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Markovian and non-Markovian dynamics induced by a generic environment
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We study the open dynamics of a quantum two-level system coupled to an environment modeled by random
matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and
criteria. A thorough analysis of the whole parameter space reveals a wide range of different regimes, ranging
from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity
measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the
practical usefulness of the different approaches.
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I. INTRODUCTION

Open quantum systems have been of interest for a long
time [1]. The interest stems from the natural separation of
a quantum system into a central system of interest, and
an uninteresting or uncontrollable part, usually denoted by
environment. In 1967, Lindblad [2] and Gorini, Kossakowski,
and Sudarshan [3] arrived at the so-called Lindblad master
equation to describe the evolution of a central system weakly
interacting with a memoryless environment. This equation has
been of paramount importance in the field as one can both
analytically solve several instances of the equation [4] and
describe accurately a wide range of experimental situations
[5]. The dynamics produced by such an equation is called
quantum Markovian dynamics. Recently there has been an
effort to classify and understand systematically open quantum
systems which lie outside this description.

Definitions and measures for quantum non-Markovianity
(NM) have received considerable interest in the last 10 years
or so [6,7]. They are meant to characterize quantum processes
(viz., the dynamics of open quantum systems) which cannot
be described by a master equation with constant Lindblad
operators. For such systems, one might wish to establish an
order relation of increasing non-Markovianity in the sense that
it is increasingly difficult to describe the quantum process by
some effective evolution equation within the system’s state
space alone. A second quite different idea is that NM is a
feature which might be taken advantage of in order to perform
certain tasks. Both are valid points of view, but it is not
clear to what extend some of the popular definitions and
measures of NM provide relevant information with respect to
these questions. Several reviews of the field can be found in
Refs. [8–11].

Non-Markovianity has been studied extensively for quan-
tum processes with an analytical solution, implying no fluctu-
ations or uncertainties; however, applications to more realistic
processes are relatively rare [12,13].
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In the present paper, we study a quantum channel derived
from the coupling of a two-level system to a “generic” quan-
tum environment. We use random matrix theory (RMT) to
describe that environment. Choosing the Hamiltonian in the
environment from the Gaussian unitary ensemble, we find a
variety of different behaviors in the relevant parameter space,
ranging from Markovian (Lindblad dynamics) to strongly NM
behavior. This model is ideal to discuss the questions raised
above. Since the model has no known analytical solution, all
criteria and measures must be calculated numerically, with un-
avoidable statistical errors, which resembles an experimental
situation in which finite statistics come into play.

In Sec. II we present the model and find the structure of
the quantum channel describing the dynamics of the system.
In Sec. III we introduce the NM measures, which we will use
in Sec. IV for analysis. In Sec. IV we compare and interpret
the different measures for the whole available region in the pa-
rameter space. We finish with some closing remarks in Sec. V.

II. MODEL

In this section we introduce a random matrix model, which
is suitable to describe open quantum systems in several con-
texts. Wigner was probably the first to use random matrices
to describe physical systems, specifically compound nuclei
[14], which may be considered prime examples of complex
multiparticle systems. Subsequently, RMT has been found to
be applicable to quantum chaotic [15] and disordered systems
[16], both being typically treated in a (effective) single particle
picture. In the context of quantum information, the usage of
this techniques, has allowed to calculate, e.g., fidelities for
gate operations and has produced proposals to increase the
robustness of quantum computers under generic errors [17].
In a similar context, random matrices were proposed both as
a model for environments which are describable within an ef-
fectively finite dimensional Hilbert space, e.g., spin networks
[18,19], or which consist of only a few relevant degrees of
freedoms [20]. In both cases, the equilibration of the dynamics
which usually goes along with the thermodynamic limit is
taken care of by quantum chaos or disorder [21–25].
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For the dynamics of the composite system, one typically
starts with the environment in an equilibrium state, and the
central system being prepared independently, in an arbitrary
known initial state. The quantity of interest is then the reduced
state of the central system in the presence of the coupling
between system and environment. There are several possible
choices for the equilibrium state of the environment: First, we
have a microcanonical mixture of energy eigenstates, lying
in a narrow energy interval [20]. Second, there is a thermal
mixture of energy eigenstates. Eventually, that case can be
obtained by averaging the result under the first with the given
thermal probability distribution [26]. Third, we have a uni-
form mixture in a finite Hilbert space that we assume here for
convenience, as it avoids dragging along another parameter.
From a physical point of view, that choice corresponds to
taking a high temperature limit.

The particular model to be used here has been introduced
in Ref. [27], which focused on the derivation of an analytical
description in the linear response regime. We find it suitable
for the purpose of the present work, since it is a generic model,
which, nonetheless shows a broad range of different behaviors
with respect to quantum NM. In this section, we describe
the Hamiltonian of our system and the quantum channel
formalism used for a complete description of its dynamics.

A. The Hamiltonian

We consider a two-level system (qubit) coupled to an
environment. The Hilbert space of the qubit will be labeled
by the subindex c and that of the environment by the subindex
e. We assume that the dynamics in the whole Hilbert space is
unitary, with the evolution governed by the Hamiltonian

Hλ = �

2
σz ⊗ 1e + 1c ⊗ He + λ vc ⊗ Ve. (1)

All subindices of operators in the right-hand side indicate the
subspace in which they act, except for σz, which is a Pauli
matrix acting on the qubit. � is the level splitting in the qubit,
and the parameter λ controls the strength of the coupling
between the central system and the environment. The first two
terms in Eq. (1) represent the free evolution of both central
system and environment, while the third term provides the
coupling which is assumed to be separable. The Hamiltonian
of the environment He shall be chosen from the Gaussian
unitary ensemble to provide generality to the results discussed
here [28]. We measure time in units of the Heisenberg time of
He and energy in units of the means level spacing in the center
of the spectrum of He; in such units, h̄ = 1. The density matrix
of the central system for a time t is given by

�c(t ) = tre
[〈

e−iHλt �c ⊗ �e eiHλt
〉]
, (2)

where we have chosen a product state as the initial state of
central system and environment. Just as He, Ve is also chosen
from the Gaussian unitary ensemble, and the angular brackets
denote an ensemble average over both random matrices. The
magnitude of the matrix elements [Ve]i j is chosen such that
〈[Ve]i j[Ve]kl〉 = δilδ jk .

The most general form of vc has a parallel and perpen-
dicular component, with respect to the internal Hamiltonian
σz. If there is only a parallel component (vc ∝ σz) the qubit

dynamics becomes dephasing. The channel acting on the
qubit can be obtained in terms of the fidelity amplitude for
the Hamiltonians He ± λVe. This is already a very rich case;
however, it has been considered before [21,29]. The other
limiting case is when the coupling is perpendicular to the
internal Hamiltonian, which is the case we are studying here;
see also Ref. [27]. Thus we simply set, without losing any
generality,

vc = σx, (3)

where σx is one of the three Pauli matrices. In the environ-
ment, we choose the initial state to be the maximally mixed
state, �e ∝ 1, the high temperature limit of a Gibbs state in a
finite dimensional Hilbert space. That choice eases the forth-
coming mathematical calculations, but a finite temperature
Gibbs state could be considered equally well.

B. Quantum channel formalism

We describe the reduced dynamics of the qubit with the
quantum channel formalism, which means that the evolution
of the system state is described in terms of a linear time
dependent map �t acting on the space of density matrices
S (C2) of the central system. The map �t takes an arbitrary
initial state, and returns the state evolved according to Eq. (2)
for a time t ,

�t : �c → �c(t ) = �t [�c]. (4)

Since the image of this map is a density matrix, �t has two
properties: it (1) preserves the trace of the argument and (2)
is completely positive. Maps with these characteristics will be
referred to as quantum channels. We will also be interested in
more general linear operators that preserve the trace but, even
though they map Hermitian operators to Hermitian operators,
are not necessarily completely positive. In fact, we shall con-
sider maps that are generally nonpositive. We will call such
maps quantum maps. In this language, a quantum channel is a
quantum map, but not necessarily the other way around.

