0.29 −0.28 −0.24 ± 0.08

evolution between measurements. These evolutions can be
implemented with a single Pauli rotation, and this is how we
implement these evolutions in the second set of experiments.
However, in the first set of experiments we also require the
system to experience the effect of the decoherence as well
during the evolution between measurements. This is done by
implementing a time delay. During the time delay the system
will also evolve according to its natural Hamiltonian. Since
both spins are placed on resonance, this natural Hamiltonian
will consist of only the j-coupling term. We undo the effect
of the j coupling through the use of π pulses. After the
decoherence is implemented in this fashion for a time τ ,
a Pauli rotation can then be used to implement the X (ωt )
or X (2ωt ) evolution. This entire component is depicted in
Fig. 13 and is labeled as Daτ .

Additionally, the pulse sequence for implementing the
CTVM protocol will also require its own components. Be-
sides the preparation P2 it will also require a component for
implementing the system-detector setup for times t and 2t .
The Hamiltonian for the system-detector evolution was given
in Eq. (15) as HD. Thus, implementing the system-detector
evolution requires constructing a pulse sequence whose full
evolution is equal to Uv1 = e−iHDt for the coupling of time t
and another whose evolution is equal to Uv2 = e−2iHDt for the
coupling of time 2t . The pulse sequences for implementing
Uv1 and Uv2 are provided in Fig. 14. It is readily shown that the
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TABLE III. The values of the LG2s and LG3s constructed from the first set of experiments. The labels in green highlight which inequalities
were satisfied, and the labels in red highlight which were violated [Ideal simulation (I); Noisy simulation (N); Experimentally determined (E)].

INM

Label Inequality I N E

2.1 1 + 〈Q1〉 + 〈Q2〉 + C12 � 0 2.16 2.14 2.11 ± 0.03
2.2 1 − 〈Q1〉 + 〈Q2〉 − C12 � 0 0.75 0.75 0.75 ± 0.03
2.3 1 + 〈Q1〉 − 〈Q2〉 − C12 � 0 1.25 1.25 1.27 ± 0.03
2.4 1 − 〈Q1〉 − 〈Q2〉 + C12 � 0 −0.16 −0.14 −0.13 ± 0.03
2.5 1 + 〈Q2〉 + 〈Q3〉 + C23 � 0 0.85 0.85 0.85 ± 0.03
2.6 1 − 〈Q2〉 + 〈Q3〉 − C23 � 0 −0.06 −0.05 0.00 ± 0.03
2.7 1 + 〈Q2〉 − 〈Q3〉 − C23 � 0 2.06 2.05 2.01 ± 0.03
2.8 1 − 〈Q2〉 − 〈Q3〉 + C23 � 0 1.15 1.15 1.14 ± 0.03
2.9 1 + 〈Q1〉 + 〈Q3〉 + C13 � 0 0.24 0.24 0.28 ± 0.03
2.10 1 − 〈Q1〉 + 〈Q3〉 − C13 � 0 0.54 0.56 0.57 ± 0.03
2.11 1 + 〈Q1〉 − 〈Q3〉 − C13 � 0 3.17 3.16 3.10 ± 0.03
2.12 1 − 〈Q1〉 − 〈Q3〉 + C13 � 0 0.04 0.04 0.05 ± 0.03
3.1 1 + C12 + C23 + C13 � 0 0.14 0.15 0.15 ± 0.04
3.2 1 − C12 − C23 + C13 � 0 0.14 0.14 0.18 ± 0.04
3.3 1 + C12 − C23 − C13 � 0 1.86 1.86 1.83 ± 0.04
3.4 1 − C12 + C23 − C13 � 0 1.86 1.86 1.83 ± 0.04

full evolution of these systems is equal to e−iHDt and e−2iHDt ,
respectively.

The NMR pulse sequences for the first and second set of
experiments can now be constructed using only the compo-
nents defined in this section.

