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Holonomic gates in pseudo-Hermitian quantum systems
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The time-dependent pseudo-Hermitian formulation of quantum mechanics allows one to study open system
dynamics in analogy to Hermitian quantum systems. In this setting, we show that the notion of holonomic
quantum computation can equally be formulated for pseudo-Hermitian systems. Starting from a degenerate
pseudo-Hermitian Hamiltonian we show that, in the adiabatic limit, a non-Abelian geometric phase emerges
which realizes a pseudounitary quantum gate. We illustrate our findings by studying a pseudo-Hermitian gain-
loss system which can be written in the form of a tripod Hamiltonian by using the biorthogonal representation.
It is shown that this system allows for arbitrary pseudo-U (2) transformations acting on the dark subspace of the
system.
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I. INTRODUCTION

In the standard formulation of quantum mechanics (QM),
observables are associated with Hermitian operators. This
Hermiticity condition ensures that the spectrum of the observ-
able is real valued, thus making a physical interpretation pos-
sible. It was first shown by Bender and Boettcher [1] that also
non-Hermitian systems, obeying PT symmetry (parity-time-
reversal symmetry), can show real spectra. This observation
revived serious investigations into unconventional quantum
mechanics. In particular, pseudo-Hermitian QM [2] (and the
related biorthogonal QM [3]) have received special attention.
This theory investigates pseudo-Hermitian systems, in which
the Hamiltonian of the quantum system is non-Hermitian but
can still be associated with a Hermitian counterpart. Such
peculiar behavior leads to a whole class of new Hamiltonians
that could reveal interesting new physics.

In this paper, we are particularly interested in the paradigm
of holonomic quantum computation (HQC) [4,5], which is
based on the emergence of a (non-Abelian) geometric phase
(holonomy) during a cyclic time evolution of a quantum
system [6,7]. Corresponding to a holonomy there is a non-
Abelian gauge field mediating the computation in the form of
a parallel transport. These types of gauge fields are realized
in systems where the demand for degeneracy can be satisfied.
Examples of such systems are cold atomic samples [8] and
artificial atoms in superconducting circuits [9]. Recently, the
implementation of such gauge fields was realized in systems
of coupled waveguides [10]. Another successful scheme uti-
lized the spin-orbit coupling of polarized light in asymmetric
microcavities [11].

Holonomic quantum computing is a purely geometric ap-
proach to quantum computational problems. Unitary gates
are implemented by generating a suitable holonomy from
a Hamiltonian system. The transformation that a quantum
state undergoes is the shadow (horizontal lift) of a loop in a
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parameter space (manifold) M . In this context, the question of
computational universality can be understood as the capability
of generating a set of closed paths such that the holonomy
spans up the entire unitary group [4]. Universality is typically
reached only in a subspace of the whole Hilbert space H ,
the so-called quantum code C . The most common choice is to
take C as the ground state of the Hamiltonian. This results
in a type of ground-state computation in the lowest-energy
eigenvalue manifold [5]. The elements of the (quantum) code
C are called the (quantum) code words, as the gates act on
them and, in that way, perform the computation.

Holonomy groups often appear in the context of gauge
theories. This stems from their intrinsic connection to gauge
fields, which can be elucidated by studying the theory of fiber
and vector bundles [12,13]. Physical implementations of holo-
nomic gates were considered in non-linear Kerr media [14],
superconducting quantum dots [15], and quantum electrody-
namical circuits [16], but to the best of our knowledge only for
Hermitian systems. This broad range of possible implementa-
tions, together with the fault tolerance of HQC [17], make it
desirable to generalize the concept of holonomic gates beyond
Hermitian QM.

It has been pointed out that, in order to generate a non-
Abelian geometric phase (holonomy), the Hermiticity of the
Hamiltonian is not a necessary condition [18]. Indeed, an
explicit calculation of an Abelian geometric phase for a PT -
symmetric system has been provided in Ref. [19]. However,
because degeneracy plays such a crucial role in the theory
of HQC, we will extend the theory from Refs. [19,20] to
the non-Abelian case. With this, one is in principle able to
implement quantum computational gates by means of pseudo-
Hermitian systems. The conservation of the norm of quantum
states is of utmost importance and will be discussed in this pa-
per, referring to time-dependent models for pseudo-Hermitian
QM. The occurrence of new physical effects from these types
of holonomic gates is deeply connected to the question of
measurable consequences of the underlying Hilbert space
metric [21]. The idea of a pseudo-Hermitian representation
of geometric phases could also be of interest in the theory of
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open quantum systems. The latter subject showed, by studying
lossy systems, deep relations to pseudo-Hermitian and PT -
symmetric QM.