A quantum map K , and any linear map, is determined
by its action on a basis; consider the computational basis
{|a〉〈b|}a,b∈{0,1} and arrange the resulting elements in the ma-
trix

CK =
(

K[|0〉〈0|] K[|0〉〈1|]
K[|1〉〈0|] K[|1〉〈1|]

)
. (5)

This is the so-called Choi-matrix representation [30,31]. Since
K maps Hermitian matrices to Hermitian matrices, CK must
also be Hermitian.

It can be seen that the Choi matrix can be obtained by
applying the extended map id ⊗ K to a Bell state in the Hilbert
space of two qubits:

CK = 2 (id ⊗ K ) [|Bell〉〈Bell|], (6)

where |Bell〉 = (|00〉 + |11〉/√2. Thus, if K is a quantum
channel, 1/2CK is a two-qubit density matrix, which in turn
implies that CK � 0, i.e., all of its eigenvalues must be positive
or equal to zero.

We will now outline the procedure to construct the Choi
matrix, Ct ≡ C�t , describing the dynamics defined in Eq. (2).
The procedure will rely on two properties of our particular
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channel. First, it is unital, which means that the identity is
mapped onto the identity. Second, the evolution of a diagonal
operator remains diagonal, i.e., if �c is diagonal, so is �c(t ) in
Eq. (4). The proof of both properties is found in Appendix A.
This implies that the Choi matrix is of the form

Ct ≡ C�t =

⎛
⎜⎝

r 0 0 z∗
1

0 1 − r z2 0
0 z∗

2 1 − r 0
z1 0 0 r

⎞
⎟⎠, (7)

where time-dependent functions r ≡ r(t ), z1 ≡ z1(t ), and
z2 ≡ z2(t ) with r(0) = z1(0) = 1, and z2(0) = 0. The partic-
ular shape of Ct means for the representation in the Bloch
sphere that the dynamics along the z axis is decoupled from
the dynamics in the xy plane.

Let �
x,y,z
c be the density matrices associated with the posi-

tive eigenvalues of the corresponding Pauli matrices. From the
second property and trace conservation, we find that

�t
[
�z

c

] =
(

r 0
0 1 − r

)
, (8)

and from the first property, plus linearity of quantum maps,
we get

�t
[
�x

c

] = 1

2

(
1 z∗

x
zx 1

)
, �t

[
�y

c

] = 1

2

(
1 z∗

y
zy 1

)
(9)

with z1,2 = (zx ∓ izy)/2. In conclusion, we can reconstruct
the Choi matrix Ct of the quantum process of interest by
calculating numerically the time evolution of the eigenstates
�

x,y,z
c of the Pauli matrices.

III. NON-MARKOVIANITY MEASURES

We consider NM as a property of a quantum process
�t , which is a one-parameter family of quantum channels
with t ∈ R+

0 and �0 = id. The NM criteria and measures
used here are based on two different concepts, (1) divisibility
and (2) contractivity. Both of them require knowledge of the
intermediate quantum map

�t+ε,t = �t+ε ◦ �−1
t : � → �t+ε

[
�−1

t [�]
]
. (10)

In Appendix B 1, we calculate the Choi representation of this
intermediate quantum map with the following result:

Ct+ε,t =

⎛
⎜⎝

q 0 0 Z∗
1

0 1 − q Z2 0
0 Z∗

2 1 − q 0
Z1 0 0 q

⎞
⎟⎠, (11)

with D = |z1|2 − |z2|2, Z1 = (z′
1z∗

1 − z′
2z∗

2 )/D, Z2 = (z′
2z1 −

z′
1z2)/D, and q = (r + r′ − 1)/(2r − 1). The parameters r′,

z′
1, and z′

2 are the same as r, z1, and z2 but calculated at a
time t + ε. When D = 0 or 2r − 1 = 0, �t is not invertible,
and therefore �t+ε,t may not exist.

A. Divisibility

A quantum process �t is divisible if and only if for any
t, ε > 0 it holds that �t+ε can be written as the composition
�t+ε = �x ◦ �t , with �x being a valid quantum channel.
Here, �x can be identified with the intermediate quantum

map �t+ε,t given in Eq. (10). Hence the divisibility of a
quantum process is equivalent to all intermediate quantum
maps being valid quantum channels. Formally speaking, the
quantum process �t is divisible if and only if

(a) �t is invertible for almost all t ∈ R+
0 , and

(b) ∀t, ε > 0 : �t+ε,t = �t+ε ◦ �−1
t is a valid quantum

channel if it exists.
In condition (a), we allow �t to be noninvertible at a finite

(countable) number of points in time. In condition (b), we
check the complete positivity of the intermediate map only
for those t , where �t is invertible.

1. RHP Markovianity

One of the definitions of NM is given in terms of the
divisibility of the quantum process under consideration. Fol-
lowing Rivas et al. [7], we call a quantum process �t , RHP
Markovian if and only if the two conditions above are fulfilled.

To check for the complete positivity of the intermedi-
ate quantum map, Rivas et al. consider the trace norm of
the associated Choi matrix defined as ‖Ct+ε,t‖1 = ∑

j |λ j |,
where λ j are the eigenvalues of Ct+ε,t . Since the sum of the
eigenvalues always is equal to the dimension of the Hilbert
space of the physical system, due to trace preservation, any
negative eigenvalue will necessarily lead to ‖Ct+ε,t‖1 being
larger than two. In addition, since the composition of two
quantum channels is again a quantum channel, it is sufficient
to check complete positivity for infinitesimal ε only. Hence,
Rivas et al. define the function

g(t ) = lim
ε→0

1

2ε
(‖Ct+ε,t‖1 − 2), (12)

which is zero if the intermediate map is completely positive,
and greater than zero otherwise. Moreover, to define a mea-
sure of the degree of non-Markovianity of the process, the
authors integrate this function over time. We shall label this
quantity as

NRHP(t ) =
∫ t

0
dτ g(τ ). (13)

Notice that NRHP(t ) = 0 if and only if the process is divisible
for all times up to t .

2. Application to our model

In order to check the RHP-Markovianity (divisibility) of �t

as defined in Sec. II, we use the Choi representation, Eq. (11)
of the intermediate quantum map �t+ε,t . The eigenvalues of
Ct+ε,t are

λ1,2 = q ± |Z1|, λ3,4 = (1 − q) ± |Z2|. (14)

Hence, the eigenvalues are non-negative if and only if (1)
|Z1| � q and (2) |Z2| � 1 − q.

Since we can limit to infinitesimal ε, we expand the differ-
ent functions in Eq. (11) around t and obtain, to first order,

Z1 = 1 + ε

D
(ż1z∗

1 − ż2z∗
2 ), (15)

Z2 = ε

D
(ż2z1 − ż1z2),

q = 1 + εṙ

2r − 1
, (16)
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where we have used the fact that r′ = r + ε ṙ, z′
1 = z1 + ε ż1,

and z′
2 = z2 + ε ż2.

The two conditions can now be written as

(i) 1 − ε δ1 � 1 − ε δq ⇔ δ1 � δq,

(ii) |Z2| � 1 − q ⇔ δ2 � δq, (17)

where we introduced

δ1 = − 1

D
Re[ż1z∗

1 − ż2z∗
2], (18)

δq = − ṙ

2r − 1
� 0, (19)

and

δ2 = |ż2z1 − ż1z2|
|D| . (20)

Additionally we used the fact that for any complex number c,
|1 + εc| = 1 + εc + O(ε2) in the expression for |Z1|. Finally,
we combine the two inequalities into

δ2 � δq � δ1. (21)

We can now relate our inequalities to the criterium of Rivas
et al. as follows. In our case, the trace norm of the Choi matrix
can be written as

||Ct+ε,t ||1 = |q + |Z1|| + |q − |Z1|| + |1 − q + |Z2||
+ |1 − q − |Z2||

= 2 − ε (δq + δ1 − |δ1 − δq| − |δq

+δ2| − |δq − δ2|). (22)

This yields

g(t ) = |δ1 − δq| + |δq + δ2| + |δq − δ2| − δq − δ1

2
. (23)

We showed that non-negativity of the eigenvalues is equiv-
alent to the double inequality δ2 � δq � δ1. Then we saw that
it is also equivalent to g(t ) = 0. This means that the double
inequality holds if and only if g(t ) = 0.