2. First set of experiments

The first set of experiments (which look for violations of
LG2 with LG3s satisfied) consists of nine pulse sequences,
which are depicted in in Fig. 15. In experiments 1–3 the
initial state is prepared and the system is evolved for different
times before being measured. These measurements are used
to determine 〈Qi〉. The remaining experiments come in pairs,
4–5, 6–7, and 8–9. These experiments are used to determine
the correlations. In each pair of experiments the measurement
is done once with a CNOT gate and then once with an anti-CNOT

gate. These measurements are done for the three different
combinations of time intervals. For these experiments both
the system and the ancilla are measured. This two-qubit
measurement is used to determine Ci j as outlined in Sec. III A.

3. Second set of experiments

The second set of experiments (which looks for violations
of LG3 with LG2s satisfied) consists of 12 pulse sequences
which are depicted in Fig. 16. In experiments 10–12 the
initial state is prepared and the system is evolved for different
times before being measured. These measurements are used
to determine 〈Qi〉. Experiments 13–18 are used to determine
the correlators Ci j . The logic for how these measurements
are used to determine Ci j follows exactly from the first
set of experiments. In experiments 19–21 the initial state
is prepared and is then coupled to the ancilla through the
system-detector component for different time intervals. The
ancilla qubit is then measured to determine Ci j as outlined in
Sec. II B.

IV. EXPERIMENTAL RESULTS

The experimental data from the first and second sets of
experiments are provided in two tables in Appendix C. The
results from these two tables are used to calculate the values
of 〈Qi〉 and Ci j , which are provided in Table II. Table II
also includes two simulated values for comparison. The first
simulation, the ideal simulation, uses ideal pulses and assumes
the existence of no natural decoherence. The second simula-
tion, the noisy simulation, accounts for the added evolution
from the systems natural Hamiltonian while pulses are being
applied and approximates the effect of the natural decoherence
of the system. The procedure for determining the error bars

FIG. 17. The values of the LG2s and LG3s constructed from
the first set of experiments with their corresponding error bars. The
labels in green highlight which inequalities were satisfied, and the
labels in red highlight which were violated.

042325-11



SHAYAN-SHAWN MAJIDY et al. PHYSICAL REVIEW A 100, 042325 (2019)

TABLE IV. The values of the LG2s and LG3s constructed from the second set of experiments. The labels in green highlight which
inequalities were satisfied, and the labels in red highlight which were violated [Ideal simulation (I); Noisy simulation (N); Experimentally
determined (E)].

INM CTVM

Label Inequality I N E I N E

2.1 1 + 〈Q1〉 + 〈Q2〉 + C12 � 0 2.08 2.07 2.05 ± 0.04 2.08 2.03 2.01 ± 0.08
2.2 1 − 〈Q1〉 + 〈Q2〉 − C12 � 0 0.28 0.29 0.31 ± 0.04 0.28 0.33 0.35 ± 0.08
2.3 1 + 〈Q1〉 − 〈Q2〉 − C12 � 0 0.54 0.54 0.55 ± 0.04 0.54 0.58 0.59 ± 0.08
2.4 1 − 〈Q1〉 − 〈Q2〉 + C12 � 0 1.10 1.10 1.09 ± 0.04 1.10 1.06 1.05 ± 0.08
2.5 1 + 〈Q2〉 + 〈Q3〉 + C23 � 0 1.67 1.68 1.68 ± 0.03 1.68 1.63 1.61 ± 0.09
2.6 1 − 〈Q2〉 + 〈Q3〉 − C23 � 0 0.14 0.15 0.20 ± 0.03 0.13 0.19 0.24 ± 0.09
2.7 1 + 〈Q2〉 − 〈Q3〉 − C23 � 0 0.69 0.68 0.68 ± 0.03 0.69 0.73 0.73 ± 0.09
2.8 1 − 〈Q2〉 − 〈Q3〉 + C23 � 0 1.50 1.49 1.44 ± 0.03 1.50 1.45 1.40 ± 0.09
2.9 1 + 〈Q1〉 + 〈Q3〉 + C13 � 0 0.90 0.91 0.94 ± 0.03 0.92 0.94 1.00 ± 0.08
2.10 1 − 〈Q1〉 + 〈Q3〉 − C13 � 0 0.90 0.91 0.93 ± 0.03 0.89 0.88 0.88 ± 0.08
2.11 1 + 〈Q1〉 − 〈Q3〉 − C13 � 0 1.71 1.70 1.65 ± 0.03 1.69 1.67 1.60 ± 0.08
2.12 1 − 〈Q1〉 − 〈Q3〉 + C13 � 0 0.48 0.47 0.47 ± 0.03 0.50 0.51 0.53 ± 0.08
3.1 1 + C12 + C23 + C13 � 0 1.87 1.86 1.84 ± 0.04 1.89 1.81 1.80 ± 0.14
3.2 1 − C12 − C23 + C13 � 0 −0.48 −0.48 −0.42 ± 0.04 −0.47 −0.36 −0.28 ± 0.14
3.3 1 + C12 − C23 − C13 � 0 1.31 1.31 1.30 ± 0.04 1.29 1.28 1.25 ± 0.14
3.4 1 − C12 + C23 − C13 � 0 1.31 1.31 1.28 ± 0.04 1.29 1.28 1.23 ± 0.14