This paper is organized as follows. In Sec. II we briefly
review the dynamics of pseudo-Hermitian systems [13,22],
and emphasize the change of the Hilbert space metric asso-
ciated with a pseudo-Hermitian quantum system [23]. In this
framework, we will show in Sec. III that it is possible to derive
a non-Abelian gauge field arising from an adiabatic mapping
onto a degenerate subspace of the system, by extending the
ideas of Ref. [20] to the degenerate case. Section IV con-
tains additional remarks and theoretical considerations on the
construction of pseudo-Hermitian Hamiltonians from a gain-
loss system or a biorthogonal basis. Following that, we will
discuss the example of a degenerate interaction Hamiltonian,
the Hermitian analog of which can be found in the area of
light-matter coupling. The gauge field is explicitly calculated
and properties of the system are discussed in detail in Sec. V.
Finally, we summarize our results with some concluding
remarks in Sec. VI. In Appendix A, we derive the transforma-
tion law for the gauge field. A more sophisticated treatment of
the geometry of pseudo-Hermitian quantum systems involves
Grassmann and Stiefel manifolds, which can be found in
Appendix B.

II. DYNAMICS OF PSEUDO-HERMITIAN SYSTEMS

We begin by briefly recalling the time-dependent dy-
namics of pseudo-Hermitian quantum systems, following
mainly Refs. [13,20,22]. We consider a time-dependent
N-dimensional (N < ∞) pseudo-Hermitian Hamiltonian
H (t ) �= H†(t ), that is, H ∼= CN . The generalization to
infinite-dimensional systems might be well possible, but is of
marginal interest for HQC. Such a pseudo-Hermitian system
can be viewed as being Hermitian with respect to a similarity
transformation

H†(t ) = η(t )H (t )η−1(t ), (1)

where η(t ) (we sometimes suppress the time argument for
brevity) is a Hermitian and positive definite operator, often
referred to as the Hilbert-space metric [23,24]. The latter
induces a new inner product

〈ϕ,ψ〉η = 〈ϕ| η |ψ〉, (2)

for all vectors ϕ and ψ in the new Hilbert space Hη(t ). Note
that Hermitian operators in H do not have to be Hermitian in
Hη(t ).

A different point of view can be taken by investigating
the eigenvalue problem of H [3]. For a Hermitian operator
over Hη(t ), all its eigenvalues are real and its instantaneous
eigenstates

H (t ) |φn(t )〉 = En |φn(t )〉,
H†(t ) |φ̃n(t )〉 = En |φ̃n(t )〉 (3)

form a biorthogonal basis {|φn〉 , |φ̃n〉} with 〈φ̃n|φm〉 =
δnm [13]. Combining Eqs. (1)–(3), we find that |φ̃n〉 = η |φn〉.

The time evolution U : H → H of a quantum system
differs from conventional QM in that U is no longer uni-
tary, U †U �= 1. However, as it was shown in Ref. [22], a

generalized unitarity condition can be established. For any
two physical states |�(t )〉 = U (t, t0) |�(t0)〉 and |�(t )〉 =
U (t, t0) |�(t0)〉 in H one demands that

d

dt
〈�̃|�〉 = d

dt
〈�| η |�〉 = 0. (4)

Equation (4), together with Eq. (1), implies a generalized
time-dependent Schrödinger-like equation [13,22]

i
d

dt
|�(t )〉 = 	(t ) |�(t )〉, (5)

where 	(t ) is the generator of time displacement given by

	(t ) = H (t ) + iK (t ),

with K (t ) = −η−1(t )η̇(t )/2. Replacing the state
vectors in Eq. (4) by their time evolution U (t, t0) =
T̂exp[−i

∫ t
t0

	(τ )dτ ] (T̂ denotes time ordering) and using
Eq. (5) one obtains

iη̇ = 	†η − η	, (6)

where the dot denotes the time derivative. Equation (5) can be
rewritten conveniently by introducing a covariant derivative
Dt = d/dt − K (t ). We thus find

iDt |�(t )〉 = H (t ) |�(t )〉. (7)

We conclude this section by highlighting the physical
consequences of the dynamical model presented here. Note
that we imposed the Hermiticity condition (under the metric
η) for all times t [see Eq. (1)]. For this to be true, the
Schrödinger equation of conventional QM has to be replaced
by the Schrödinger-like equation (5) to satisfy the unitarity
condition, Eq. (4) [22]. If one wants to retain the original
Schrödinger equation i |�̇〉 = H |�〉, then Eq. (1) is violated
whenever the metric becomes time dependent. This can be
seen by replacing 	 by H in Eq. (6). In this case, H would
no longer be an observable for times t > t0 [13]. Up until
now, this seems to be not fully understood, and a number of
different approaches to handle this problem were proposed.
However, the model presented here does not produce any
contradiction with conventional quantum mechanics and, as
it was shown in Ref. [22], a proper mapping to conventional
QM is possible. We expect that, whatever the final formulation
of pseudo-Hermitian QM might look like, it will embody
the physical demands made in this model up to a matter of
notation.