B. Contractivity

Markovianity of classical stochastic processes implies that
probabilities distributions decrease their Kolmogorov distance
with time [32]. This is interpreted as a loss of information of
the initial conditions. Carrying this idea to a quantum level
results in a definition of Markovianity [6]. Let �1,2(t ) denote
the evolution of two states �1,2. We define

σ (�1, �2, t ) = d

dt
T [�1(t ), �2(t )], (24)

where T [�1(t ), �2(t )] = tr(|�1(t ) − �2(t )|)/2 is the trace dis-
tance, which is directly related to the probability of distin-
guish the state �1(t ) from the state �2(t ), i.e., it is their
distinguishability [33], and |A| =

√
AA†. In other words, σ

is the derivative of the distance between the evolved states.
We say that a process is contractive if for all �1,2 and all
t � 0, we have that σ (�1, �2, t ) � 0. A process is said to
be non-Markovian if it is not contractive. Breuer et al. then

define the following quantity as a measure for the degree of
non-Markovianity:

NBLP(t ) = max
�1,�2

∫
0�τ�t,σ>0

dτ σ (�1, �2, τ ). (25)

The calculation of this measure is greatly simplified when
the process acts on a qubit. To perform this maximization,
one should consider only pure, orthogonal initial states [34].
Indeed, we found that T [�1(t ), �2(t )] depends only on the
vector difference between the representations of initial states
in the Bloch ball (see Appendix B 2). Moreover, the distance
between the two points representing the initial states enters
as a homogeneous scale factor. It therefore possible, restrict-
ing the maximum search to such cases, where �1 is a pure
state, and �2 the uniform mixture. If the pure state �1 is
parametrized in spherical coordinates by the angles θ and φ,
we obtain [cf. Eq. (B11)]

σ (�1, 1/2, t ) = 1

2

d

dt
|| sin θ (cos φσx + sin φσy) + cos θσz||

= 1

2

d

dt

√
(2r − 1)2 cos2 θ + M(φ) sin2 θ,

(26)

with M(φ) = |z1 + z2 e−2iφ |2.
In what follows, we derive a criteria for NM based on the

contractivity, which can be compared to the criteria Eq. (21)
obtained in Sec. III A, based on divisibility. Since θ may be
chosen freely in Eq. (26), a given process is Markovian in the
sense of Breuer et al., if and only if both functions, (2r − 1)2

and M(φ) are nonncreasing at all times. In other words if
d

dt
(2r − 1)2 � 0, (27)

d

dt
M(φ) � 0 (28)

for all times, condition (27) becomes −ṙ(2r − 1) = δq(2r −
1)2 � 0, which in turn is equivalent to δq � 0 (at least as long
as 2r − 1 �= 0, i.e., away from the points where �t is not
invertible). To consider condition (28), we expand M(φ) as

M(φ) = A + cos(2φ) B − sin(2φ) C, (29)

where A = |z1|2 + |z2|2, B = 2 Re(z1z∗
2 ), and C = 2 Im(z1z∗

2 ).
Setting Ḃ = R cos α and Ċ = R sin α, we define R and α via
the equations Ḃ = R cos α and Ċ = R sin α, so one can write

d

dt
M(φ) = Ȧ +

√
Ḃ2 + Ċ2 cos(2φ + α). (30)

From this, it is clear that the largest time derivative of M(φ) is
Ṁmax = Ȧ +

√
Ḃ2 + Ċ2. With Z = z1z∗

2, we find Ḃ = Ż + Ż∗
and Ċ = −i (Ż − Ż∗) such that

Ṁmax = Ȧ +
√

(Ż + Ż∗)2 − (Ż − Ż∗)2 = Ȧ + 2|Ż|. (31)

To summarize, for the process to be Markovian (in the sense
of contractivity), it is required that both δq � 0 and Ṁmax � 0.
This is equivalent to

δq � 0, δC
1 � δC

2 , (32)

where

δC
2 = |ż1z∗

2 + z1ż∗
2|, δC

1 = −Re(ż1z∗
1 + ż2z∗

2 ). (33)
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This double inequality is the analog of Eq. (21), which has
been derived as criterium for Markovianity in the sense of
divisibility.

For unital maps like the one considered here, contractivity
of the trace distance can be identified with positivity. That
means that our quantum process �t is contractive if and only
if all intermediate maps are positive. Note that divisibility is
defined as all intermediate maps being completely positive.
Thus, there may be processes which are contractive but not
divisible [35]. Therefore, we may find regions in the param-
eter space of our system, where the dynamics is contractive
(i.e., BLP Markovian) but not divisible (i.e., RHP Markovian).
A recent, comprehensive discussion on different criteria for
divisible and contractive processes can be found in Ref. [36].

C. Maximal recovery

This quantifier of non-Markovianity can be based on any
capacity-like property of the channel. In fact, we use distin-
guishability, maximized over states, such as in the case of the
BLP measure. However, instead of summing up all the small
increments, we search for the maximum distinguishability
recovery over the whole quantum process [25]:

NMDR(t )= max
t � t1 � t2 � 0

�1, �2

{T (�1(t1), �2(t1))−T (�1(t2), �2(t2))},

(34)

where T (�1, �2) is defined in the text below Eq. (24). The
BLP measure has been related to the backflow of information,
which can be quantified indeed in terms of the recovery of
distinguishability. However, in order to quantify the amount
of information recovered, it is much more sensible to use
NMDR than integrating over all backflow in a process where
information is fluctuating back and forth between system and
environment. Of course, there is a price to pay. It is quite
more expensive to compute NMDR than it is to compute NBLP,
because of the additional degrees of freedom, t1 and t2.

IV. NUMERICAL SIMULATIONS

In this section we apply different methods to characterize
the (non-)Markovian dynamics of a generic open quantum
system. The quantum process to be studied is obtained by
numerical simulations of the Hamiltonian in Eq. (1) with the
initial state of the environment taken as the maximally mixed
state. This includes a Monte Carlo sampling of a random ma-
trix ensemble. Therefore, the numerical data are contaminated
by residual statistical fluctuations due to the finite size of the
sample. We stress that residual fluctuations would be present
in experimental situations also. The dimension of the Hilbert
space of the environment is set to N = 200, and the sample
size is fixed to Nsam = 2400 unless otherwise stated.

In our model system, defined in Eq. (1), we can identify
three different energy scales: the average level spacing in He

(which is set equal to one), the spacing � between the two
levels of the qubit, and the coupling strength λ between qubit
and environment. In an effort to explore the properties of our
model as thoroughly as possible, we consider a rectangular
region in the parameter space (�,λ). For �, the interesting

range reaches from values much smaller than the mean level
spacing to values much larger, and thus we choose the limits
0.016 � � � 16, covering a range of three orders of magni-
tude. For λ, we choose the lower limit where λ is much smaller
than the average level spacing in He, such that perturbation
theory would be applicable for the Hamiltonian He + λV . The
upper limit, by contrast, is dictated by the requirement that our
model reproduces the behavior of the random matrix model
in the limit N → ∞, in such a way that finite-size effects are
still negligible. For that to hold, the spreading of eigenstates of
He + λV expanded in the basis of He must be small compared
to the spectral range of He. Both considerations lead us to the
limits 1/32 � λ � 1/2. A similar parameter range has been
explored in Ref. [27].

