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Given a protocol P that implements multipartite quantum channel E by repeated rounds of local operations
and classical communication (LOCC), we construct an alternate LOCC protocol for E in no more rounds than P
and no more than a fixed, constant number of outcomes for each local measurement, the same constant number
for every party and every round. We then obtain another upper bound on the number of outcomes that, under
certain conditions, improves on the first. The latter bound shows that for LOCC channels that are extreme points
of the convex set of all quantum channels, the parties can restrict the number of outcomes in their individual
local measurements to no more than the square of their local Hilbert space dimension, dα , suggesting a possible
link between the required resources for LOCC and the convex structure of the set of all quantum channels. Our
bounds on the number of outcomes indicating the need for only constant resources per round, independent of the
number of rounds r including when that number is infinite, are a stark contrast to the exponential r dependence
in the only previously published bound of which we are aware. If a lower bound is known on the number of
product operators needed to represent the channel, we obtain a lower bound on the number of rounds required
to implement the given channel by LOCC. Finally, we show that when the quantum channel is not required but
only that a given task be implemented deterministically, then no more than d2

α outcomes are needed for each
local measurement by party α.
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I. INTRODUCTION

Economics is the study of how people use scarce resources
to produce commodities for later consumption. Scientists de-
signing experiments, as well as those who use their discover-
ies in everyday life, must take economics into account. These
considerations have recently spawned studies of quantum
resource theories [1–3], an outgrowth of quantum information
science [4], which aim to quantify the costs of implement-
ing exciting applications such as quantum teleportation [5]
and quantum computing [6–8] under constraints imposed
by circumstances. Entanglement [9], a fascinating property
found in multipartite quantum systems involving an unusual
and extremely strong type of correlation between the parts
of these systems, was the first example of such a resource
theory. An example of constraints imposed is the recognition
that entanglement cannot be created by local operations on
constituent subsystems, even when supplemented by classi-
cal communication between the acting parties, a paradigm
known as LOCC [10], which plays an important role in
many aspects of quantum information processing, including
distributed quantum computing [11], entanglement distilla-
tion [12] and manipulation [13,14], local distinguishability
of quantum states [15], local cloning [16,17], and various
quantum cryptographic protocols, such as secret sharing [18].
Under the constraint of LOCC, which may arise due to spatial
separation between constituent parts of a larger system, any
entanglement must be supplied in advance and is therefore
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a valuable resource, whereas local operations and classical
communication are each viewed as free. In reality, however,
LOCC itself comes at a cost. Classical communication chan-
nels must be available to carry information from one party to
another, those parties must have the means to make complex
local measurements, and they must have the time available to
implement the possibly numerous rounds of measuring and
sharing information that may be needed.

The number of rounds needed for LOCC has received a
fair amount of attention over recent years [19], showing that
there are circumstances when a single round is as good as
many [20] whereas, in other cases, two or more rounds [21],
possibly even an infinite number [22], are necessary. In this
paper, we consider a different resource for LOCC, a property
that has heretofore received little attention: the complexity
of making measurements and the corresponding amount of
classical communication that must be exchanged between
the parties at each round, both of which are determined by
the number of outcomes in individual local measurements.
Generalized measurements on system S can be performed
by introducing an ancillary system Sa of dimension equal
to the number of outcomes, interacting Sa with S , and then
performing a (projective) measurement on Sa. As recently
shown in [23], the interaction between Sa and S requires a
time scaling as the squared dimension of the combined system
Sa ⊗ S . In addition, the ability to distinguish among the vari-
ous outcomes of the measurement—which may, for example,
be made using a Stern-Gerlach [24,25] type of apparatus—
requires a level of spatial resolution that will also scale as
the dimension of Sa. Thus resource requirements increase
with the number of outcomes of the desired measurement
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on S . The question of the number of outcomes necessary
at each round has been previously addressed for the case of
finite-round LOCC protocols, in the context of showing that
the set of all such protocols is compact [26]. It was shown
there that if quantum channel E acts on a multipartite system
of overall dimension D and can be implemented by an LOCC
protocol consisting of a total of r rounds, then there exists
an r-round protocol for E such that at round l there are no
more than D4(r−l+1) outcomes in any local measurement [26].
This result was important in that, prior to this work, there
was every possibility that “intermediate measurements with
an unbounded number of outcomes” could be necessary at
any point during the protocol [26]. The result scales poorly
with r, however, and leaves open the possibility that an un-
bounded number of outcomes continue to be necessary within
infinite-round protocols. Below, we obtain upper bounds on
the required number of outcomes at each round which are (1)
independent of r (and of l), (2) never greater than D4, and (3)
applicable to both finite- and infinite-round protocols, strongly
bounding the required resources for LOCC. Depending on
certain parameters, these bounds can be surprisingly small.