III. DERIVATION OF THE HOLONOMY

The occurrence of non-Abelian geometric phases
(holonomies) is, in terms of differential geometry, associated
with a connection, i.e., a unique (adiabatic) separation of
the (tangent) Hilbert space H = Hexc ⊕ H0 into an n0-fold
degenerate ground-state subspace H0 and the space Hexc

containing all excited states. Such a separation can be
technically realized by a gauge field (a local connection
one-form). Because a dynamical system leads in general to a
time-dependent Hilbert space, we demand that this separation
holds while the quantum states undergo a time evolution
during the period T . Thus, any initial preparation |�(0)〉 ∈
H0 is mapped onto a final state |�(T )〉 = U (T ) |�(0)〉 lying
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also in H0. Such an isodegenerate mapping is nothing but
the adiabatic condition [7]. Under which circumstances such
a separation is valid needs to be checked for each physical
realization individually. Notwithstanding, it should be noted
that a generalization of the adiabatic limit to nonunitary
evolutions, in the context of an open system approach, can be
found in Ref. [25].

Returning to the question of time evolution, we now seek
an explicit representation of the final state |�(T )〉. By apply-
ing the adiabatic condition, Eq. (7) takes the form

iDt |�(t )〉 = E0(t )�0(t ) |�(t )〉, (8)

where �0(t ) = ∑n0
a=1 |φa

0 (t )〉 〈φ̃a
0 (t )| for times t ∈ [0, T ] is

the (pseudo-Hermitian) ground-state projector and E0 denotes
the lowest eigenvalue of H . As the state is initially prepared
in H0 and will stay there while the evolution takes place, we
can expand it in terms of the basis {|φa

0 (t )〉}n0
a=1, i.e.,

|�(t )〉 =
n0∑

a=1

ca(t )
∣∣φa

0 (t )
〉
, (9)

with complex expansion coefficients ca(t ). Inserting the ex-
pansion (9) into Eq. (8) it is readily shown that

i
n0∑

a=1

(
ċa

∣∣φa
0

〉 + ca

∣∣φ̇a
0

〉 ) =
n0∑

a=1

ca
(
E0

∣∣φa
0

〉 + iK
∣∣φa

0

〉 )
, (10)

where we used the definition of the covariant derivative Dt .
Contracting both sides of Eq. (10) with 〈φ̃b

0| and noting that
〈φ̃b

0|φa
0〉 = δba, one obtains

iċb + i
n0∑

a=1

ca
〈
φ̃b

0

∣∣φ̇a
0

〉 = E0cb + i
n0∑

a=1

ca
〈
φ̃b

0

∣∣ K |φa
0

〉
,

which can be rearranged as

ċb + iE0cb +
n0∑

a=1

ca
〈
φ̃b

0

∣∣ Dt

∣∣φa
0

〉 = 0. (11)

A formal solution to Eq. (11) can be given in terms of a time-
ordered integral [12]. By introducing (At )ba = 〈φ̃b

0| iDt |φa
0〉, a

solution to Eq. (11) is

cb(T ) =
n0∑

a=1

[
T̂exp

∫ T

0
[−iE0(t )1 + iAt (t )]dt

]ba

ca(0).

(12)

An evolution in time is associated with a path γ : [0, T ] →
M in a control manifold of the underlying quantum system.
The d-dimensional manifold M is (locally) parametrized by
a set of coordinates λ = {λμ}d

μ=1. These are the so-called
control fields which drive the evolution of the Hamiltonian,
i.e., H (λ) = Hγ (t ). In this framework, the time ordering for
the integral over At can be replaced by a path ordering P̂ with
respect to the parametrization by the coordinate chart {λμ}d

μ=1.
Inserting the solution for the coefficients (12) into the

expansion (9), we find an explicit form for the quantum state

after its evolution:

|�(T )〉 =
n0∑

a,b=1

ca(0) exp

[
−i

∫ T

0
E0(t )dt

]

×
[

P̂ exp

(
i
∫ λ(T )

λ(0)
A

)]ba ∣∣φb
0 (0)

〉
, (13)

where we introduced the gauge field (local connection one-
form) A = ∑d

μ=1 Aμdλμ. Its matrix-valued components Aμ

are given by

(Aμ)ba = i
〈
φ̃b

0 (λ)
∣∣ [∂/∂λμ − Kμ(λ)]

∣∣φa
0 (λ)

〉
, (14)

with Kμ(λ) = −η−1(λ)∂μη(λ)/2 (∂μ = ∂/∂λμ). Note that the
components in Eq. (14) contain a part that can be found
in conventional QM and a metric-dependent term Kμ. This
has already been observed in Ref. [20] for the Abelian
case. One recovers the Abelian result by setting a = b
and simplifying Eq. (14) using 〈φ̃a

0 | Kμ |φa
0〉 = [〈φ̃a

0 | ∂μ |φa
0〉 +

∂μ(〈φa
0 |) |φ̃a

0〉]/2. In this notation (Aμ)aa = −I 〈φ̃a
0 | ∂μ |φa

0〉.
Additionally, our gauge field (14) differs from the one derived
in Ref. [13], not only by a Lie-algebra factor i but also by the
term 〈φ̃b

0| ∂μ |φa
0〉.

