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Experimental observation of the effect of global phase on optimal times
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We study the role that the global phase plays in quantum operations. Previous theoretical works suggested that
the optimal (minimum) times to realize SU(n) quantum operations with different global phases are generally
different. Here, we experimentally constructed two SU(2) operations with different global phases, i.e., U and
−U , in optimal times. Then, utilizing nuclear magnetic resonance interferometry, we measured these phases and
observed the global phase’s effect on the optimal times of these two operations. Our result further clarifies that
the effect that the global phase has on unitary operations is not only mathematical, but also physical. In addition,
this work has potential applications in many areas, such as designing time-optimal controls in quantum systems.
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I. INTRODUCTION

The global phase in quantum mechanics has been studied
from various aspects, e.g., Refs. [1–7], to name a few. While
most of these works have focused on the global phase of
quantum states, little attention has been paid to its role in
evolution operators. For example, given two operations in
SU(n) that only differ from each other by a global phase, one
may ask if, apart from their difference in mathematical format,
there is any physical difference between them. The answer is
yes and, for example, one well-known effect resulting from
this difference is the overall phase change acquired after the
2π rotation of a particle [6,8]. This distinguishes fermions
from bosons [4], which has been observed in experiments via
interferometric approaches [9,10].

Recently, several theoretical works have drawn a clear
distinction among operations with different global phases
[11–16] from a different angle. They show that the minimum
(optimal) times to realize such operations is, in general, differ-
ent. Reference [12] theoretically explores the relation between
the global phase of a SU(2) operation and the correspond-
ing optimal time to realize such an operation. In addition,
the relation between the global phase and the optimal time
of SU(3) operations, e.g., quantum Fourier transform gate,
was also given under the assumption of unbounded control
strength [14,15]. These theoretical works help one to upgrade
the role of the global phase in unitary operations from a
pure mathematical one to a physical one. However, there
is no experimental demonstration that relates the theoretical
constructs to an observable phenomenon.
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In this paper, we propose a general scheme to detect the
global phase of unitary operations in SU(2), and explore
its effect on the optimal time to realize such operations
via the nuclear magnetic resonance (NMR) technique. Our
experiment, combined with those theoretical works [12–18],
help to clarify the effect that the global phase has on unitary
operations. Keeping this effect in mind has practical impacts.
For example, it helps to design quantum gates with smaller
durations in quantum information science. It also helps to
achieve a better pulse optimization procedure in magnetic
resonance spectroscopy [17,18].

This paper is organized as follows. In Sec. II, we first
present the possible global phases of a SU(n) operation. Then
we briefly review the result of time-optimal control (TOC)
for SU(2) operations given in [12]. In Sec. III, we propose
the scheme to construct two SU(2) operations with different
global phases in optimal times, and detect their global phases
via interferometric approaches. Section IV provides a proof-
of-principle experiment with a two-qubit NMR quantum pro-
cessor. Some discussions are also given in this section. The
conclusion is given in Sec. V.

II. TIME-OPTIMAL CONTROL AND GLOBAL PHASE OF
UNITARY OPERATIONS

For a typical closed quantum system (with dimension n),
we assume the unitary operation U ∈ SU(n). The question
is as follows: if we multiply U by a phase factor eiφ, φ ∈
[0, 2π ), will the result still belong to SU(n)? The answer is
as follows: only when the phase φ takes some discrete values
[13], which can be seen from the following proof.

Proof. Let the operation Ua ∈ SU(n) and Ub = eiφUa. If
Ub ∈ SU(n), then we have

P := UbU
−1
a ∈ SU(n). (1)
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Note that Det(P) = einφ = 1; then, φ can only take some
discrete values, i.e.,

φ = 0,
2π

n
, . . . ,

2(n − 1)π

n
. (2)

�
The above result tells us that given a unitary operation, what
all the other operations with a global phase difference are. For
example, for Ua,b ∈ SU(2), the allowable phases are φ = 0, π ,
while for Ua,b ∈ SU(3), φ = 0, 2π/3, 4π/3. In the following,
we would choose a fixed reference operation and define the
global phase of a unitary operation U relative to this reference.
For example, if Ua is chosen to be the reference, then we say
the global phase of Ub = eiφUa is φ.

Consider the time-optimal control problem in a single-
qubit closed system. The Hamiltonian of the system here reads

Ha = −ωx(t )Ix − ωy(t )Iy − ωIz, (3)

where the operators

Ix = 1

2

(
0 1
1 0

)
, Iy = 1

2

(
0 −i
i 0

)
, Iz = 1

2

(
1 0
0 −1

)
,

in the unit of h̄ = 1, ωx,y are control fields with a constant
upper bound, i.e., ω2

x + ω2
y � ω2

max, and ω is the detuning.
The TOC in this scenario has been well studied theoretically
by Garon et al. [12]. There geometric principles are used
to obtain the TOC for both the on-resonance case (ω = 0)
and the off-resonance case (ω �= 0). The equations for the
TOC along arbitrary axes are given. Moreover, a thorough
analysis of the difference between the optimal times of SU(2)
operations U and −U is presented. Note from (2) that this
has already covered all the possible global phases one can add
upon U .