Our upper bounds on the number of outcomes in local
measurements can have important practical applications, ex-
amples of which have already been mentioned above. If, as
had been believed prior to the present results, a protocol
had required any given party to make measurements at dif-
ferent rounds with widely differing numbers of outcomes,
they would have needed to either use different measuring
apparatuses for different measurements or else use a single
apparatus capable of measurements with a larger number of
outcomes than necessary. The latter option would require
larger ancillae and thus more space and more time [23] to
implement than would at times be necessary, whereas the
former option would obviously be more costly in a variety
of ways. Therefore, the ability to limit the required number of
outcomes at every round throughout the protocol can represent
a significant savings in resources. It should also be mentioned
that our upper bounds can be useful in simplifying the de-
sign of protocols [27], making them more computationally
tractable by reducing the number of outcomes that one must
search for at each round.

Recently, we learned that Leung, Winter, and Yu [28] have
obtained results related to our own. They have also shown how
to “compress” an LOCC protocol to one that has a limited
number of outcomes for each local measurement, and their
compression will often yield a tighter bound than ours, but
the reverse situation can also hold. Their main results apply
to protocols aimed at achieving certain tasks, whereas our
compression works for all protocols while preserving the
desired quantum channel. A result applicable for channels
is also obtained in Ref. [28] but requires that the parties
have access to shared randomness, without which the desired
channel cannot be recovered using their approach. In contrast,
our results are “pure” in the sense that we limit resources with-
out the parties needing to replace that resource with another.
In addition, the compression of individual measurements for
that particular result in Ref. [28] requires consideration of
later rounds, whereas our compression is simple: each local
measurement is compressed by considering that measurement
alone, and nothing else.

The rest of the paper is organized as follows. In Sec. II, we
review the mathematics needed to describe quantum channels
and LOCC, and then we prove Theorem 1 and Lemma 1,
each of which will be used in obtaining our main results.
In Sec. III, we present our main results in the form of two
theorems and two corollaries, which concern the number of
outcomes needed in individual local measurements utilized
within LOCC protocols implementing a given quantum chan-
nel. Finally, in Sec. IV, we discuss our results and then
prove an additional theorem concerning execution of any task
deterministically by LOCC, for conditions under which im-
plementation of a specific quantum channel is not of concern.

II. MATHEMATICAL TOOLS

We consider the evolution, E , of a multipartite quantum
system interacting with an environment, viewed as a noisy
quantum channel [29,30] mapping initial quantum state ρ, an
operator on Hilbert space H of dimension D, to state E (ρ).
The channel E may be represented in terms of a set of Kraus
operators [31,32], Ki, as

E (ρ) =
N∑

i=1

KiρK†
i , (1)

with
N∑

i=1

K†
i Ki = IH, (2)

where IH is the identity operator on H. This collection of
Kraus operators is referred to as a Kraus representation of E
and such representations are not unique. Without loss of
generality, we assume that set {Ki} is a minimal set, in the
sense that no smaller set of Kraus operators represents E . The
Kraus rank κ of E is defined as the size of this minimal set, so
N = κ , where 1 � κ � D2. Any other set of Kraus operators,
{K ′

j}N ′
j=1, describes the same channel as the original set if and

only if there exists [4] an isometry V , V †V = Iκ with Iκ the
κ × κ identity matrix, such that for each j = 1, . . . , N ′,