In order to obtain reliable values for the two measures, we
establish a finite ending time for the processes to be studied.
At that time, the system will have relaxed so much that the
remaining dynamics is unusable for any practical purposes.
Our approach for finding a sensible definition for the ending
time tEnd is described in Sec. IV A. In Sec. IV B we present
and discuss the results for three non-Markovianity measures.
Moreover we select several representative parameter sets that
are analyzed in detail in Sec. IV C. In particular, we study
the dependence of the measures on the number of samples
considered. The motivation is to understand the statistical
significance of the results presented in Sec. IV B. At the end,
this could be useful for identifying a NM measure which is
accurate, robust, and significant. We finish this section by
analyzing the local (in time) criteria for non-Markovianity in
Sec. IV D. We consider divisibility and contractivity, via the
corresponding inequalities (21) and (32). Both conditions are
tested for the infinitesimal intermediate quantum map �t+ε,t

as defined in Eq. (10) and examine carefully the usefulness of
such kind of expression under statistical fluctuations.

A. Process ending time

For the NM measures to be considered below (Sec. IV B)
it is essential to define an ending time tEnd for the quantum
process in question. However, two conflicting requirements
arise. On the one hand, the ending time should be sufficiently
large, such that the dynamics of the process is completely
contained, but, on the other hand, it should also be sufficiently
short, such that the contaminating contribution from residual
statistical fluctuations remain small.

The quantum process studied here has the convenient prop-
erty that if one chooses as initial state an eigenstate of σy, the
system converges to the uniform mixture in the limit of long
times. Along this process, the purity P(t ) = tr[�c(t )2] decays
from P(0) = 1 to P(∞) = 1/2. We choose the ending time for
the process at that time, where the purity of �t [�

y
c ] is equal to

0.51, which means that the purity has decayed to 2% above its
minimum value. Of course, other values of the same order are
equally possible, but they do not change the general results of
our study.

In Fig. 1 we show the process ending time as a function
of the parameters � and λ, color coded over the parameter
space. While we use a linear scale for λ, � is varied on a log
scale. The resulting ending time varies over several orders of
magnitude, so we also use a log scale for the color mapping.
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FIG. 1. Heat map of the process ending time tEnd as a function of
the qubit’s energy splitting � and the strength of coupling with its
environment λ.

While λ increases, the tEnd becomes smaller exponentially
fast, since for large λ, the Fermi-golden-rule approximation
applies [27]. It is, however, quite remarkable that for small
λ, the largest tEnd can be found near � = 0.16, which is
approximately equal to t−1

H , where tH = 2π is the Heisenberg
time in the random matrix environment. In other words, at
� = 0.16 the period of the Rabi oscillation is equal to the
Heisenberg time.

For all non Markovianity measures we choose t = tEnd

unless otherwise stated, and we shall thus drop the time
dependence.

B. Three measures for non-Markovianity

Analyzing Fig. 2, we find that both measures reach smallest
values shown in the upper left corner of the parameter space.
Indeed, due to the following argument, we expect the quantum
process to be at least close to Markovian in this region. The
standard prescription for deriving a quantum master equation
via the Born-Markov approximation consists in the following
steps [37]: (1) couple the central system weakly to each
of the many degrees of freedom in the environment (Born
approximation), (2) let the number of degrees of freedom in
the environment go to infinity, and (3) assume the environment
correlation functions to decay almost instantaneously on the
time scale of the reduced dynamics (Markov condition). In
terms of level density and average local level spacing, condi-
tions (1) and (2) lead to a wide range in energy with an expo-
nentially high level density, which means that the perturbation
strength will be large as compared to the level spacing. This
regime is known as the Fermi-golden-rule regime [38]. Note
that in this parameter region, � � 1, which results in a slow
system dynamics so that condition (3) is fulfilled.

By contrast, for sufficiently small coupling λ < 7/32 and
not too small �, the dynamics is clearly NM. It is clear that in
this region at least some of the conditions mentioned above are
not fulfilled. The region of strongest NM behavior is around
� ≈ t−1

H and small values of λ.
An interesting area is in the upper right region of the

NM maps in Fig. 2. There, the BLP measure of Eq. (25)

1/2

13/32

5/16

7/32

1/8

1/32
1/2

13/32

5/16

7/32

1/8

1/32

log10 Δ
-1.8 -1.2 -0.6 0 0.6 1.2

λ

FIG. 2. BLP measure (upper panel) and RHP measure (lower
panel) for non-Markovian dynamics as a function of � and λ. The
parameter region considered is the same as in Fig. 1; again we use a
log scale in the heat map representing the values of the NM measures.
Both measures, defined in Eqs. (25) and (13), respectively, are taken
at t = tEnd.

tends to very small values, while the RHP measure, Eq. (13),
remains constant. As explained at the end of Sec. III B, the
RHP criterion is more restrictive than the BLP criterion, as
it requires complete positivity and not just positivity for the
intermediate maps. It is thus possible that a given quantum
process is BLP Markovian but not RHP Markovian. Due to
residual statistical fluctuations, a definite judgment is difficult.

Figure 3 shows NMDR(t ) as defined in Eq. (34) up to the
ending time t = tEnd as a function of � and λ. Its behavior is
more similar to NBLP than to NRHP, which may be related to
its common origin. Note though that the boundary between the
regions of Markovian and strongly non-Markovian behavior
is sharper. The region of strong NM is also somewhat larger,
located in an area parallel to the M-NM boundary, at values
for λ below 1/4, of about 12 blocks in size. Finally, note
the region in the upper right corner. There the MDR measure
leads to (relatively) lower values than the BLP measure, in
distinction to the RHP measure, which reaches much larger
values.

C. Robustness and convergence of the NM measures

In the previous section, we presented the results of three
different measures for NM. For our model, we found a wide
range of different behavior, depending on the choice of the
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FIG. 3. Maximum distinguishability recovery (MDR). The quan-
tity NMDR as defined in Eq. (34), plotted similarly to the previous two
NM measures in Fig. 2.

parameters, � and λ. Here we study the robustness and
accuracy of the measures in more detail. For that purpose we
select three points in parameter space, where the behavior of
the quantum process is quite different:

(1) Point P1 (� = 10−1.4, λ = 3/8), where the dynamics is
Markovian, or at least very close to it.

(2) Point P2 (� = 0.1, λ = 1/32), where it is maximally
non-Markovian, according to the BLP measure.

(3) Point P3 (� = 100.8, λ = 3/8), where the dynamics
looks like being more NM according to RHP than according
to BLP or MDR; compare the two heat maps in Fig. 2.

Finally, we select a additional fourth point for a later
remark:

(4) Point P4 (� = 10−0.2, λ = 11/32).
Let us now discuss the numerical results. In Fig. 4 the NM

measures are shown as a function of time. In other words, we
compute the NM measures as if the quantum process would
end at time t , instead of tEnd. It is clear from the definition of
all three measures that they must be monotonously increasing:
N (t1) � N (t2) whenever t1 � t2.

For P1 (Markovian point; top panel), the RHP measure
(blue line, triangles) increases continuously with time, even
though it always remains rather small. The other two measures
by contrast show only one increment at t ≈ 0.5 and afterwards
remain approximately constant around a value of 10−8. This
makes it difficult to decide unambiguously whether the pro-
cess is Markovian or non-Markovian.

For P2 (strongly NM; middle panel), the RHP measure
increases to very large values of the order of 102. The BLP
measure also increases along the full time range up to values
of the order 100, while the MDR measure quickly saturates at
a value of the order of 10−1 (note that the MDR measure is by
definition limited to values below one). The different behavior
between BLP and MDR will be discussed below, where we
consider the criteria for contractivity. In any case, all three
measures clearly show the NM of the process.

For P3 the RHP measure increases continuously as in
the previous cases, reaching values of the order of 100. By
contrast, the other two measures, BLP and MDR remain
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FIG. 4. NM measures for the three representative points P1, P2,
and P3 (for details, see the main text), from the parametric plane as
a function of time.

below a value of the order of 10−4. This may hint towards
the possibility that here the quantum process is P-divisible but
not CP-divisible.