on these values for both sets of experiments is outlined in
Appendix D.

The values of the 〈Qi〉 and Ci j were used to determined the
LG2s and LG3s for the two sets of experiments. The LG2s
and LG3s for the first set of experiments are listed in Table III
and plotted in Fig. 17. Likewise, the LG2s and LG3s for the
second set of experiments are listed in Table IV and plotted in
Fig. 18.

The key points of the experimental results are as follows:
As seen in Table III and Fig. 17, in the first set of experiments

FIG. 18. The values of the LG2s and LG3s constructed from the
second set of experiments with their corresponding error bars. The
labels in green highlight which inequalities were satisfied, and the
labels in red highlight which were violated.

the LG3s (labeled 3.1–3.4) were all satisfied, and two of the
LG2s (2.4 and 2.6) were violated. The violation of 2.4 is much
more significant than that of 2.6, and since we require only one
LG2 to be violated, we will focus on 2.4 as the violation of the
LG2s. Furthermore, as seen in Table IV and Fig. 18, for the
second set of experiments the LG2s (labeled 2.1–2.12) were
all satisfied, and one of the LG3s (3.2) was violated. These two
results experimentally demonstrate that neither the LG2s or
LG3s are sufficient conditions for macrorealism. Additionally,
for the second set of experiments both the CTVM and INM
protocols were implemented and gave comparable results for
the values of Ci j . These two protocols also provided the
same violation and satisfaction of the corresponding LG2s
and LG3s and thus give the same qualitative conclusion. As
calculated in Sec. III B, the LG3 violation for the CTVM
protocol must violate the LGI bound by an extra value of
0.0028 for the violation to not be a result of the strength of
the coupling constant, which it does.

V. CONCLUSION

The purpose of this work was twofold: to provide a more
complete test of macroscopic realism using an augmented LG
framework and to implement an alternative type of nonin-
vasive measurement protocol and compare it to the standard
ideal negative measurement protocol. To date, LGI exper-
iments have tested a set of conditions for MR formulated
entirely in terms of temporal correlation functions at three
pairs of times. These conditions for MR are necessary but
not sufficient. The augmented LG inequalities considered here
include an additional set of two-time inequalities which also
involve the averages, 〈Qi〉, and lead to a set of conditions
which are both necessary and sufficient. In this work we
showed how these conditions for MR could be tested experi-
mentally. We exhibited experimentally situations in which the
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LG2s were satisfied but the LG3s violated, a natural parallel to
the Bell case. We also exhibited situations in which the LG3s
were satisfied but the LG2s violated, the key case in which the
original LG framework based solely on LG3s fails to pick up
violations of MR. Any future LG experiments should aspire to
consider necessary and sufficient conditions for macrorealism,
since a failure to violate the LG3s alone cannot guarantee that
a system can be described macrorealistically.