K ′
j =

κ∑
i=1

VjiKi. (3)

We consider quantum channels implemented by LOCC
protocols. An LOCC protocol involves one party making a
measurement, informing the other parties of her outcome,
after which, according to a preapproved plan, one of the
other parties performs the next measurement, and so on.
Since each local measurement involves a number of possible
outcomes, the entire process is commonly represented as a
rooted tree, L, the children of any given node representing
the set of outcomes of the local measurement made at that
stage in the protocol. We associate with each node n ∈ L
the accumulated action of all the parties up to that stage in
the protocol, which may be represented by a Kraus operator
K̂n, or more conveniently for our purposes, the corresponding
POVM element, En = K̂†

n K̂n � 0. Since each measurement
in an LOCC protocol is local, being performed by a single
party while all the other parties do nothing, En is a tensor
product operator, of the form A ⊗ B ⊗ · · · . The root node
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represents the situation before the parties have done anything,
so is labeled by—and we will say, is equal to—the identity
operator on the full Hilbert space, IH. A branch starts at
the root and stretches via an edge from each node on that
branch to one of its children, either continuing without end
or else terminating at what is known as a leaf node. As
we have discussed elsewhere [27], if the tree L represents
an LOCC protocol (finite or infinite), which implements the
set of Kraus operators {K ′

j}, then En is equal to a positive

linear combination of the set of operators, {K ′†
j K ′

j}, and each

leaf node l is proportional to one of the K ′†
j K ′

j with positive

constant of proportionality, say c(l )
j . That L implements {K ′

j}
means that the sum of coefficients c(l )

j over all those leaf
nodes corresponding to the same j is equal to unity, which
we represent (somewhat loosely) as

∑
l∈ j c(l )

j = 1. This is
necessary so that the Kraus representation implemented by
L includes each K ′

j precisely, rather than
√

ĉ jK ′
j for some

constant ĉ j �= 1. Then, if this tree L implements quantum
channel E , we see using Eq. (3) that

En =
N ′∑
j=1

c(n)
j K ′†

j K ′
j =

κ∑
i,i′=1

⎡
⎣

N ′∑
j=1

V ∗
jic

(n)
j Vji′

⎤
⎦K†

i Ki′

=
κ∑

i,i′=1

C(n)
ii′ K†

i Ki′ , (4)

with c(n)
j � 0 for all j, n and C(n)

ii′ := ∑N ′
j=1 V ∗

jic
(n)
j Vji′ . Since V

is an isometry, C(n) is a positive semidefinite matrix, C(n) �
0. We note that the matrix C(n) encodes information about
the weights of those final outcomes of the protocol that are
descended from node n, through the eigenvalues c(n)

j , as well
as information about precisely what those final outcomes K ′

j

are through the isometry V that diagonalizes C(n). Note also
that if l is a leaf node, then as pointed out above, El =
c(l )

J K ′†
J K ′

J for some fixed J (no summation). This implies that
the rank of matrix C(l ) is equal to unity for each leaf node
in the tree, and given that C(l ) � 0, we have that C(l ) = �vl �vl

†

at each leaf node, with ( �vl )i =
√

c(l )
J V ∗

Ji. Index J depends on
l with a possibly one-to-many relationship (many leaf nodes
implementing the same Kraus operator), and as noted above
Eq. (4),

∑
l∈J c(l )

J = 1. The associated Kraus operator at leaf

node l is then K ′′
l =

√
c(l )

J K ′
J =

√
c(l )

J

∑
i VJiKi.

The main tool for our arguments will be the following
theorem. It provides a necessary and sufficient condition for
a tree graph to represent an LOCC protocol implementing
quantum channel E , with each node in the tree labeled by a
positive semidefinite κ × κ matrix C(n).

Theorem 1. Quantum channel E , represented by the (min-
imal) set of Kraus operators {Ki}κi=1, can be implemented by
LOCC if and only if there exists a tree graph L satisfying all
of the following conditions.