In Fig. 5 we plot the NM-measures versus the sample size,
Nsam, where we expect that the NM measures approach a limit
value for Nsam → ∞, the true ensemble average. For point P1
(top panel), as the ensemble size increases, all measures tend
algebraically to zero. For point P2 (middle panel) all measures
converge to a finite values, whereas for point P3, the measures
based on distinguishability seem to drop to zero, while the
one based on divisibility attains a finite value. In other words,
this result suggests that the dynamics is P-divisible but not
CP-divisible at that point [35].

1. Environment size

The numerical results presented in this section were com-
puted for Ne = 200 and are expected to show accurately the
Ne → ∞ limit. In fact, it can be shown that finite size effects
of Ne may occur only at times of the order of 1/Ne or smaller
(in units of the Heisenberg time). To give a quantitative
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FIG. 5. NM measures for the same three representative points
P1, P2, and P3, as in Fig. 4, as a function of the sample size.

answer, in the region t < 0.06 we saw relative differences not
larger than 1% or 2% in the time-dependent quantities shown
in our figures. We verified this by recalculating some of the
observables for Ne = 100 and Ne = 400.

2. Nonequivalence of NM measures

A second interesting question is that of “quantitative equiv-
alence.” Two measures M1, M2 for a physical property may be
called (quantitatively) equivalent, if and only if

M1(A) < M1(B) ⇔ M2(A) < M2(B),

for any two states A, B of some system. For example, if one
thermometer (calibrated according to the empirical tempera-
ture M1) finds that a body A is colder than a body B, any other
thermometer (calibrated according to some different empirical
temperature M2) should find the same relation. Analyzing
carefully our results in Fig. 2, we can indeed find pairs of
points in parameter space, where the two NM measures NRHP

and NBLP violate this condition. For instance, NRHP is clearly
larger at P4 than at P2, while in the case of NBLP it is just the
other way round.
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FIG. 6. Local divisibility criteria as a function of time for the
well-known three points from the parametric plane. The left column
shows the quantities, δ1,2,q as defined in Eq. (20); the right column
shows its corresponding function g(t ) as defined in Eq. (23). For
the intermediate process to be divisible, the quantities on the left
must fulfill δ2 � δq � δ1, and the quantity on the right g(t ) = 0. We
present this figures for points P1 (top panel), P2 (middle panel), and
P3 (bottom panel).

D. Time evolution of Markovianity criteria

Here we study the behavior of the two time-local criteria
for non-Markovianity which are based on divisibility and
contractivity, described in Sec. III.

For the divisibility, we consider the requirements given in
Eq. (21) on the one hand, and the condition g(t ) = 0 with g(t )
given in Eq. (12) on the other. While formally, both criteria are
equivalent [see Eq. (23)], we will see that in the presence of
experimental or statistical uncertainties, one might be easier to
verify than the other. In Fig. 6 we present the aforementioned
expressions for points P1, P2, and P3 for times ranging from
zero to tEnd.

For point P1 (top two panels), we see that the inequalities
are saturated, in the sense that δ1,2,q are apparently all equal.
Despite that, the function g(t ) is not identically equal to
zero; however, it is small. The inequalities have allowed to
correctly identify the point as Markovian, in agreement with
the analysis of Fig. 5. In fact, for larger ensemble sizes the
value of g(t ) diminishes.

The behavior of δ1,2,q and g(t ) for point P2 can be seen
in the middle panels of Fig. 6. Here the different curves
corresponding to δ1,2,q cross each other in a systematic
and ordered fashion, indicating non-Markovianity beyond
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FIG. 7. Local contractivity criteria as a function of time. In the
left figures, we plot the functions which characterize the channel to
study how the conditions (32), δq � 0 and δC

1 � δC
2 , are fulfilled or

not. On the right we plot σmax [Eq. (35)] to study how the measure
builds with time, together with its integral (insets). Again, we study
points P1, P2, and P3 in the top, middle, and bottom panels.

statistical fluctuations. This is also seen in the behavior of the
corresponding g(t ), which oscillates regularly around values
of the order of 0.1. Notice that we identified this point as
displaying non-Markovian behavior, again with the aid of
Fig. 5.

Finally, point P3 is studied in the lower panels of Fig. 6.
We can see that the curve corresponding to δq is not between
the ones corresponding to δ1,2. The conclusions are confirmed
by the behavior of g(t ), where one finds striking fluctuations
on top of a smooth curve which increases systematically as a
function of time. Thus, according to the divisibility criterion,
the system is non-Markovian, as concluded from the lower
panel of Fig. 5.

In the case of the Markovianity measure based on the
contractivity of the process, the condition σ � 0 translates to
Eq. (32) for the channels here considered; see Fig. 7. For a
given time t , a certain initial pair of states �

(max)
1,2 will yield the

maximum NBLP(t ) as defined in Eq. (25). For these states, one
can calculate

σmax = σ
(
�

(max)
1 , �

(max)
2 , t

)
(35)

and see how the final value of the measure is built with time.
Notice that σmax is different from the derivative of NBLP(t )
[recall Eq. (25)] as for each ending time t , the states that
maximize the quantifier are different, whereas in Eq. (35) we

fix the ending time; however, for t equal to the ending time,
they coincide.

On the top left panel we can see that Eq. (32) is apparently
fulfilled during the whole process; however, since the two
curves for δC

1 and δC
2 lie on top of each other, the inequality

δC
1 � δC

2 might be violated on a smaller scale. On the top right
panel, we see that indeed the measure is close to zero; for
t < 0.7 it is numerically zero and, afterwards, close to 10−8.
From this evidence, we arrive at the conclusion that the point
is Markovian, with respect to contractivity, in agreement with
the same case studied in Fig. 6.

The point P2 is analyzed in the middle panels. The function
δq oscillates around zero with decreasing amplitude, while δC

2
provides an upper bound for δC

1 . Indeed, whenever this bound
is saturated, δq has an node, and σmax has a minimum, making
the system “very Markovian.” On the other hand, when the
difference between δC

1 and δC
2 is largest, σmax has a maximum,

and the system becomes very non-Markovian. Thus, as can be
seen on the right, σmax oscillates regularly and with a relatively
high amplitude around zero. The NM measure, NBLP, adds up
the areas below the positive parts of σ (t ), which we expect
to have a similar behavior as σmax(t ), shown here. Therefore,
the point P2 shows a genuine noncontractive behavior, and the
dynamics is NM in this case.

The point P3 is analyzed in the bottom panels. All three
functions δq and δC

1,2 display a similar behavior as for point P1,
but for δq we observe stronger statistical fluctuations. In this
case, however, σmax oscillates and has a maximum in 0. The
measure picks up small statistical fluctuations which diminish
as we increase the sample size and may therefore be regarded
as spurious. We can conclude that the process for point P3 is
contractive, in agreement with previous conclusions.

The criteria provided in Eqs. (21) and (32), indeed, provide
a useful tool to understand if a certain nonzero value for
one of the NM measures should be regarded as statistically
significant or not. In some cases it is helpful to analyze the
behavior of the measures under variation of the sample size in
order to arrive at the correct decision.

V. CONCLUSIONS

In this article we studied a qubit coupled to a generic
environment modeled by random matrices. The model Hamil-
tonian contains a factorizable interaction between qubit and
environment, and provides the qubit with an internal dynamics
perpendicular (in the Bloch representation) to the one induced
by the interaction. This induces a channel structure for which
we were able to derive analytical conditions for several criteria
of Markovianity. In spite of its simplicity, the model displays
rich dynamics in the qubit, beyond pure depolarization or
dephasing.

We then applied the criteria to determine for which pa-
rameters the model yield Markovian dynamics in the qubit.
We found several difficulties with verifying Markovianity
criteria for the numerical data, which we expect to appear
also in real experimental situations. Fluctuations due to noise
and/or due to finite sample sizes may contribute notably to
the finite value of a non-Markovianity measure and thereby
suggest non-Markovian behavior, whereas the clean system
really is Markovian. An analysis like the present one, where
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the ensemble size is increased such that residual fluctuations
diminish, eventually reveals the true behavior.
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APPENDIX A: BORN SERIES

In this Appendix, we prove that the quantum channel, de-
scribing the dynamics of the qubit under coupling to the RMT
environment, has the form of an X state [39] as postulated
in Eq. (7). For doing so, we use the entire expansion of the
evolution of system and environment in a Born series. We
consider the more general case of an arbitrary mixed initial
state �e in the environment, and only at the end specialize to
the case �e = 1/Ne.