In this work we also performed an implementation of the
continuous in time velocity measurement protocol for deter-
mining correlation functions, a noninvasive technique very
different to the usual ideal negative measurement protocol
and with the advantage that it involves a different set of
assumptions. First, it assumes that enough is known about
the system to be able to identify the velocity corresponding
to Q. Second, it assumes that the time intervals involved are
sufficiently short so that, to a high probability, Q will change
sign only once. Last, it assumes that the coupling between
the primary system and detector is sufficiently small that the
back reaction of the detector on the future system dynamics is
negligible. We argued that these three assumptions are easy to
justify in the system we studied. In particular there is a regime
in which they are satisfied in which there are also significant
violations of the LG inequalities. Furthermore, we also found
that in its domain of validity, the CTVM protocol agreed with
the ideal negative measurement protocol.

A natural improvement of the CTVM protocol would be to
use a detector with more than the two states used here. This
would decrease the probability of error from multiple sign
changes. This will be explored in future works.

We would like to point out that the main outcomes of
this work are (1) an experimental implementation of a set of
conditions for macrorealism using the LG2s and LG3s which,
unlike earlier tests, are together necessary and sufficient con-
ditions for macrorealism and (2) the experimental implemen-
tation of an alternative approach to the noninvasive measure-
ment of correlation functions formulated on a different set
of assumptions to the traditional ideal negative measurement
approach, and a confirmation that the two approaches agree.
This work was not intended as an advance towards the goal of
macroscopicity, but this clearly remains an important goal for
future LG experiments.
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APPENDIX A: MEASURING CORRELATIONS FROM INM

In this section we demonstrate that the diagonal entries of
the final output of the circuit in Fig. 6 are precisely the values
aa′, a(1-a′), (1-a)a′′, and (1-a)(1-a′′) that are required to
determine the correlation functions.

We begin with an initial system that is evolving in time,
coupled to the ancilla which is in the state |0〉〈0|. After

evolving for some time ti, this system is in the state

ρ1 = U (ti )ρU (ti )
† ⊗ |0〉〈0| (A1)

=
[

a b
b∗ (1 − a)

]
⊗ |0〉〈0| (A2)

=

⎡
⎢⎣

a 0 b 0
0 0 0 0
b∗ 0 1 − a 0
0 0 0 0

⎤
⎥⎦, (A3)

and the system then undergoes a CNOT,

ρ2 = CNOTρ1CNOT† (A4)

=

⎡
⎢⎣

a 0 0 b
0 0 0 0
0 0 0 0
b∗ 0 0 1 − a

⎤
⎥⎦, (A5)

before evolving again for time t j − ti. Written most generally
this evolution maps[

1 0
0 0

]
→

[
a′ b′
b′∗ (1 − a′)

]
,

[
0 0
0 1

]
→

[
a′′ b′′
b′′∗ (1 − a′′)

]
.

The evolution of the states |0〉〈1| and |1〉〈0| will not effect the
outcome of the diagonal elements, so we will drop these terms
here. The evolution U (t j − ti ) will thus map the diagonal
elements of p2 to ρ3 as

ρ2 =
[

1 0
0 0

]
⊗

[
a 0
0 0

]
+

[
0 0
0 1

]
⊗

[
0 0
0 (1 − a)

]
,

(A6)

ρ3 =
[

a′ b′
b′∗ (1 − a′)

]
⊗

[
a 0
0 0

]

+
[

a′′ b′′
b′′∗ (1 − a′′)

]
⊗

[
0 0
0 (1 − a)

]
. (A7)

Again, by considering just the diagonal terms, this becomes

ρ3 =

⎡
⎢⎣

aa′ 0 0 0
0 a(1 − a′) 0 0
0 0 (1 − a)a′′ 0
0 0 0 (1 − a)(1 − a′′)

⎤
⎥⎦.

(A8)

Thus, the diagonal terms of the final state from Fig. 6 are
equivalent to the two-time probabilities required to determine
the correlations Ci j .

APPENDIX B: THEORETICAL RESULT OF INM

In this Appendix we demonstrate that the numerical result
from the INM procedure outline in Sec. III A matches the ideal
results of Ci j = cos[ω(t j − ti )] for the simple spin model.