(1) For each node n ∈ L and its associated κ × κ matrix
C(n) � 0, En = ∑

i,i′ C
(n)
ii′ K†

i Ki′ is a product operator.
(2) The root node is labeled by matrix C(0) = Iκ , so that∑
i,i′ C

(0)
ii′ K†

i Ki′ = IH.

(3) For each node n and operator En, the collection of its
child nodes, s, with operators Es, satisfy

∑
s∈siblings Es = En.

(4) Each node n along with each of its child nodes, s ∈
siblings, correspond to positive semidefinite product operators
En and Es that differ in only one party’s local operator, that
being the same party for all of them. For example, if it is party
A, all sibling nodes are of the form Es = ∑

i,i′ C(s)
ii′ K†

i Ki′ =
A(s) ⊗ Ā with parent En = A(n) ⊗ Ā, where Ā is a positive
semidefinite operator that acts, and is a tensor product, on all
parties other than A (the same operator for all of these nodes),
and by the preceding item (1),

∑
s∈siblings A(s) = A(n).

(5) (a) For every leaf node l , C(l ) = �vl �vl
†, and so has rank

equal to one; (b) for any infinite-round protocol, the condition
of the preceding item [5(a)] is satisfied asymptotically.

(6) (a) The sum of all leaf nodes in any finite-round
protocol is equal to the root node:

∑
l C(l ) = C(0) = Iκ ; (b)

for any infinite-round protocol, the condition of the preceding
item [6(a)] is satisfied asymptotically.

Proof. Item (1) is just the well-known condition that
LOCC protocols can only implement product operators. Item
(2) just says that at the beginning of the protocol, no party has
done anything yet. Item (3) is just the condition that each local
measurement is complete, in the sense that the probabilities of
all outcomes of any given measurement must sum to unity.1

Item (4) is the condition that the parties take turns making
measurements, only one party measuring at any given time.
Item [5(a)] is necessary and sufficient that the collection of
final outcomes of the protocol constitute an implementation of
the channel E , a conclusion that follows from the discussion
after Eq. (4).

For item [6(a)], consider the set of leaf nodes l in any
finite protocol P . By assumption P implements E , or in other
words, a Kraus representation {K ′

j} of E . As discussed in the

paragraph following Eq. (4), we have that (vl )i =
√

c(l )
j V ∗

ji

with
∑

l∈ j c(l )
j = 1. Thus (

∑
l �vl �v†

l )ii′ = ∑
j

∑
l∈ j c(l )

j V ∗
jiVji′ =

δii′ and it then follows that
∑

l �vl �v†
l = Iκ , proving the claim.

Items [5(b)] and [6(b)] require a bit more explanation. In
discussing an infinite-round protocol, we envision a sequence
of finite-round protocols, {Pm}, with each Pm implementing
quantum channel Em in m rounds, and Pm differs from Pm−1

only by the addition of an mth round. If the set of Kraus
operators implemented by Pm is Km = {K (m)

j } j , then Km is a
Kraus representation of Em. By saying that an infinite-round
protocol implements channel E , we mean limm→∞ Em = E .
One can then show (using the diamond norm for quantum
channels) that this latter statement is equivalent to having
K (m)

j = ∑
i V (m)

ji Ki + O(ε) for each j, where K = {Ki}i is a
(minimal) Kraus representation of E , V (m) is an isometry, and

1Note that when the set {K†
i Kj} is linearly independent, then Eq. (4)

implies that also
∑

s∈siblings C (s) = C (n). If, on the other hand, that
set is linearly dependent, the latter conclusion does not immediately
follow. For any finite protocol we can construct a set of matrices
C (n) for each n such that it does hold, simply by working backward
from the leaf nodes. It is not clear to us, however, that there is a
straightforward way to take the limit to infinite rounds, but we will
not need this condition to obtain our results.
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ε → 0 when m → ∞. Therefore, in this limit, the protocol
implements a set of Kraus operators that are related to those
in K through an isometry, which, according to the discussion
following Eq. (4), implies item [5(b)] directly. In addition,
item [6(b)] follows immediately from item [6(a)]: since the
latter holds for each finite protocol Pm, it also holds in the
limit. �

Our main results will be direct consequences of the follow-
ing lemma.