In the interaction picture, a solution to the Hamiltonian

Hλ = �

2
σz ⊗ 1 + 1 ⊗ He + λ σx ⊗ Ve

can be written as

�(t ) = U0(t ) χ (t ) : ih̄∂t χ (t )=λU0(t )† σx ⊗ Ve U0(t )χ (t ),

U0(t ) = e−i �
2 σzt ⊗ e−iHet .

Here we stick to the convention chosen in the main part of
this paper, where the time variable t measures time in units
of the Heisenberg time, which results in h̄ = 1. The echo
operator M(t ) describes the evolution of the state χ (t ), such
that χ (t ) = M(t ) χ (0). In the original Schrödinger picture, it
thus holds:

�(t ) = U0(t ) M(t ) �(0), M(t ) = U0(t )† U (t ).

As a formal solution of the evolution equation in the interac-
tion picture, the echo operator fulfills the following integral
equation:

M(t ) = M(0) − iλ
∫ t

0
dτ σ̃x(τ ) ⊗ Ṽe(τ ) M(τ )

=
∞∑

k=0

(−iλ)k
∫

· · ·
∫

t>τk>...>τ1>0
dτk · · · dτ1

×
(

0 A(τk )
A(τk )† 0

)
· · ·

(
0 A(τ1)

A(τ1)† 0

)
. (A1)

Here the second line represents the afore mentioned Born
series, where the interaction has been written in block-matrix
notation:

σ̃x(τ ) ⊗ Ṽe(τ )=
(

0 ei�τ Ṽe(τ )

e−i�τ Ṽe 0

)
=

(
0 A(τ )

A(τ )† 0

)
.

Here we will calculate the average of �̃(t ) = M(t ) �c ⊗
�e M(t )†, with respect to the random matrix ensemble for Ve.
This defines the quantum map �t as

�t : �c(0) → �c(t ) = tre[U (t ) �c(0) ⊗ �e U (t )†]

=
(

e−i�t/2 0
0 ei�t/2

)
tre[�̃(t )]

×
(

ei�t/2 0
0 e−i�t/2

)
, (A2)

and thereby its Choi-matrix representation, in Eq. (7). Below,
we will also consider this quantum map in the interaction
picture, defined as

�̃t : �c(0) → �̃c(t ) = tre[�̃(t )]. (A3)

1. Simplified notation

For our purpose, it is convenient to introduce the following more compact notation for the multidimensional time integrals:

I0(τ) = 1, I1(τ) = I (τ ) =
∫ t

0
dτ, I2(τ) = I (τ2, τ1) =

∫
t>τ2>τ1>0

d2τ =
∫

t>τ2>τ1>0
dτ2 dτ1,

Ik (τ) =
∫

t>τk>...>τ1>0
dτk · · · dτ1. (A4)

Note that we enumerate the different time variables from smallest to largest starting at the time closest to zero. Next, we will
introduce an independent notation for the integrands. Let us consider the case of an even number of product terms, first:

2k∏
j=1

(
0 A(τ j )

A(τ j )† 0

)
=

(
P2k (τ) 0

0 Q2k (τ)

)
, A(τ ) = ei�τ Ṽe(τ ), A(τ )† = e−i�τ Ṽe(τ ) = e−2i�τ A(τ ),

since Ṽe(τ ) is Hermitian. Note that the product terms on the left-hand side of the first equation, must be ordered according to
decreasing time arguments, just as in Eq. (A1). From an explicit computation we find

P2k (τ) = A(τ2k ) A(τ2k−1)† A(τ2k−2) A(τ2k−3)† · · · A(τ2) A(τ1)† = exp

[
−i�

2k∑
m=1

(−1)m τm

]
2k∏

m=1

Ṽ (τm),

Q2k (τ) = A(τ2k )† A(τ2k−1) A(τ2k−2)† A(τ2k−3) · · · A(τ2)† A(τ1) = exp

[
i�

2k∑
m=1

(−1)m τm

]
2k∏

m=1

Ṽ (τm). (A5)
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Note that the product terms must be ordered such that time increases from right to left. For an odd number of terms:

2k+1∏
j=1

(
0 A(τ j )

A(τ j )† 0

)
=

(
0 A(τ2k+1)

A(τ2k+1)† 0

)(
P2k (τ) 0

0 Q2k (τ)

)
=

(
0 A(τ2k+1) Q2k (τ)

A(τ2k+1)† P2k (τ) 0

)

=
(

0 Q2k+1(τ)
P2k+1(τ) 0

)
. (A6)

With this, we can write for the echo operator

M(t ) =
∞∑

k=0

{
(−iλ)2k I2k (τ)

(
P2k (τ) 0

0 Q2k (τ)

)
+ (−iλ)2k+1 I2k+1(τ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

)}
. (A7)

2. Ensemble averaged quantum channel

Averaging over the random matrix Ve implies that only such terms survive that contain an even power of matrices A(τk ) and
A(σk′ ). This means that the indices of summation must either be both even or both odd. Therefore,

�̃(t ) =
∞∑

k,k′=0

(−iλ)2k I2k (τ)

(
P2k (τ) 0

0 Q2k (τ)

)
�c ⊗ �e (iλ)2k′ I2k′

(τ)

(
P2k′ (τ)† 0

0 Q2k′ (τ)†

)

+
∞∑

k,k′=0

(−iλ)2k+1 I2k+1(τ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

)
�c ⊗ �e (iλ)2k′+1 I2k′+1(τ)

(
0 Q2k′+1(τ)†

P2k′+1(τ)† 0

)

=
∞∑

k,k′=0

(−λ2)k+k′
{
I2k (τ) I2k′

(σ)

(
P2k (τ) 0

0 Q2k (τ)

)
�c ⊗ �e

(
P2k′ (σ)† 0

0 Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

)
�c ⊗ �e

(
0 Q2k′+1(σ)†

P2k′+1(σ)† 0

)}
. (A8)

For the quantum channel in the interaction picture, Eq. (A3), it is now easily verified that

�̃t [ |0〉〈0| ] =
∞∑

k,k′=0

(−λ2)k+k′
tre

{
I2k (τ) I2k′

(σ)

(
P2k (τ) 0

0 Q2k (τ)

) (
�e 0
0 0

) (
P2k′ (σ)† 0

0 Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

) (
�e 0
0 0

) (
0 Q2k′+1(σ)†

P2k′+1(σ)† 0

)}

=
∞∑

k,k′=0

(−λ2)k+k′
{
I2k (τ) I2k′

(σ)

(
P2k (τ) �e P2k′ (σ)† 0

0 0

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 0
0 P2k+1(τ) �e Q2k′+1(σ)†

)}
. (A9)

This and Eq. (A2) then show that �t [|0〉〈0|] is indeed of the form postulated in Eq. (7), and it yields the following expressions
for r(t ):

r(t ) =
∞∑

k,k′=0

(−λ2)k+k′ I2k (τ) I2k′
(σ) tr[P2k (τ) �e P2k′ (σ)†], (A10)

1 − r(t ) = −
∞∑

k,k′=0

(−λ2)k+k′+1 I2k+1(τ) I2k′+1(σ) tr[P2k+1(τ) �e Q2k′+1(σ)†]. (A11)

The second equation results from the fact that the reduced evolution of the qubit conserves the trace. Naturally, it is difficult
to prove this directly, from the expressions derived here. Let us now consider �t [|1〉〈1|]. In this case, as in the previous one,
�t [|1〉〈1|] = �̃t [|1〉〈1|], and we find

�t [|1〉〈1|] =
∞∑

k,k′=0

(−λ2)k+k′
tre

{
I2k (τ) I2k′

(σ)