Base on their result, here we pay close attention to the on-
resonance (ω = 0) case, where the desired TOC rotation axes
�n0 lie in the x − y plane. Denote R�n(θ ) := e−i�n·�Iθ , where �n is
a unit vector, �I = (Ix, Iy, Iz ), and θ is the rotation angle [note
here that R�n(θ ) only denotes a unitary operation belongs to
SU(2), not any particular control method]. According to [12],
the optimal time T+ for R�n0 (θ ) and T− for −R�n0 (θ ), with θ ∈
[0, 4π ), satisfies the following relation:

T + < T −, 0 � θ < π,

T + = T −, θ = π,

T + > T −, π < θ < 3π,

T + = T −, θ = 3π,

T + < T −, 3π < θ < 4π. (4)

This fact is somewhat surprising [13] since we normally take
any U and −U to be the same operation (this is due to
the two-to-one homomorphic mapping of SU(2) onto SO(3)
[19]). Such relations draw a clear distinction among unitary
operations with different global phases. However, to our best
knowledge, there is a lacking of experimental demonstration.

|  > U

|0> H

FIG. 1. Quantum circuit for detecting the global phases of differ-
ent unitary operations.

III. GLOBAL PHASE DETECTION VIA
INTERFEROMETRY SCHEME

Without loss of generality, here we choose θ = π/2, �n0

along the y axis, and ±Uid denotes the target operations
realized in minimum time for the system (3), which corre-
sponds to the first case in Eqs. (4). According to [12], the
corresponding TOC for ±Uid is just a constant control field
added in ±y axes with maximum control strength ωmax, and
different durations,

T + = π

2ωmax
, T − = 3π

2ωmax
, (5)

which is a clear indication that the duration of the two oper-
ations is different and satisfies the relation T +/T − = 1/3. In
the following, +Uid is chosen as the reference (with global
phase 0), and the goal is to detect the global phase of −Uid =
eiπUid, i.e., φ = π .

Global phase detection can be realized via interferometric
approaches, e.g., optical interferometry [5,20], neutron inter-
ferometry [9,21], and NMR interferometry [7,22]. The main
idea is to introduce an ancilla qubit (qubit 1) which is coupled
to the system (qubit 2) and encode the global phase of the
operation to the relative phase of the whole system, then
read out the encoded information through the ancilla qubit.
The interferometric scheme (Fig. 1) is implemented via the
following procedure:

(1) Prepare the superposition state of the ancilla with the
Hadamard gate H ; then, the whole system becomes

|ψa〉 = 1√
2

(|0〉 + |1〉) ⊗ |ε〉, (6)

where the system is in an arbitrary state |ε〉 = ε0|0〉 + ε1|1〉,
Iz|0〉 = 1

2 |0〉, Iz|1〉 = − 1
2 |1〉, and ε0,1 are complex coefficients

satisfying |ε0|2 + |ε1|2 = 1.
(2) Construct ±Uid on the system and encode the global

phases of the two operations through applying the controlled
operation

C±Uid = e−iα±(|1〉〈1|⊗I2y ) = e−i(|1〉〈1|⊗H±
id )T ±

, (7)

where α+ = π/2, α− = −3π/2, and the operator H±
id =

±ωmaxI2y is the TOC control Hamiltonian. Note that different
qubits are labeled by different numbers in the subscript. Then
the state becomes

|ψ±
b 〉 := 1√

2
(|0〉 ⊗ |ε〉 + |1〉 ⊗ |λ±〉), (8)
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FIG. 2. (a) The molecular structure of the chloroform sample.
(b) Pulse sequence in NMR experiments. Note that the R�n(θ ) pulse
(on 1H) is applied to create |ε〉, R1y(±π ) pulses (on 13C) are only
applied for C−Uid . α± and τ± are given in the main text.

where the state |λ±〉 := ± 1√
2
[(ε0 − ε1)|0〉 + (ε0 + ε1)|1〉].

From (7) and (8), we can see that the desired TOC operation
(on qubit 2) is realized by the above controlled operation when
the first qubit is in |1〉. The final state can be expanded and
reads

|ψ±
b 〉 = 1√

2

[
ε0|00〉 + ε1|01〉 ± 1√

2
(ε0 − ε1)|10〉

± 1√
2

(ε0 + ε1)|11〉
]
, (9)

and the global phases of ±Uid are now encoded in the relative
phases of the whole system.