Lemma 1. If multipartite quantum channel E can be im-
plemented by LOCC in r rounds, where r may be infinite,
then there exists an LOCC implementation of E using no
more than r rounds such that, for each local measurement, the
collection of matrices {C(s)} corresponding to the outcomes of
that measurement (these outcomes indexed by s) is a linearly
independent set.

Proof. Suppose tree L represents a protocol that imple-
ments the desired channel E . Let us consider node n ∈ L, and
assume matrices C(s) associated with its children collectively
form a linearly dependent set. We will give a constructive
argument showing that the number of these children can
be reduced by unity. This will prove the lemma, since we
can continue this process for as long as the children remain
dependent.

Since C(s) � 0, linear dependence implies the existence of
a vanishing real linear combination of these matrices. By a
judicious choice of s1, there then exist coefficients qs such that

C(s1 ) =
∑
s �=s1

qsC
(s), (5)

with |qs| � 1 and the sum is over all siblings of s1. This means
that if we omit node s1, along with all of its descendants (in-
cluding those that extend to infinity along infinite branches),
and replace each sibling of s1 by C(s) → (1 + qs)C(s), then
the sum of the remaining children of node n is still equal to
C(n), as required. In addition, this procedure cannot increase
the number of rounds. Note that, since 1 + qs � 0, these
replacement matrices continue to be positive semidefinite.
Therefore, this new local measurement is still a valid one
at this stage of the protocol. Nonetheless, there remain two
questions that need be considered before we are done. First,
do the descendants of those remaining children continue to
constitute a valid protocol? They do not, as they were, but
they can easily be altered to become valid, by replacing every
node, t , descendant from child node s, by C(t ) → (1 + qs)C(t ).
By doing so, every set of children of a given node continues to
satisfy the conditions of Theorem 1; in particular, conditions
(1) and (3) of that theorem, that the nodes correspond to pos-
itive semidefinite product operators that sum to their parent,
are still satisfied.

This demonstrates that, following omission of s1 and all
its descendants, we are still left with a valid LOCC protocol.
However, it remains to be shown that this new protocol
continues to implement the same, desired quantum channel
E . To see that it does, let us start by considering a finite-round
protocol P . The leaf nodes remaining after trimming this tree
are a subset of the same leaf nodes that were in the original
protocol, though some have been modified as just described.
As noted above, see the paragraph following Eq. (4), each

remaining leaf node l is C(l ) = �vl �vl
† with ( �vl )i =

√
c̃(l )

J V ∗
Ji for

some fixed index J , which depends on l (c̃(l )
J is a product of c(l )

J
and possibly a factor of 1 + qs). Furthermore, by construction
this collection of leaf nodes continues to satisfy conditions (2)
and (6) of Theorem 1; that is, since the root node is unchanged
in our procedure,

∑
l

C(l ) = C(0) = Iκ , (6)

and summation here is over all leaf nodes remaining in the
pruned tree. By looking at matrix elements of this expression,
this yields

∑
l

vl jv
∗
li = δi j . (7)

We see that the pruned tree implements the collection of Kraus
operators [see the discussion following Eq. (4)]

K ′′
l =

κ∑
j=1

vl jKj, (8)

where, according to Eq. (7), the collection of matrix elements
vl j constitute an isometry.2 By the isometric freedom in
operator-sum representations of quantum channels, we thus
see that this modified protocol, which uses no more rounds
than the original protocol, implements a valid set of Kraus
operators for the desired channel E . This completes the proof
for finite-round protocols.