(
P2k (τ) 0

0 Q2k (τ)

) (
0 0
0 �e

) (
P2k′ (σ)† 0

0 Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

) (
0 0
0 �e

) (
0 Q2k′+1(σ)†

P2k′+1(σ)† 0

)}
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=
∞∑

k,k′=0

(−λ2)k+k′
{
I2k (τ) I2k′

(σ)

(
0 0
0 Q2k (τ) �e Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
Q2k+1(τ) �e P2k′+1(σ)† 0

0 0

)}
=

(
1 − r̃(t ) 0

0 r̃(t )

)
. (A12)

Again, the resulting qubit state is diagonal; however, unless we specialize to the case �e = 1/N , the function r̃(t ) is different
from r(t ) corresponding to the previous case:

r̃(t ) =
∞∑

k,k′=0

(−λ2)k+k′ I2k (τ) I2k′
(σ) tr[Q2k (τ) �e Q2k′ (σ)†],

1 − r̃(t ) = −
∞∑

k,k′=0

(−λ2)k+k′+1 I2k+1(τ) I2k′+1(σ) tr[Q2k+1(τ) �e P2k′+1(σ)†]. (A13)

We continue with the off-diagonal blocks of the Choi-matrix representation of the quantum channel:

�̃t [|1〉〈0|] =
∞∑

k,k′=0

(−λ2)k+k′
tre

{
I2k (τ) I2k′

(σ)

(
P2k (τ) 0

0 Q2k (τ)

) (
0 0
�e 0

) (
P2k′ (σ)† 0

0 Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

) (
0 0
�e 0

) (
0 Q2k′+1(σ)†

P2k′+1(σ)† 0

)}

=
∞∑

k,k′=0

(−λ2)k+k′
{
I2k (τ) I2k′

(σ)

(
0 0

Q2k (τ) �e P2k′ (σ)† 0

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ) �e Q2k′+1(σ)†

0 0

)}
. (A14)

This result confirms again the general X-state structure of the Choi representation of our quantum channel. In terms of the
parametrization in Eq. (7), we find

z1(t ) = ei�t
∞∑

k,k′=0

(−λ2)k+k′ I2k (τ) I2k′
(σ) tr[Q2k (τ) �e P2k′ (σ)†],

z2(t )∗ = e−i�t
∞∑

k,k′=0

(−λ2)k+k′
λ2 I2k+1(τ) I2k′+1(σ) tr[Q2k+1(τ) �e Q2k′+1(σ)†], (A15)

where the phases e±i�t arise from returning to the Schrödinger picture, according to Eq. (A2). Finally,

�̃t [|0〉〈1|] =
∞∑

k,k′=0

(−λ2)k+k′
tre

{
I2k (τ) I2k′

(σ)

(
P2k (τ) 0

0 Q2k (τ)

) (
0 �e

0 0

) (
P2k′ (σ)† 0

0 Q2k′ (σ)†

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 Q2k+1(τ)

P2k+1(τ) 0

) (
0 �e

0 0

) (
0 Q2k′+1(σ)†

P2k′+1(σ)† 0

)}

=
∞∑

k,k′=0

(−λ2)k+k′
{
I2k (τ) I2k′

(σ)

(
0 P2k (τ) �e Q2k′ (σ)†

0 0

)

+ λ2 I2k+1(τ) I2k′+1(σ)

(
0 0

P2k+1(τ) �e P2k′+1(σ)† 0

)}
. (A16)

For any Hermiticity-conserving linear map, the Choi representation itself must be Hermitian, in particular also for our quantum
channel, as can be seen from its definition in terms of the reduced dynamics in Eq. (2). This implies that

z1(t )∗ = e−i�t
∞∑

k,k′=0

(−λ2)k+k′ I2k (τ) I2k′
(σ) tr[P2k (τ) �e Q2k′ (σ)†],

z2(t ) = ei�t
∞∑

k,k′=0

(−λ2)k+k′
λ2 I2k+1(τ) I2k′+1(σ) tr[P2k+1(τ) �e P2k′+1(σ)†]. (A17)
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In the case of z1(t ) the equivalence of the Eqs. (A15) and
(A17) is rather obvious. One simply has to exchange the
variable names k and k′ along with τ and σ. In the case of
z2(t ), we do not see any simple way of proving the equivalence
in terms of the present approach.

3. Collecting results for the case �e = 1/N

From the considerations in the previous paragraph, we
found that the Choi-matrix representation of the quantum
channel defined by the Eqs. (2) and (A2) is given by

C�t =

⎛
⎜⎝

r 0 0 z∗
1

0 1 − r z2 0
0 z∗

2 1 − r̃ 0
z1 0 0 r̃

⎞
⎟⎠.

The general X-state structure (i.e., all the zeros in this matrix)
follows directly from the considerations in this section. For
simplicity we omitted the time argument in this representa-
tion. The functions r(t ), z1(t ), z2(t ), and r̃(t ) are as defined
above. Some of the dependencies between these matrix ele-
ments could not be proven within our derivation but are valid
due to elementary properties of the evolution equation (2).
This is the case for trace conservation (diagonal blocks) and
Hermiticity (off-diagonal blocks).

As a last point, we show that for �e = 1/Ne, it holds that
r(t ) = r̃(t ). In this case, and for �e(0) = 12, we find from
Eq. (2):

�t [1] = 1

Ne
tre

[
e−iHλt eiHλt

] = 1. (A18)

This means that no matte if we perform an ensemble average
or not, the resulting quantum channel is unital (it maps the
identity onto itself). This in turn implies

�t [1] = �t [|0〉〈0|] + �t [|1〉〈1|]

=
(

r(t ) 0
0 1 − r(t )

)
+

(
1 − r̃(t ) 0

0 r̃(t )

)

=
(

1 0
0 1

)
⇔ r(t ) = r̃(t ). (A19)

APPENDIX B: TWO REPRESENTATIONS OF A
QUANTUM CHANNEL

We will use two different representations. First, we have
the “superoperator” representation, which is nothing other
than the standard matrix representation of a linear map on
a vector space. This representation is easy to read directly
from the evolution of a standard set of states; in fact, we
shall construct it in that way. Second, there is the Choi-matrix
representation in which verifying inherent quantum channel
properties is easier.

For the superoperator representation, we represent the den-
sity matrices as column vectors, in the so-called “antilexico-
graphical” ordering [40]. For a single qubit, we have

� =
(

�00 �01

�10 �11

)
←→ �� =

⎛
⎜⎝

�00

�10

�01

�11

⎞
⎟⎠. (B1)

This fixes the matrix representation Lt of the map �t , since
the columns of Lt must be the images of the canonical
basis vectors. Thus, with the condensed form �[i j]kl ≡
〈k| �t [ |i〉〈 j| ] |l〉, we obtain

Lt =

⎛
⎜⎝

�[00]00 �[10]00 �[01]00 �[11]00

�[00]10 �[10]10 �[01]10 �[11]10

�[00]01 �[10]01 �[01]01 �[11]01

�[00]11 �[10]11 �[01]11 �[11]11

⎞
⎟⎠. (B2)

The superoperator representation has the convenient property,
that the representation L of the composition of two quantum
maps, � = �2 ◦ �1 (where �2 is applied to the result of �1)
is simply given by the matrix product of the representations
L1 and L2 of the individual maps: L = L2 L1.

1. Quantum map for intermediate time steps

We know that the superopertor has the following form:

Lt =

⎛
⎜⎝

r 0 0 1 − r
0 z1 z2 0
0 z∗

2 z∗
1 0

1 − r 0 0 r

⎞
⎟⎠, (B3)

where r and z1,2 are functions on time.
For given quantum maps �t and �t+ε, we compute the

quantum map which takes states �(t ) from time t to t + ε. For
the moment we assume ε > 0 to be finite. The central question
is whether �t+ε,t = �t+ε ◦ �−1

t is a CP map or not. While
the superoperator representation Lt is appropriate to compute
the composition of �t+ε and �−1

t , the Choi representation is
needed for verifying the complete positivity. From Lt given on
(B3) of Sec. II we have its inverse matrix

L−1
t =

⎛
⎜⎝

r/d 0 0 (r − 1)/d
0 z∗

1/D −z2/D 0
0 −z∗

2/D z1/D 0
(r − 1)/d 0 0 r/d

⎞
⎟⎠,

(B4)
where d = r2 − (1 − r)2 = 2r − 1 and D = |z1|2 − |z2|2.