(3) Read out the relative phases (with the global phase φ

encoded in) directly or convert them to populations (then read
out) [23], depending on the experimental apparatus.

IV. EXPERIMENT

The experiment is carried out on a Bruker Avance III
400 MHz (9.4 T) spectrometer at room temperature. We
use the 13C-labeled chloroform dissolved in d6 acetone as a
two-qubit NMR quantum processor, where the 13C nucleus is
used for the ancilla qubit (qubit 1) while 1H is used for the
system qubit (qubit 2). The molecular structure is shown in
Fig. 2(a). The natural Hamiltonian of this two-qubit system in
a double-resonance rotating frame is given by

Hnmr = 2πJI1zI2z, (10)

where the coupling constant J is 214.5 Hz and the relaxation
times T2 are 0.3 s and 2.8 s for 13C and 1H, respectively.

The experiment consists of the following steps: (1) initial-
state preparation (ISP), (2) the controlled operation, and (3)
measurement. The NMR pulse sequence corresponding to
the quantum circuit in Fig. 1 is illustrated in Fig. 2(b). The
experimental protocol is summarized in the following:

(1) Initial-state preparation. Starting from the equilibrium
state, we first initialize the system into the pseudopure state
(PPS),

ρ00 = 1 − δ

4
14 + δ|00〉〈00|,

using the line-selective pulses [24], with the polarization
δ ≈ 10−5. We reconstruct the density matrix of the PPS by
quantum state tomography [25,26], and the experimental state

FIG. 3. The experimental 13C spectrum of the final states for
(a) |ε〉 = |0〉 and (b) |ε〉 = |1〉, respectively. The red solid (blue
dashed) curve denotes the spectra after the control operation C+Uid

(C−Uid ).

fidelity,

F = Tr (ρ̃00ρth )√
Tr[(ρ̃00)2] Tr

(
ρ2

th

) ≈ 0.99,

where ρth = |00〉〈00| and ρ̃00 are the theoretical and exper-
imental density matrix, respectively. Then we can prepare
the system spin into the state |ε〉 with single spin rotations.
Finally, a pseudo-Hadamard gate R1y( π

2 ) was applied on the
first spin to create the target state 1√

2
(|0〉 + |1〉) ⊗ |ε〉.

(2) The controlled operation. The controlled operation
C±Uid (7) is the core of this quantum circuit, which can be
realized through the following pulse sequence:

R2y

(
α±

2

)
− R2x

(
−π

2

)
− e−iα±I1zI2z − R2x

(π

2

)
. (11)

Here the evolution under the coupling term I1zI2z is easily
realized via the rf pulses and J-coupling evolutions under
NMR pulse techniques [4,27], i.e.,

e−iα+I1zI2z : e−iHnmrτ
+
,

e−iα−I1zI2z : R1y(−π ) − e−iHnmrτ
− − R1y(π ), (12)

where τ± = |α±|/(2πJ ). The global phase is now encoded in
the relative phases of the whole system.

(3) Measurement. In NMR, quadrature detection serves as
a phase detector, and the encoded global phases of operations
(now the relative phases of the whole system) can be extracted
via measuring the signal of the ancilla qubit (spin) [1–3].
Taking the state immediately after step (1) as the reference
spectrum, we measure the relative phase information by the
phase of the Fourier-transformed spectrum. For simplicity,
here we choose |ε〉 = |0〉, |1〉 as the initial state, respectively.
In both cases, the spectrum of |ψ+

b 〉 (|ψ−
b 〉) would be a positive

(negative) absorption peak, i.e., the phase of the peak is 0
(π ). This “inversion of the peak” pattern would be a clear
signature for the detection of the global phase. The amplitude
and phase of the peaks are obtained by fitting the measured
spectrum with complex Lorentzian curves. The global phase φ

(of operation −Uid) can be obtained via the difference between
phases of the peaks, i.e., φ = π − 0 = π .

Experimental results. The global phase information can be
obtained from the experimental spectra, as displayed in Fig. 3.
The result clearly shows the inversion of the peak pattern,
indicating the detection of the global phase. For the state
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FIG. 4. Experimental 13C and 1H spectra after the implementa-
tion of the controlled operations on the states, namely, (a) C+Uid |00〉,
(b) C+Uid |10〉, (c) C−Uid |00〉, and (d) C−Uid |10〉, respectively.

|ε〉 = |0〉, the phase of the spectrum after the operations C+Uid

(C−Uid ) are applied is fitted to be 0.02π (0.99π ). Then, the
global phase (of −Uid) is evaluated to be 0.97π . For the state
|ε〉 = |1〉, following the same procedure, the global phase
is calculated to be 1.01π . The average global phase is φ =
0.99π , i.e., with an error of 1% compared to the theoretical
value. The global phase difference between the two operations
is thus verified. In addition, according to (11), ±Uid should be
implemented on the system spin only when the ancilla spin
is in state |1〉. Figure 4 displays the 13C and 1H spectra in
experiment after the controlled operations C±Uid are applied
on the initial states |00〉 and |10〉, respectively.