For infinite-round protocols, recall the discussion in the last
paragraph of the proof of Theorem 1, where we introduced
a sequence of finite-round protocols Pm, each implementing
channel Em, respectively. Then, simply notice that we have
just proved that each (finite-round) Pm continues to implement
the same channel Em as it did before being pruned. Since
the original sequence of protocols implemented E in the limit
to begin with, we know that limm→∞ Em = E . Therefore, the
limiting infinite-round protocol continues to implement E
after being pruned. This completes the proof. �

III. MAIN RESULTS

Recall from earlier discussion that matrices C(s) � 0 are of
size κ × κ , implying there can be no more than κ2 of these
matrices in any linearly independent set. Therefore, the next
theorem follows immediately from Lemma 1.

Theorem 2. If multipartite quantum channel E can be im-
plemented by LOCC in r rounds, where r may be infinite, then
there exists an LOCC implementation of E using no more than
r rounds such that no local measurement in the protocol has
more than κ2 outcomes.

2What we have effectively done here is to delete a subset of
rows in the original isometry V , scaling each remaining row by
some non-negative factor. We have also essentially proven that, for
every isometry V that corresponds to an LOCC protocol containing
intermediate measurements involving sets of linearly “dependent
children,” what remains after this process of deletions and rescalings
is still an isometry.
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If a channel is LOCC in a finite number of rounds, r,
then after reducing the protocol as described in the proof
of Lemma 1, there will be no more than κ2r leaf nodes
in the tree representing the resulting protocol. Since each
Kraus operator in the Kraus representation implemented by
this finite-round protocol must be a leaf node, we have that
Np � κ2r , where Np is the minimum number of operators
in any Kraus representation of E . Therefore, the following
corollary is a direct consequence of Theorem 2.

Corollary 1. If the smallest Kraus representation of quan-
tum channel E by product Kraus operators has at least Np

members, then the number of rounds, r, required to implement
E by LOCC is lower bounded as r � log Np/ log κ2.

If Np < κ2, the bound in this corollary is trivial and
provides no information. On the other hand, for Np 
 κ2

the bound provides useful guidance as to the difficulty of
implementing the given channel by LOCC, including that,
in the limit as Np → ∞, we have that the channel cannot
be implemented by finite-round LOCC. It should be noted,
however, that determining Np is likely not a simple task.

Theorem 2 applies in complete generality to all quantum
channels, and depends only on the Kraus rank κ of the given
channel. The upper bound on the number of outcomes needed
in intermediate measurements is independent of the size of
the Kraus representation actually implemented, and it is even
independent of the size, Np, of the smallest possible product
Kraus representation. It is thus seen to be a strong result,
indicating a significant constraint on required resources, es-
pecially when κ is small. It turns out, however, that this result
can often be strengthened, in some cases considerably. This
stronger result is stated in the following theorem, where we
denote as χ the dimension of the subspace spanned by the set
of operators {K†

i Kj}κi, j=1, and it is not difficult to show that χ

is a characteristic property of the channel, being independent
of the chosen Kraus representation.

Theorem 3. If multipartite quantum channel E has Kraus
rank κ and can be implemented by LOCC in r rounds, where r
may be infinite, then there exists an LOCC implementation of
E using no more than r rounds such that no local measurement
in the protocol has more than d2

α + κ2 − χ outcomes, for each
party α (dα is the dimension of the Hilbert space describing
the states of party α’s subsystem).

Proof. If χ � d2
α , then the bound of Theorem 2 already

implies the desired result, so assume χ > d2
α . Let us consider

a measurement by Alice (party A) consisting of NA outcomes
As ⊗ Ā, where Ā is an operator acting on the composite of
all subsystems other than A, this operator being the same
for all outcomes because only Alice is measuring; see item
(4) of Theorem 1. Each outcome is associated with a matrix
C(s), so by Lemma 1, proof of this theorem will follow from
showing that no more than d2

A + κ2 − χ of these matrices can
be linearly independent. Let us write

C(s) =
κ2∑

t=1

Mst Q
(t ), (9)

where the Q(t ) constitute an orthonormal basis of the space
of κ × κ matrices, Tr(Q(t )†Q(t ′ ) ) = δtt ′ , and we also choose
these basis elements such that they correspond to the κ2 − χ