It can be straightforwardly shown that under a pseu-
dounitary transformation |ψa

0 〉 = ∑n0
c=1 Uca |φc

0〉 the compo-
nents of Aμ transform like a proper gauge field (see Ap-
pendix A). Furthermore, the term iAμ obeys a generalized
anti-Hermiticity condition, that is, [i(Aμ)ba]∗ = −i(Aμ)ab

φ↔φ̃
,

where φ ↔ φ̃ means an interchange of |φa
0〉 and |φb

0〉 by |φ̃a
0〉

and |φ̃b
0〉, respectively. The condition was derived by noting

that 〈φ̃a
0 | ∂μ |φb

0〉 = −∂μ(〈φ̃a
0 |) |φ̃b

0〉.
The appearance of a gauge field in non-Hermitian QM was

of course expected, as we started from an adiabatic separa-
tion (i.e., a connection) H = Hexc ⊕ H0. In non-Hermitian
systems designed by an open system approach, the adiabatic
theorem has to be suitably modified. In particular, due to
the leakage to the environment, the adiabatic approximation
might only be applicable during a limited time interval [25].
An extension to nonadiabatic holonomic gates as in conven-
tional HQC [26,27] should be possible with a similarly strong
analogy as for the adiabatic holonomy developed here.

Returning to Eq. (13) and assuming that the state |�〉
returns after a full period into its initial state up to a pseu-
dounitary rotation, |�(0)〉 → |�(T )〉, where the initial state
is assumed to be one of the eigenstates |φk

0 (0)〉 rather than a
superposition of them, we find [ca(0) = δak]

|�(T )〉 = exp

[
−i

∫ T

0
E0(t )dt

] n0∑
b=1

[UA(γ )]bk |φb
0 (0)〉,

k ∈ {1, . . . , n0} (15)

where the cyclic time evolution corresponds to a loop γ (0) =
γ (T ) in the parameter space M . The mapping of the initial
state |φk

0 (0)〉 described by Eq. (15) is nothing but a unitary
transformation with respect to the modified inner product
〈·, ·〉η. The exponential factor in Eq. (15) is a dynamical phase
factor, while the second term

UA(γ ) = P̂exp

(
i
∮

γ

A

)
(16)

has purely geometric origin and is indeed a holonomy.
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Because the transformation (16) is geometric in nature,
UA is robust against parametric noise and invariant under
general reparametrization. Indeed, the path-ordered integral in
Eq. (16) can be turned into a surface integral using the non-
Abelian Stokes theorem [28]. Consequently, two loops in M
generate the same pseudounitary gate, if they enclose the same
surface in parameter space. This means that, analogously to
conventional HQC, pseudounitary holonomic gates show a
certain robustness against stochastic fluctuations in the control
fields λμ(t ). In addition, UA(γ ) does not depend on the way
in which the path is traversed, i.e., UA{γ [ f (t )]} = UA[γ (t )],
where f is any function (diffeomorphism) of t .

IV. CONSTRUCTION OF PSEUDO-HERMITIAN SYSTEMS

For the purpose of illustration we shall consider a bench-
mark Hamiltonian on which the previously developed theory
can be studied. There are mainly two approaches to construct
artificial pseudo-Hermitian systems. The first route is to im-
plement pseudo-Hermiticity via a top-down approach in a

gain-loss system. For that one usually starts with an effective
non-Hermitian Hamiltonian H describing an open system
phenomenologically. The eigenvectors of this non-Hermitian
Hamiltonian result directly in a biorthogonal basis as used in
the previous sections. This approach has the advantage that
it is directly connected to a physical system. For example,
typical experimental realizations exist in the realm of optics,
where the similarity of the paraxial Helmholtz equation with
the Schrödinger equation allows one to design non-Hermitian
characteristics with lossy waveguide systems [29,30]. An
approach using parity-time-symmetric lasing in an optical
fiber network has been pursued in Ref. [31], and in parity-time
synthetic photonic lattices in Ref. [32].

The second approach to non-Hermitian quantum theory
is provided by biorthogonal quantum mechanics [3]. Given
any biorthogonal basis, one can construct different pseudo-
Hermitian systems from a bottom up approach [21]. Let us
investigate the relation between these two approaches in more
detail by considering a benchmark system. In the following,
H = L − i� is a complex Hamiltonian, with L and � being
Hermitian operators given by

L = 1

2�

⎛
⎜⎜⎝

0 (� − �)κ∗
0 (� + �)κ− + (� − �)κ∗

− (� − �)κ∗
+

(� − �)κ0 0 (� + �)κ+ 0

(� + �)κ∗
− + (� − �)κ− (� + �)κ∗

+ 0 α2κ∗
0

�−�

(� − �)κ+ 0 α2κ0
�−�

0

⎞
⎟⎟⎠,

� = α

2�

⎛
⎜⎝

|κ−|2 κ∗
+ 0 κ∗

0
κ+ 0 κ0 0
0 κ∗

0 −|κ−|2 −κ∗
+

κ0 0 −κ+ 0

⎞
⎟⎠,

where �(α) = √
�2 − α2, with � being a real constant, and time-dependent parameters α(t ) ∈ R, κc(t ) ∈ C. We assume that