We again consider our simple spin model, where the pri-
mary system evolves according to H = ωX/2 and so U (ti ) =
e−iωXti/2. The two circuits required to implement the INM
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FIG. 19. The two quantum circuits used to implement the INM
procedure.

protocol are given in Fig. 19. We will first consider the CNOT

circuit. At time ti the system exists in the general state

ρ(ti ) ⊗
[

1 0
0 0

]
=

[
a b
b∗ (1 − a)

]
⊗

[
1 0
0 0

]
, (B1)

and the initial state then undergoes the CNOT evolution to
arrive at the state

ρ2 = CNOT

(
ρ(ti ) ⊗

[
1 0
0 0

])
CNOT†

=

⎡
⎢⎣

a 0 0 b
0 0 0 0
0 0 0 0
b∗ 0 0 1 − a

⎤
⎥⎦. (B2)

The system then, from time t j − ti ≡ t , undergoes the evolu-
tion

U (t ) ⊗ I = e−iωXt/2 ⊗ I (B3)

= cos

(
ωt

2

)
II − i sin

(
ωt

2

)
XI (B4)

to arrive at the state ρ3 [c ≡ cos ( ωt
2 ), s ≡ sin ( ωt

2 )]:

ρ3 =

⎡
⎢⎣

c 0 -is 0
0 c 0 -is
-is 0 c 0
0 -is 0 c

⎤
⎥⎦

×

⎡
⎢⎣

a 0 0 b
0 0 0 0
0 0 0 0
b∗ 0 0 1 − a

⎤
⎥⎦

⎡
⎢⎣

c 0 is 0
0 c 0 is
is 0 c 0
0 is 0 c

⎤
⎥⎦ (B5)

=

⎡
⎢⎢⎣

ac2 ibcs iacs bc2

−ib∗cs −(a − 1)s2 b∗s2 i(a − 1)cs
−iacs bs2 as2 −ibcs
b∗c2 −i(a − 1)cs ib∗cs −(a − 1)c2

⎤
⎥⎥⎦, (B6)

and by measuring the diagonal terms we find

p(+,+) = ac2, p(+,−) = (1 − a)s2,

p(−,+) = as2, p(−,−) = (1 − a)c2.

Since these values were determined using the CNOT circuit,
to satisfy the INM protocol, only the p(+,+) and p(+,−)

results can be kept. It is easy to show that these calculations
can be repeated with the anti-CNOT circuit to find

ρ3 =

⎡
⎢⎣

c 0 -is 0
0 c 0 -is
-is 0 c 0
0 -is 0 c

⎤
⎥⎦

×

⎡
⎢⎣

0 0 0 0
0 a b 0
0 b∗ (1 − a) 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣

c 0 is 0
0 c 0 is
is 0 c 0
0 is 0 c

⎤
⎥⎦ (B7)

=

⎡
⎢⎢⎣

−(a − 1)s2 −ib∗cs i(a − 1)cs b∗s2

ibcs ac2 bc2 iacs
−i(a − 1)cs b∗c2 −(a − 1)c2 ib∗cs

bs2 −iacs −ibcs as2

⎤
⎥⎥⎦, (B8)

and by measuring the diagonal terms we find

p(+,+) = ac2, p(+,−) = (1 − a)s2,

p(−,+) = as2, p(−,−) = (1 − a)c2.

Since these values were determined using the anti-CNOT

circuit, to satisfy the INM protocol, only the p(−,+) and
p(−,−) results can be kept. Thus the correlation function is

Ci j = p(++) − p(+−) − p(−+) + p(−−) (B9)

= ac2 − (1 − a)s2 − as2 + (1 − a)c2 (B10)

= c2 − s2 (B11)

= cos

(
ωt

2

)2

− sin

(
ωt

2

)2

(B12)

= cos(ωt ) (B13)

= cos[ω(t j − ti )]. (B14)

Thus this provides the expected theoretical value for Ci j .

APPENDIX C: EXPERIMENTAL DATA

The experimental data from the first and second sets of
experiments are provided in this Appendix.