(independent) linear dependencies of the K†
i Kj ; that is,

0 =
κ∑

i, j=1

Q(t )
i j K†

i Kj, (10)

when t > χ . Then we can write the outcomes of Alice’s
measurement as

As ⊗ Ā =
κ∑

i, j=1

C(s)
i j K†

i Kj =
κ2∑

t=1

Mst

κ∑
i, j=1

Q(t )
i j K†

i Kj

=
χ∑

t=1

MstK(t ), (11)

with K(t ) := ∑
i j Q(t )

i j K†
i Kj , and we have used Eq. (10) to

reduce the sum to just χ terms in the final expression. Note
that orthogonality of the Q(t ) matrices ensures that operators
K(t ) are linearly independent for t = 1, . . . , χ because other-
wise there would be additional dependencies among the K†

i Kj ,
contrary to assumption.

Since χ � κ2, if the number of outcomes satisfies NA �
d2

A, then NA � d2
A + κ2 − χ , which is what we are trying

to prove. Therefore, we only need consider the case that
NA > d2

A. So suppose there are NA > d2
A outcomes As ⊗ Ā,

s = 1, . . . , NA. Then since with Ā fixed, no more than d2
A of

these can be linearly independent, there must exist NA − d2
A

linearly independent vectors �λ(p) in NA dimensions having
elements λ

(p)
s not all zero such that

0 =
NA∑

s=1

λ(p)∗
s As ⊗ Ā =

χ∑
t=1

NA∑
s=1

λ(p)∗
s MstK(t ), (12)

for p = 1, . . . , NA − d2
A. By the linear independence of the

K(t ) that appear in this expression, this implies that

NA∑
s=1

λ(p)∗
s Mst = 0, (13)

for all t � χ . This means that the first χ columns of matrix
M, consisting of matrix elements Mst , are each orthogonal to
the (NA − d2

A)-dimensional subspace spanned by the collec-
tion of vectors �λ(p). Since these first χ columns of M are
NA dimensional, there can be no more than d2

A of them in
any linearly independent subset. There are κ2 − χ remaining
columns in M, so the rank of M cannot exceed d2

A + κ2 − χ .
This implies that the entire collection of columns of M span a
subspace of dimension no more than d2

A + κ2 − χ . Therefore,
if NA � d2

A + κ2 − χ , there exists a nonzero NA-dimensional
vector �λ′, elements λ′

s, orthogonal to every column of M. That
is,

∑
s λ′∗

s Mst = 0 for all t . Multiplying Eq. (9) by λ′∗
s and

summing over s, we immediately see that the C(s) are linearly
dependent, and we reach the conclusion that no more than
d2

A + κ2 − χ of the C(s) can be linearly independent. Since the
same argument holds for any of the parties, and by reference
to Lemma 1, this completes the proof. �

Finally, we note that channel E is an extreme point of the
convex set of all quantum channels if and only if χ = κ2

[33]. This leads us to the following corollary as an immediate
consequence of Theorem 3, suggesting a possible connection
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between the required resources for LOCC and the convex
structure of the set of all quantum channels.

Corollary 2. If E is an extreme point of the set of all
quantum channels and can be implemented by LOCC in r
rounds, where r may be infinite, then it can be implemented by
an LOCC protocol using no more than r rounds in which, for
each party α, no more than d2

α outcomes are used in each local
measurement by that party in the entire sequence of rounds of
the protocol.