0 < α2 < �2 so that � stays real valued. We can decompose H as

H =
∑

c=0,±
(κc |Gc(α)〉 〈Ẽ (α)| + κ∗

c |E (α)〉 〈G̃c(α)|), (17)

where

|E〉 = N1

⎛
⎜⎝

i(� − �)
0
α

0

⎞
⎟⎠, |G0〉 = N1

⎛
⎜⎝

0
i(� − �)

0
α

⎞
⎟⎠,

and

|G−〉 = N2

⎛
⎜⎝

−i(� + �)
0
α

0

⎞
⎟⎠, |G+〉 = N2

⎛
⎜⎝

0
−i(� + �)

0
α

⎞
⎟⎠,

with normalization factors N1 = 1/
√

2�(� − �) and N2 =
i/

√
2�(� + �). Together with the associated states |Ẽ〉 =

|E〉∗ and |G̃c〉 = |Gc〉∗ for c = 0,±, they form a biorthogonal
basis. Note that, in our example, the relation between the
states and their associated counterparts is merely complex
conjugation, which is solely due to the chosen biorthogonal
basis.

The Hamiltonian H in Eq. (17) possesses a twofold de-
generate dark subspace (zero-eigenvalue eigenspace) and is

therefore suitable for generating a pseudounitary holonomic
gate. The Hamiltonian H is the pseudo-Hermitian analog of a
typical light-matter coupling Hamiltonian that can be found
in a variety of physical applications, for instance, in semi-
conductor quantum dots [15], trapped ions [33], and neutral
atoms [34]. They all fall into the class of tripod systems. By
considering a controlled driving of the coupling parameters
κc = κc(t ) a generalized stimulated Raman adiabatic passage
process is induced [35]. The system described by H can
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E

G0G+ G-

FIG. 1. Representation of the level scheme of the pseudo-
Hermitian Hamiltonian from Eq. (17) in the time-varying Hilbert
space Hη(t ). In Hη(t ) the Hamiltonian describes a tripod system.

therefore be seen as such a process taking place in a Hilbert
space with a varying inner product structure 〈·, ·〉η(t ) (see
Fig. 1).

In the following, we show that the pseudo-Hermitian sys-
tem as defined by the Hamiltonian (17) can indeed be asso-
ciated with physically equivalent Hermitian systems [2]. A
first example is obtained by noting that in general a Hermitian
Hamiltonian h can be expanded in an orthonormal basis, i.e.,
{|gc〉 , |e〉} in the present case with 〈gc|gd〉 = δcd , 〈gc|e〉 = 0
and 〈e|e〉 = 1. This basis is related to the nonorthogonal
states {|E〉 , |Gc〉} by a generally nonunitary matrix u, i.e.,
|gc〉 = u |Gc〉 and |e〉 = u |E〉. Similarly, for the associated
states we have |gc〉 = v |G̃c〉 and |e〉 = v |Ẽ〉, where v is some
nonsingular matrix. By construction, we have

δcd = 〈gc|gd〉 = 〈G̃c| v†u |Gd〉,
0 = 〈gc|e〉 = 〈G̃c| v†u |E〉,
1 = 〈e|e〉 = 〈Ẽ | v†u |E〉,

only if v†u = 1.
We shall assume that v �= u to ensure that the problem is

nontrivial. A relation of u and v to the metric operator η is
readily obtained. For example, starting from the state |E〉 we
find that

1 = 〈Ẽ |E〉 = 〈E | η |E〉 = 〈e| vηu−1 |e〉 ,

hence η = v−1u = u†u. Finally, we observe that the Hermitian
counterpart h to H is given by h = uHv† [3]. In the particular
case of the Hamiltonian (17) we find

h =
∑

c=0,±
(κc |gc〉 〈e| + κ∗

c |e〉 〈gc|).

Another Hermitian counterpart of the pseudo-Hermitian
Hamiltonian (17) can be defined by h̃ = ηH as long as the
spectrum of H is real valued, which can be seen from Eq. (1).
However, h̃ is then represented in a nonorthogonal basis. A
transformation to h, which is expanded in an orthonormal
basis, is given by h̃ = (u†u)(v†hu) = u†hu.

One could also utilize the positive definiteness of η to es-
tablish a transformation to yet another Hermitian system ĥ =
ρHρ−1, where ρ = √

η defines a unitary equivalence of the
original inner product 〈·|·〉. Any of the associated Hermitian
systems are different implementations of the same physical
system. This means that, although they all share the same

spectral properties, their actual experimental implementations
may differ considerably.

V. EVOLUTION IN DARK SUBSPACES

We now turn to the Hamiltonian H from Eq. (17) to
investigate its dynamics under an adiabatic evolution. At
this point, one should recall that the metric operator of a
pseudo-Hermitian system is in general not unique. It is well
possible that a whole class of pseudo-Hermitian Hamiltonians
is Hermitian under a certain metric operator. There might be
even a time-independent metric under which H is Hermitian.
In order to resolve this ambiguity, we demand that the metric
under which the observable H is Hermitian is the proper
metric η given by the dyadic products of the left-handed
eigenstates of H [24].