If we denote with primes the functions evaluated on t + ε,
that is, r′ = r(t + ε) similarly for z′

1 and z′
2, then

Lt+ε =

⎛
⎜⎝

r′ 0 0 1 − r′
0 z′

1 −z′
2 0

0 z′∗
2 z′∗

1 0
1 − r′ 0 0 r′

⎞
⎟⎠. (B5)

We found that the superoperator representation corresponding
to �t+ε,t is given by

Lt+ε,t = Lt+εL−1
t =

⎛
⎜⎝

q 0 0 1 − q
0 Z1 Z2 0
0 Z∗

2 Z∗
1 0

1 − q 0 0 q

⎞
⎟⎠, (B6)

where q = (r′ − r − 1)/d, Z1 = (z′
1z∗

1 − z′
2z∗

2 )/D, and Z2 =
(z′

2z1 − z′
1z2)/D. The corresponding Choi matrix turns out of

reshuffle the above matrix:

Ct+ε,t =

⎛
⎜⎝

q 0 0 Z∗
1

0 1 − q Z2 0
0 Z∗

2 1 − q∗ 0
Z1 0 0 q

⎞
⎟⎠; (B7)
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in Sec. III A the divisibility of �t+ε,t is explored via the posi-
tivity (non-negative eigenvalues) of the Choi matrix Ct+ε,t .

2. Trace distance and contractivity

We have introduced the trace distance and its definition
through of the Eq. (24). Furthermore, it turns out that the trace
distance of an Hermitian matrix is equal to one half of the sum
of absolute values of its eigenvalues.

Given two any states �1 and �2 which evolve under the
quantum channel �t , its trace distance at the time t can be
calculated as

T [�1(t ), �2(t )] = 1
2 tr(|�t [�1 − �2]|); (B8)

the right side of the above equation follows from the linearity
of �t and due to that �i(t ) = �t [�i]. Now, if the states �1

and �2 are described by the Bloch vectors �a = (ax, ay, az ) and
�b = (bx, by, bz ), respectively, we can write

T [�1(t ), �2(t )] = 1
4 tr(|�t [cx(|0〉〈1| + |1〉〈0|) + icy(|1〉〈0| − |0〉〈1|) + cz(|0〉〈0| − |1〉〈1|)]|), (B9)

where the cis are the vector components of �c = �a − �b. Using the linearity of �t and spherical coordinates for �c =
(R sin θ cos φ, R sin θ sin φ, R cos θ ) we have

T [�1(t ), �2(t )] = 1

4
tr

(∣∣∣∣∣
(

R(2r − 1) cos θ Re−i φ sin θ (z∗
1 + ei 2φz∗

2 )

Rei φ sin θ (z1 + e−i 2φz2) −R(2r − 1) cos θ

)∣∣∣∣∣
)

, (B10)

which is a Hermitian matrix and therefore

T [�1(t ), �2(t )] = R
√

(2r − 1)2 cos2 θ + |z1 + z2 e−i 2φ|2 sin2 θ

2
. (B11)
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[35] D. Chruściński, A. Kossakowski, and A. Rivas, Phys. Rev. A
83, 052128 (2011).

[36] G. M. Cabrera, D. Davalos, and T. Gorin, Phys. Lett. A 383,
2719 (2019).

042322-14

https://doi.org/10.1007/BF01343064
https://doi.org/10.1007/BF01343064
https://doi.org/10.1007/BF01343064
https://doi.org/10.1007/BF01343064
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1038/srep01781
https://doi.org/10.1038/srep01781
https://doi.org/10.1038/srep01781
https://doi.org/10.1038/srep01781
https://doi.org/10.1103/PhysRevA.98.053862
https://doi.org/10.1103/PhysRevA.98.053862
https://doi.org/10.1103/PhysRevA.98.053862
https://doi.org/10.1103/PhysRevA.98.053862
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970079
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1088/0305-4470/34/47/103
https://doi.org/10.1088/0305-4470/34/47/103
https://doi.org/10.1088/0305-4470/34/47/103
https://doi.org/10.1088/0305-4470/34/47/103
https://doi.org/10.1103/PhysRevA.75.012106
https://doi.org/10.1103/PhysRevA.75.012106
https://doi.org/10.1103/PhysRevA.75.012106
https://doi.org/10.1103/PhysRevA.75.012106
https://doi.org/10.1088/1367-2630/9/4/106
https://doi.org/10.1088/1367-2630/9/4/106
https://doi.org/10.1088/1367-2630/9/4/106
https://doi.org/10.1088/1367-2630/9/4/106
https://doi.org/10.1209/epl/i2003-10128-9
https://doi.org/10.1209/epl/i2003-10128-9
https://doi.org/10.1209/epl/i2003-10128-9
https://doi.org/10.1209/epl/i2003-10128-9
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1103/PhysRevLett.79.4790
https://doi.org/10.1016/S0378-4371(00)00146-1
https://doi.org/10.1016/S0378-4371(00)00146-1
https://doi.org/10.1016/S0378-4371(00)00146-1
https://doi.org/10.1016/S0378-4371(00)00146-1
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.74.012105
https://doi.org/10.1103/PhysRevA.74.012105
https://doi.org/10.1103/PhysRevA.74.012105
https://doi.org/10.1103/PhysRevA.74.012105
https://doi.org/10.1103/PhysRevA.93.022117
https://doi.org/10.1103/PhysRevA.93.022117
https://doi.org/10.1103/PhysRevA.93.022117
https://doi.org/10.1103/PhysRevA.93.022117
https://doi.org/10.1088/0305-4470/37/5/004
https://doi.org/10.1088/0305-4470/37/5/004
https://doi.org/10.1088/0305-4470/37/5/004
https://doi.org/10.1088/0305-4470/37/5/004
https://doi.org/10.1103/PhysRevA.90.022107
https://doi.org/10.1103/PhysRevA.90.022107
https://doi.org/10.1103/PhysRevA.90.022107
https://doi.org/10.1103/PhysRevA.90.022107
https://doi.org/10.1103/PhysRevA.70.042105
https://doi.org/10.1103/PhysRevA.70.042105
https://doi.org/10.1103/PhysRevA.70.042105
https://doi.org/10.1103/PhysRevA.70.042105
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevA.86.062108
https://doi.org/10.1103/PhysRevA.86.062108
https://doi.org/10.1103/PhysRevA.86.062108
https://doi.org/10.1103/PhysRevA.86.062108
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1103/PhysRevA.83.052128
https://doi.org/10.1016/j.physleta.2019.05.049
https://doi.org/10.1016/j.physleta.2019.05.049
https://doi.org/10.1016/j.physleta.2019.05.049
https://doi.org/10.1016/j.physleta.2019.05.049


MARKOVIAN AND NON-MARKOVIAN DYNAMICS INDUCED … PHYSICAL REVIEW A 100, 042322 (2019)

[37] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford,
2002).

[38] E. Merzbacher, Quantum Mechanics (Wiley, New York,
1998).

[39] L. Roa, A. Muñoz, and G. Grüning, Phys. Rev. A 89, 064301
(2014).

[40] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States:
An Introduction to Quantum Entanglement (Cambridge Univer-
sity Press, Cambridge, 2006).

042322-15

https://doi.org/10.1103/PhysRevA.89.064301
https://doi.org/10.1103/PhysRevA.89.064301
https://doi.org/10.1103/PhysRevA.89.064301
https://doi.org/10.1103/PhysRevA.89.064301