IV. CONCLUSIONS

In summary, we have derived strong upper bounds on
the number of outcomes that each intermediate measurement
need have in any LOCC protocol implementing a quantum
channel E , no matter how many rounds are involved, including
if the number of rounds is infinite. These bounds are presented
in Theorems 2 and 3, and they are independent of the round
number and of the total number of rounds. These theorems
bound the resources required for LOCC without the need to
replace them with resources of a different type. They lead
directly to Corollary 1, which provides a lower bound on the
number of rounds needed to implement E if a lower bound
on the number of product operators in any product Kraus
representation of E is known, and Corollary 2, which suggests
a possible link between the convex structure of the set of
quantum channels and the resources needed to implement
those channels by LOCC. It is perhaps worth pointing out that
Theorem 2 (and thus Corollary 1), which depends only on the
Kraus rank κ of E , provides a bound that is independent of the
way the parties are partitioned. That is, for example, if two or
more of the original parties are able to merge together to act
as one, κ , and therefore this bound, remains unchanged. Note
also that χ is independent of partitioning, as well. Therefore,
merging (or splitting) the parties only changes the bound in
Theorem 3 by changing the local dimensions dα .

We would like to make clear that the crucial step in achiev-
ing these results is the representation of LOCC protocols
in terms of the κ × κ matrices C(n), introduced in [27] and
described here in Eq. (4). It is these matrices that have allowed
us to show that our tree-pruning procedure, described in the
proof of the critical Lemma 1 where all sets of sibling nodes
are reduced to linearly independent sets of these C(n) matrices,
leaves the quantum channel implemented by the protocol
unchanged; see the argument leading to Eqs. (7) and (8). One
might try to prune these trees differently, in ways that leave
sets of sibling nodes linearly independent when viewing these
nodes as positive semidefinite operators En, or even as Kraus
operators, but such efforts appear to be doomed to failure. In
the case of labeling by En, one can easily prune in this way
such that the tree remains a valid LOCC protocol, but it will
not generally implement the same channel as the unpruned
tree. For example, suppose in the original protocol for E there
is a terminal measurement (every outcome corresponding to a

leaf node) where the collection of sibling operators Es obeys
a single linear dependency, but the collection of matrices
C(s)—which have rank equal to unity according to item (5)
of Theorem 1—is linearly independent. Then, in eliminating
one of the Es (say Es1 , with s1 one of the original leaf nodes)
to end up with a linearly independent set of the remaining Es,
the remaining C(s) matrices will be replaced by new matrices
that are positive linear combinations of two of the original
C(s) matrices; specifically, C(s) + qsC(s1 ) (see the proof of
Lemma 1). Since C(s) and C(s1 ) are linearly independent, rank-
1, positive semidefinite matrices, such linear combinations
cannot themselves have rank equal to unity and thus, again
according to item (5) of Theorem 1, the resulting LOCC
protocol no longer implements the original channel E . Of
course, this raises the question of whether it may be possible
to improve on these bounds, or if our bounds may themselves
be tight for the implementation of a given quantum channel
(without the availability of sufficient shared randomness [28]).
We are presently unable to provide an intelligent guess as to
which of these possibilities is more likely, but it is certainly a
question that deserves further study.

Notice that pruning in a way that leaves sibling Es op-
erators linearly independent fails only because of the need
to retain the rank-1 condition on leaves of the tree in order
to preserve implementation of the same channel E . It may
be that we do not need to implement a given channel but
instead only care about accomplishing a given task. Consider,
then, a “deterministic” LOCC protocol, by which we mean
that every leaf in the tree is successful in completing a given
task, and for each infinite branch (if any), successful com-
pletion of the task is approached asymptotically. Examples
include deterministic local state transformation [13,14] and
deterministic local cloning [16,17]. Since every branch in
such protocols is successful, we may prune these trees to
leave sibling Es operators linearly independent such that the
resulting tree—whose branches are a subset of those in the
original protocol—also represents a deterministic protocol for
the given task. Since each local measurement (for example, by
Alice) produces sibling Es operators of the form As ⊗ A with
A the same for all these children, and since the As operate on a
space of dimension dA, no more than d2

A of these Es operators
can be linearly independent. We have thus proved, and will
end with, the following theorem.

Theorem 4. Suppose we have an LOCC protocol that de-
terministically implements a given task in r rounds, where r
may be infinite. Then there exists an LOCC protocol that also
deterministically implements the given task using no more
than r rounds, and such that no local measurement in the
protocol has more than d2

α outcomes for each party α.
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