The results of the measurements from the first sets of
experiments are provided in Table V, and the results from the
second set of experiments are provided in Table VI. These
tables also provide the theoretically determined and simulated
results for comparison.

For the results of the first set of experiments either two or
four measured values are provided. This is because experi-
ments (1–3) were used for determining 〈Qi〉 and this requires
only measuring the diagonal values of the first qubits density
matrix. This can be seen by considering the measurement of
〈Qi〉 for a general state ρ(ti ) = [ a b

b∗ (1 − a)]:

〈Qi〉 = tr[Zρ(ti )] (C1)

= tr

(
Z

[
a b
b∗ (1 − a)

])
(C2)

= 2a − 1. (C3)
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TABLE V. The results of the first set of experiments. The two
diagonal elements of the systems qubit are recorded for experiments
1–3, while the four diagonal elements of the system and ancilla
qubits are recorded for experiments 4–9. These values are used to
determine 〈Qi〉 and Ci j as described in Sec. IV [Theoretical (T);
Simulated (S); Experimentally determined (E)].

T S E

Expectation values

(1) 0.85 0.85 0.84 ± 0.02
0.15 0.15 0.16 ± 0.02

(2) 0.73 0.72 0.71 ± 0.02
0.27 0.28 0.29 ± 0.02

(3) 0.20 0.20 0.21 ± 0.02
0.80 0.80 0.79 ± 0.02

Correlators (INM)

(4) 0.41 0.41 0.43 ± 0.02
0.09 0.09 0.09 ± 0.02
0.41 0.41 0.40 ± 0.02
0.09 0.08 0.09 ± 0.02

(5) 0.09 0.09 0.08 ± 0.02
0.41 0.41 0.39 ± 0.02
0.09 0.09 0.09 ± 0.02
0.41 0.41 0.44 ± 0.02

(6) 0.35 0.36 0.38 ± 0.02
0.14 0.15 0.12 ± 0.02
0.36 0.36 0.39 ± 0.02
0.14 0.14 0.11 ± 0.02

(7) 0.15 0.15 0.16 ± 0.02
0.36 0.36 0.33 ± 0.02
0.14 0.14 0.13 ± 0.02
0.36 0.35 0.38 ± 0.02

(8) 0.04 0.04 0.02 ± 0.02
0.16 0.16 0.13 ± 0.02
0.77 0.77 0.78 ± 0.02
0.03 0.03 0.07 ± 0.02

(9) 0.16 0.16 0.11 ± 0.02
0.04 0.04 0.04 ± 0.02
0.04 0.03 0.06 ± 0.02
0.77 0.77 0.79 ± 0.02

Experiments 6–9 required measuring the diagonal values
of both the system and the ancilla. This is because, as shown
in Sec. III A, only these values are necessary to determine Ci j .
Experiments 1–3 were used for determining Ci j . This requires,
as shown in Sec. III A, measuring only the diagonal values of
the density matrix of the system and ancilla.

Similarly, only two or four measured values are provided
for the second set of experiments as well. Since experiments
10–18 also use the INM protocol, the logic for providing two
or four values follows exactly as from experiments 1–9. On
the other hand, experiments 19–24 use the CTVM protocol.
Of these experiments, 19–21 are used to determine 〈Qi〉 in
identical fashion to the INM protocol, and as such again
require only two values. Unlike the INM protocol, the CTVM
protocol again requires only two values to determine Ci j . As
shown from Eq. (22) the value of Ci j for some general state

ρ(ti ) = [ a b
b∗ (1 − a)] can be determined from only the diagonal

TABLE VI. The results of the second set of experiments. The two
diagonal elements of the systems qubit are recorded for experiments
10–12, the four diagonal elements of the system and ancilla qubits
are recorded for experiments 13–18, and the two diagonal elements
of the ancilla qubit are recorded for experiments 19–21. The values
from experiments 10–12 are used to determine 〈Qi〉, the values from
experiments 13–18 are used to determine Ci j with the INM protocol,
and the values from experiments 19–21 are used to determine Ci j

with the CTVM protocol as described in Sec. IV [Theoretical (T)[
Simulated (S); Experimentally determined (E)].