We further perform quantum process tomography [28–32]
to verify and characterize the controlled operation C±Uid .
A set of 16 initial states is prepared, after which the
C±Uid is applied, and the quantum state tomography is
applied to reconstruct the final state corresponding to
each initial state. With the information of the 16 final
states, the process matrix χ± is determined in the basis set
S = {II, IX,−iIY, IZ, XI, XX,−iXY, XZ,−iY I,Y X,−YY,

−iY Z, ZI, ZX,−iZY, ZZ}, where X = 2Ix, Y = 2Iy, Z = 2Iz,
I is a 2 by 2 identity matrix, and the elements in the set are
tensor products of them. Figure 5 shows the experimental and
theoretical process matrix. The fidelities [30,31]

Fχ = |Tr(χexptχ
†
th)|/

√
Tr(χexptχ

†
expt )Tr(χthχ

†
th)

are about 0.99 for both C+Uid and C−Uid . With the help of an
ancillary qubit, we thus conclude that we have successfully
constructed two SU(2) operations with different global phases
on the system qubit, i.e., +Uid and −Uid. The errors mainly
come from the state preparation and measurement.

The experimental optimal times to realize ±Uid are given
in the following. From Eq. (11), ±Uid on the second spin (if
the first spin is in state |1〉) is realized by R2y( α±

2 ) followed by
e−i(2πJ )τ±I2y/2. The first operation can be realized by a pulse
with strength ωmax and duration |α±|/(2ωmax), and the second
one can be seen as realized by a “pulse” with strength 2πJ and

FIG. 5. Theoretical and experimental process matrix (real part)
χ+ of C+Uid and χ− of C−Uid . The numbers 1 to 16 in the horizontal
and vertical axes refer to the operators in the operator basis set
S. |Imag(χ±)| = 0 in theory, and |Imag(χ±)| < 0.025 in the actual
experiment.

duration τ±/2. The total operation on the second spin is thus
effectively seen as a pulse with strength ω̃max and duration T̃ ±,

ω̃max = 8ωmaxπJ

2ωmax + 4πJ
, (13)

T̃ ± = |α±|
2ωmax

+ |α±|
4πJ

= |α±|
ω̃max

, (14)

which is just the TOC on the second spin realizing ±Uid,
with maximum control field strength ω̃max and optimal time
T̃ ±. The experimental values are T̃ + = 587.2 μs, T̃ − =
1761.6 μs, and T̃ +/T̃ − = 1/3, consistent with the theoretical
prediction given in Sec. III.

V. CONCLUSION

In summary, we have experimentally observed the global
phase of unitary operations in SU(2), and verified the effect
that the global phase has on the optimal time of unitary
operations using the NMR technique. Combined with existing
theoretical work [11], the physical effect that the global phase
has on unitary operations is clarified.

Note that here we study the global phase of unitary oper-
ations, not the geometric phase (e.g., [2,3]) of the quantum
state of a system. The global phase of an evolution operator
manifests itself as the topological phase, which is acquired
after a cyclic evolution of maximally entangled qudit pairs
under local SU(d ) operations [3,4]. As the readout of the
global phase of evolution operators requires an auxiliary spin,
one may argue that such phases only arise when another spin
comes into play. By combining with the previous results that
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they also affect the optimal time of unitary operations, we
conclude that the global phase we observed indeed belongs
to a unitary operation acting upon a one-spin system.

The relation between the optimal time and global phase is
also explored theoretically in systems with higher dimension,
e.g., a spin-1 system with dimension 3 [14]. To experimentally
study the global phases in such systems, one could introduce
an ancilla qubit which is coupled to the system and apply the
same procedure as given in Sec. III and Fig. 1. For spin-1
systems, a chloroform-D sample could be used where the 2H
serves as the system and the 13C serves as the ancilla. The
controlled operation on 2H could be implemented utilizing
the coupling between 13C and 2H. The global phase infor-
mation is subsequently read out via the 13C NMR signal. An
experiment with spin-1 systems is currently underway as our

next work and will be described elsewhere. The results of this
paper, together with other related work, have potential impacts
on quantum gate designing in quantum information science,
and pulse optimization in magnetic resonance spectroscopy
[17,18].
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