We now investigate the dynamics induced by the Hamilto-
nian in Eq. (17) with the aim to compute a holonomy. To do so,
we have to consider a cyclic time evolution or, equivalently, a
closed loop γ in the parameter space M . The evolution is
assumed to be driven adiabatically by the time dependence of
the parameters κc = κc(t ). The holonomy will be generated
in the degenerate dark subspace HD = Span({|D1〉 , |D2〉}).
This is suitable for our computational purposes, as it neglects
the uncontrollable dynamical phase [ED(t ) = 0 for all t].
Throughout the dynamical process the parameter α will be
assumed to be constant. As we will see, this will substantially
reduce the computational effort.

We seek a complete set of single-qubit gates, thus ensuring
that any pseudounitary gate with respect to the metric η can be
implemented over the dark subspace. For that, it is sufficient
to design a pair of noncommuting single-qubit gates U1 and
U2 [36]. For the gate U1 we choose the parametrization κ− =
0, κ+ = −κ sin(ϑ/2)eiϕ , and κ0 = κ cos(ϑ/2). In this case,
the dark states are

|D1〉 = |G−〉,
|D2〉 = cos(ϑ/2) |G+〉 + sin(ϑ/2)eiϕ |G0〉. (18)

The remaining bright states (with eigenvalues ±κ) read

|B+〉 = 1√
2

[sin(ϑ/2) |G+〉 − eiϕ cos(ϑ/2) |G0〉 + eiϕ |E〉],

|B−〉 = 1√
2

[sin(ϑ/2) |G+〉 − eiϕ cos(ϑ/2) |G0〉 − eiϕ |E〉].

(19)

Using the left-sided eigenstates associated with Eqs. (18)
and (19), we compute the full metric operator

η =
∑

a=1,2

|D̃a〉 〈D̃a| + |B̃+〉 〈B̃+| + |B̃−〉 〈B̃−|

= |Ẽ〉 〈Ẽ | +
∑

c=0,±
|G̃c〉 〈G̃c| . (20)

We recognize that as long as α stays constant the metric
operator η does not depend on the parametrization of M .
In terms of the geometry of the underlying Hilbert space,
a change of the parameter α leads to a contribution of the
connection Kμ. Hence, for α = const, we have Kμ = 0. Thus,
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the gauge field (14) reduces to

(Aμ)ab = i 〈D̃a| ∂μ |Db〉.
Evaluating the gauge field with respect to the coordinates
λμ ∈ {ϑ, ϕ} of M , we get (Aϕ )22 = − sin2(ϑ/2) as the only
nonvanishing component of A. With this, we can compute the
associated holonomy, and express the gate U1(γ ) in terms of
the Pauli matrices {σ x, σ y, σ z} with respect to the basis of dark
states {|D1〉 , |D2〉}, viz.,

U1(γ ) = eiβ1(γ )|1〉〈1̃|, (21)

where β1(γ ) = − ∮
γ

sin2(ϑ/2)dϑdϕ. Note that our compu-

tational basis is |0〉 = |D1(0)〉 = |G−〉 and |1〉 = |D2(0)〉 =
|G+〉. In Eq. (21), path ordering can be neglected, as the
chosen parametrization effectively generates an Abelian ge-
ometric phase, i.e., the matrix-valued components Aϑ and Aϕ

commute.
For the second gate U2, we choose the

parametrization κ0 = κ cos(ϑ ), κ− = κ sin(ϑ ) cos(ϕ), and
κ+ = κ sin(ϑ ) sin(ϕ), and repeat the previous calculation in a
similar fashion, starting with the new dark states

|D1〉 = cos(ϑ )[cos(ϕ) |G−〉 + sin(ϕ) |G+〉] − sin(ϑ ) |G0〉,
|D2〉 = cos(ϕ) |G+〉 − sin(ϕ) |G−〉.

Together with the associated bright states, we obtain in this
case the same metric operator as in Eq. (20). Hence, Kμ = 0
as long as α �= α(t ). We find the components of the gauge
field in HD to be

Aϑ = 0, Aϕ = cos(ϑ )σ y, (22)

so that path ordering can be neglected again.
The associated holonomy U2 to A is thus given by inserting

Eq. (22) into Eq. (16). Explicitly, we have

U2(γ ′) = eiβ2(γ ′ )σ y
,

where β2(γ ′) = ∮
γ ′ cos(ϑ )dϑdϕ for a path γ ′ in M . From

here, one is able to compute the commutator of U1 and U2,
that is,

[U1,U2] = sin(β2)(1 − eiβ1 )σ x. (23)

In general, Eq. (23) does not vanish for generic loops γ and γ ′.
Hence, by constructing the two noncommuting holonomies U1

and U2, we have found a universal set of pseudounitary single-
qubit gates on which HQC could be based [36]. This is the key
result of this paper. Arbitrary pseudo-U (n0) transformations
for universal pseudounitary HQC can be implemented in a
similar fashion by applying the developed theory to n0-fold
degenerate dark subspaces.