T S E

Expectation values

(10) 0.65 0.65 0.65 ± 0.02
0.35 0.35 0.35 ± 0.02

(11) 0.59 0.59 0.59 ± 0.02
0.41 0.41 0.41 ± 0.02

(12) 0.45 0.46 0.47 ± 0.02
0.54 0.54 0.53 ± 0.02

Correlators (INM)

(13) 0.52 0.52 0.48 ± 0.02
0.07 0.07 0.09 ± 0.02
0.13 0.14 0.18 ± 0.02
0.27 0.27 0.24 ± 0.02

(14) 0.07 0.07 0.09 ± 0.02
0.52 0.52 0.48 ± 0.02
0.27 0.27 0.30 ± 0.02
0.13 0.14 0.13 ± 0.02

(15) 0.47 0.16 0.18 ± 0.02
0.08 0.17 0.18 ± 0.02
0.12 0.04 0.05 ± 0.02
0.32 0.63 0.59 ± 0.02

(16) 0.08 0.17 0.21 ± 0.02
0.47 0.17 0.14 ± 0.02
0.32 0.63 0.60 ± 0.02
0.12 0.04 0.04 ± 0.02

(17) 0.23 0.23 0.22 ± 0.02
0.23 0.23 0.25 ± 0.02
0.43 0.43 0.41 ± 0.02
0.12 0.12 0.12 ± 0.02

(18) 0.23 0.23 0.25 ± 0.02
0.23 0.23 0.18 ± 0.02
0.12 0.12 0.16 ± 0.02
0.43 0.43 0.41 ± 0.02

Correlators (CTVM)

(19) 0.990 0.989 0.988 ± 0.002
0.010 0.011 0.012 ± 0.002

(20) 0.990 0.989 0.988 ± 0.002
0.010 0.011 0.012 ± 0.002

(21) 0.969 0.969 0.970 ± 0.002
0.031 0.031 0.030 ± 0.002

entries of the ancilla qubit:

Ci j = 1 − p(1)

2λ2
(C4)

= 1 − (1 − a)

2λ2
. (C5)
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Thus, only two values are measured for experiments 22–24.
The procedure for determining the error bars on these values
for both sets of experiments is outlined in Appendix D.

APPENDIX D: ERROR ANALYSIS

The error bars on the experimentally determined values
for the experiments performed in this work were determined
by considering two potential sources of error, the first source
being from the calibration of the pulses. Note that the degree
of rotation from an NMR pulse depends on the power of the
pulse and the length of its duration. The calibration proce-
dure consisted of running 40 experiments that each consisted
of implementing two Y pulses on the thermal state. Each
experiment used the same pulse power but varying pulse
durations, τ , starting from τ = 0 μs. Furthermore, we note
that the thermal state produces no signal on its own, produces
a maximum signal when rotated π

2 radians, and produces
again no signal when rotated π radians. Thus, as τ increases
the signal reaches a maximum value before decreasing again
to zero. The strength of the signal was plotted as a function
of τ and then fitted to the function f (τ ) = a cos(bτ ) + c

to find the τ in which a π rotation occurred. Since two
pulses were implemented, this procedure provides a value
of τ corresponding to a π

2 rotation. The difference between
the experimental data and f (τ ) was taken for each of the 40
experiments. These values were squared, summed, and then
square rooted to find the potential error from calibration. The
second source of error that was considered was from the noise
of the signal. A band of data points which should ideally
produce no signal were assessed. The square root of the sum
of the squares of the data points in the band was calculated
and divided by the total area of the signal to provide a percent
error. This percent error was also incorporated into the error
bars. The final source of error which was considered in this
work was from the natural drift of the NMR spectrometer’s
magnetic field through out consecutive experiments. Since
the spectrometer’s magnetic field gradually drifts, periodic
breaks are taken between experiments to manually realign
the magnetic field, a process known as shimming. To account
for potential errors introduced from this, the spectrum for the
pps state was taken between experiments to see the range of
possible values the pps would take. This range of values was
taken into account in the error bars on the data.
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