The presented procedure shows how a lossy system, which
generates the Hamiltonian for a generic holonomic compu-
tation, can be described effectively in the pseudo-Hermitian
picture. Given that the efficient implementation of an HQC
protocol is rather demanding in terms of the accessible pa-
rameters [4,5], the benefit of our scheme is to add new control
parameters such as gain and loss to the experimentalists’ tool
box, thereby providing a richer structure of the control space
M . The range of new applications that could stem from this
extension of the theory needs further investigations and is
beyond the scope of this paper.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have shown how the holonomic ap-
proach to quantum computation can be extended to pseudo-
Hermitian systems. We derived a non-Abelian geometric
phase generating a pseudounitary holonomy over the degen-
erate eigenspace. The gauge field associated with the non-
Abelian phase contains an additional term due to the modi-
fied inner product structure induced by a pseudo-Hermitian
quantum system, which is absent in conventional quantum
mechanics.

This general framework was applied to a benchmark
Hamiltonian that can be implemented in terms of a gain-
loss system. By choosing a suitable biorthogonal basis, the
system has the form of a tripod Hamiltonian. An explicit
calculation showed that the considered system allows for the
implementation of arbitrary pseudounitary transformations
over the two-dimensional dark subspace.

Furthermore, we investigated the underlying geometry of
this Hamiltonian. In particular, we have shown that the in-
ner product structure could be held constant throughout an
adiabatic evolution. This can be done by choosing a suitable
loop in the parameter space such that the additional term,
appearing in the geometric phase, vanishes. Therefore, this
loop only changes the coupling between certain tripod levels
but does not involve the biorthogonal basis, i.e., the inner
product structure in which the Hamiltonian is represented.
Generalized to arbitrary pseudo-Hermitian systems, this en-
ables clear analysis of pseudounitary holonomies and their
dependence on the changing inner product structure.

Our paper paves the way to further investigate known
concepts of conventional HQC in pseudo-Hermitian systems
such as error-avoiding and error-correcting techniques, and
whether or not these approaches are equally applicable to the
pseudo-Hermitian case studied here.
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APPENDIX A: TRANSFORMATION LAW FOR
THE GAUGE FIELD

Here we show that A indeed transforms like a proper gauge
field [37] under a change of basis |ψa〉 = ∑n

i=1 Uia |φi〉, where
Uia ∈ C. The transformation is mediated by a pseudounitary
matrix

U (λ) =
n∑

i, j=1

Ui j (λ) |φi(λ)〉 〈φ̃ j (λ)| ∈ Uη(n0).

Here, Uη(n) is the group of n-dimensional η-pseudo-unitary
matrices [38]. We find the usual transformation law

(A′
μ)ab = i 〈ψ̃a| (∂μ − Kμ) |ψb〉

= i
n∑

i, j=1

〈φi|U ∗
iaη(∂μ − Kμ)Ujb |φ j〉
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= i
n∑

i, j=1

[〈φi|U ∗
iaη(∂μUb j ) |φ j〉

+ 〈φi|U ∗
iaηUb j∂μ |φ j〉 − 〈φi|U ∗

iaηKμUb j |φ j〉]

=
n∑

i, j=1

U ∗
iai∂μUb jδi j + U ∗

iaUb j (Aμ)i j

=
n∑

i=1

U ∗
iai∂μUbi +

n∑
i, j=1

U ∗
iaUb j (Aμ)i j,

or, in matrix notation,

Aμ �→ U−1AμU + U−1i∂μU .

APPENDIX B: NATURAL GEOMETRIC PICTURE
OF PSEUDO-HERMITIAN HAMILTONIANS

So far, our treatment of pseudo-Hermitian Hamiltonians
did not involve the language of fiber bundles. In conventional
QM it is well known that the projector formalism used in
HQC involves more advanced concepts such as Grassmann
and Stiefel manifolds [39]. To the best of our knowledge,
these notions have not been established for pseudo-Hermitian
systems yet.

Let us consider a pseudo-Hermitian Hamiltonian H ∈
End(H ), with R + 1 different eigenvalues, defined over the
N-dimensional Hilbert space H . Suppose H has a real spec-
trum so that its spectral decomposition reads

H =
R∑

l=0

El�l ,

where {El}R
l=0 are the eigenvalues corresponding to the

pseudo-Hermitian projector �l = ∑nl
k=1 |φk

l 〉 〈φ̃k
l | with nl be-

ing the degeneracy of the lth level. The states {|φk
l 〉}nl

k=1 of the
lth eigenspace of H form a biorthogonal frame

Vl =
nl∑

k=1

∣∣φk
l

〉 〈k̃| ∼= ( ∣∣φ1
l

〉
, . . . ,

∣∣φnl
l

〉 )
|k̃〉, (B1)

where {|k̃〉}nl
k=1 ⊂ Cnl constitutes a complete, biorthogonal

basis with {|k〉}nl
k=1, where |k̃〉 = ηa |k〉. Note that this basis is

of no physical relevance and acts merely as a tool to represent
the frame Vl . One can indeed choose ηa = 1nl so that {|k〉}nl

k=1
forms an orthonormal basis.

The notion of biorthogonal frames gives rise to a more
subtle issue. Usually, in the study of pseudo-Hermitian and
pseudounitary operators, one is confronted with square matri-
ces. Because Vl is not an observable, we have to modify the
pseudo-Hermiticity condition (1) for nonsquare matrices. In
the case of a biorthogonal frame, we can define the pseudoad-
joint matrix of Vl as

V ‡
l = η−1

a V †
l η,

where η ∈ CN×N is the metric operator formed from the left-
handed eigenstates |φ̃k

l 〉, that is,

η =
R∑

l=0

nl∑
k=1

∣∣φ̃k
l

〉 〈
φ̃k

l

∣∣ .

Note that η serves as a metric for the projector �l , i.e.,

�
†
l η = �

†
l ηl = ηl� = η�,

where ηl = ∑nl
k=1 |φ̃k

l 〉 〈φ̃k
l |.

Representing the biorthogonal frame (B1) by a complex
(N × nl ) matrix we find its pseudoadjoint to be

V ‡
l =

nl∑
k=1

|k〉 〈
φ̃k

l

∣∣ ∼=

⎛
⎜⎝

〈
φ̃1

l

∣∣
...〈

φ̃
nl
l

∣∣

⎞
⎟⎠ ∈ Cnl ×N .

By construction, we have V ‡
l Vl = 1nl , which verifies that the

set {|φk
l 〉}nl

k=1 constitutes a biorthogonal basis for the ground-
state eigenspace. The set of all biorthogonal frames is called
the Stiefel manifold defined by

SN,nl ,η = {Vl ∈ CN×nl |V ‡
l Vl = 1nl }.

It is noteworthy that the projector �l can be expressed in
terms of a biorthogonal frame in SN,nl (we have dropped η

for ease of notation), i.e., �l = VlV
‡

l . It is easily checked that
the so-defined projector belongs to the Grassmann manifold

GN,nl = {�l ∈ CN×N | �2
l = �l ,

�
‡
l = �l , tr(�l ) = nl}.

Because the projector is a square matrix, its pseudoadjoint is
defined in the usual sense [2] as �

‡
l = η−1�

†
l η.

We are now in a position to illuminate the gauge freedom
within the projector �l . More precisely, we can define a
projection π from the Stiefel manifold to the Grassmann
manifold by Vl �→ VlV

‡
l . It is not hard to show that the

image of this map stays invariant under a group action by a
pseudounitary matrix U ∈ Uηa (nl ),

π (VlU ) = (VlU )(VlU )‡ = VlUU‡V ‡
l = VlV

‡
l ,

where we applied the useful relation

(VlU )‡ = η−1
a (VlU )†η = η−1

a U†(ηaη
−1
a

)
V †

l η = U‡V ‡
l .

In conclusion, we have constructed a Uηa (nl )-principal
bundle, that is,

SN,nl

π−→ GN,nl . (B2)

The bundle structure, Eq. (B2), is a direct generalization of
the one found in conventional QM (for a review, see, e.g.,
Ref. [39]). The standard theory is recovered for η = 1N . It
is therefore not surprising that the Stiefel manifold can be
written, in analogy to their counterparts in conventional QM,
as a coset space, i.e.,

GN,nl
∼= SN,nl /Uηa (nl ).

Note how, for nl = 1 (i.e., a nondegenerate situation), the
Grassmann manifold reduces to the projective Hilbert space
containing the pseudo-Hermitian density operators for a pure
state, i.e., |φl〉 〈φ̃l | ∈ GN,1

∼= CPN−1. The structure group of
this principal bundle is Uηa (1), which is identical to the
conventional unitary group U (1).
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We conclude this section by recalling that it is rather
demanding for a parameter space M to be mapped one
to one (bijectively) onto GN,nl . In other words, a realistic
quantum system, given by a family {H (λ)}λ∈M of isospectral
pseudo-Hermitian Hamiltonians, may have a smaller control
manifold than the whole Grassmann manifold. Nevertheless,
there is a map � from M onto GN,nl defined by �(λ) =
�l . A natural way to study the geometry of such systems
is given in terms of the pullback bundle of the Stiefel
manifold:

�∗SN,nl = {(λ,Vl ) ∈ M × SN,nl

∣∣ π (Vl ) = �(λ)}. (B3)

In order to construct the rest of the bundle structure of
Eq. (B3), we can establish the fiber Fλ of �∗SN,nl over the
point λ in M . This fiber is just a copy of the fiber F�(λ)

defined over the projector (point in GN,nl ) �l . The latter is
formally defined as the preimage of the projection π (Vl ) =
�l , that is, F�(λ)

∼= π−1(�l ). Then

�∗SN,nl

π�−→ M ,

where π� : (λ,Vl ) �→ λ ∈ M , constitutes a Uηa (λ)(nl )-
principal fiber bundle. By construction, the sections of this
bundle are just λ �→ (λ,Vl ).
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