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Erasure decoding of two-dimensional color codes
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The quantum erasure channel models phenomena such as loss or leakage of qubits. Using quantum codes, we
can recover from such errors. In this paper, we are interested in studying the performance of two-dimensional
color codes over the quantum erasure channel. Our approach makes use of the local equivalence between color
codes and surface codes. We propose a variety of decoding algorithms for color codes over the erasure channel.
First, we propose algorithms that decode by projecting the erasures on the color to surface codes. Then, instead
of directly decoding on the color code or on the equivalent copies of surface codes, we decode jointly on the
color code and the equivalent surface codes. We observe a threshold of 44.3% for the color code on the square
octagonal lattice.
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I. INTRODUCTION

Loss of qubits and leakage errors occur in many realiza-
tions of qubits; see, for instance [1–4]. The loss of qubits
in quantum systems can be modeled as a quantum channel
known as the quantum erasure channel [5,6,8]. The erasure
channel also shows up in the context of quantum crypto-
graphic protocols such as secret sharing [7]. Quantum error
correcting codes help in protecting information in the pres-
ence of qubit losses and leakage [6,8–18].

There have been many studies on the design and per-
formance of quantum codes for erasure channels, ranging
from algebraic codes such as the quantum Bose-Chaudhuri-
Hocquenghem (BCH) codes [8] to quantum low density parity
check codes [14]. In particular, many researchers have inves-
tigated the performance of topological codes over the erasure
channel [11–13,18–22].

The performance of a code over the erasure channel can
often give an indication of its performance over other channels
[22]. In the context of topological codes, one can also view
erasures as defects in a lattice, leading to interesting connec-
tions between topological codes and percolation theory [11].
Thus, studying the performance of quantum codes over the
erasure channel is not only important in its own right, but also
for the additional insights it provides.

Toric codes, also called surface codes [23], and color codes
[24] are two of the most studied classes of topological codes
in view of their relevance for fault tolerant quantum comput-
ing. While erasure decoding of toric codes has been studied
extensively for many years, an algorithm that is optimal both
in running time and performance was proposed only recently
in [20]. There is very limited work on the erasure decoding of
two-dimensional (2D) color codes [19]. So, in this paper we
study the decoding of color codes over the erasure channel.
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The erasure decoding problem is to find the error estimate
that satisfies the measured syndrome and whose support lies
entirely within the erased qubits. When the qubits are lost,
we have additional information about the positions of the lost
qubits. Hence to get the best performance, decoders over the
erasure channel must exploit this additional information.

The decoding problem, as in the classical erasure case, can
be reduced to the solution of a linear system of equations. The
system of linear equations can be solved in time that is cubic
in the length of the code. We seek a more efficient algorithm
that is either linear or almost linear time in the length of the
code.

One approach to decoding the color codes involves modify-
ing the stabilizers so that they do not involve the erased qubits.
This approach was taken in [19]; see below for further discus-
sion on this approach. In this paper, we take an alternative
route in which we retain all the stabilizers including those that
involve the erased qubits. At the heart of our approach is the
fact that the color codes are equivalent to copies of toric codes
[25–29]. To perform the decoding of color codes through the
toric code decoder, we need to map the erasure positions
appropriately. We propose two different maps for erasures on
the color code to the toric code, which are consistent with
the map of operators given in [27]. We can then decode the
erasures on the toric codes and then lift them back to the
color code. Such a decoder can be significantly improved. So
instead of decoding the erasures solely on the toric codes, we
decode the erasures jointly on the color code and the toric
codes. This modification led to a performance of �44.3% for
the color code on the square octagonal lattice. This is closer to
the best possible threshold of 50%, which is restricted by the
no-cloning theorem.

In a recent paper, Vodola et al. [19] also studied the
problem of qubit losses in color codes. They approached this
problem from a different point of view from the one taken
in this paper. When a qubit is erased, the stabilizers that
involve that qubit are modified so that the erased qubit does
not participate in the modified stabilizers. Hence the erased
qubits are completely removed, and new stabilizers are used
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to encode the logical information that is not erased. This
modification is such that it preserves the information encoded
as long as the support of a logical operator is not erased. This
is in effect equivalent to a code of shorter length with a lower
number of stabilizer generators. This is in contrast to our
approach, in which every erased qubit is replaced by a qubit
in a completely mixed state, and all the stabilizer generators
are retained.

Secondly, the approach taken in [19] decodes on a modified
lattice for the color code. In this paper, we present multiple
approaches: we propose an algorithm that decodes the color
code by mapping it to a pair of surface codes, and another that
decodes jointly on both the color code and the surface codes.

Another difference between our work and [19] lies in
the support of stabilizer generators. In [19], the new set of
stabilizer generators, which do not contain the erased qubits,
are typically of higher weight than the original stabilizer gen-
erators. Further, they may not always be local. Since we keep
all the stabilizer generators unmodified, the code continues
to be a local stabilizer code. In the noiseless setting, their
approach leads to a threshold of 46.1% for the color code,
while we were able to achieve a threshold of �44.3% (for the
color code on the square octagonal lattice).

We organized the paper as follows: In the next section,
we review the background for our proposed decoders. We
review the mapping between color codes and surface codes
[27]. Before we can apply the map for erasure decoding, our
approach needs to extend the map in [27] to the mapping of
syndromes on color codes to surface codes. We explore this
in Sec. III. Then in Sec. IV, we map the erasures on the color
codes to erasures on the surface codes. We then use this map
to decode color codes over the erasure channel. Finally, we
conclude with a brief summary in Sec. V.

II. BACKGROUND

The two-dimensional toric code (or a surface) is defined
on an arbitrary 2D lattice embedded on a torus in which the
qubits are on edges. We can also define the code on a closed
or open surface instead of a torus. We use the terms toric
code and surface code interchangeably. Stabilizer generators
are defined on vertices and faces as follows:

Av =
∏

e∈δ(v)

Xe and B f =
∏

e∈∂ ( f )

Ze. (1)

Color codes are defined on a 2-face colorable trivalent lattice
called a 2-colex. Qubits are placed on the vertices of this 2-
colex. The stabilizer generators for color codes are defined on
its faces and given by

BX
f =

∏
v∈ f

Xv and BZ
f =

∏
v∈ f

Zv. (2)

We have modeled the qubit loss as the quantum erasure
channel [5],

ρ → (1 − γ )ρ + γ
I

2
. (3)

A qubit in the completely mixed state is placed in the position
of an erased qubit. Now if we make a stabilizer measurement,
then it projects the erasure error onto one of the single-qubit
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FIG. 1. Color code and its equivalent toric codes. Qudits are
numbered accordingly.

Pauli errors with equal probability. This is because of the
following relation:

I

2
= 1

4
ρ + 1

4
XρX + 1

4
Y ρY + 1

4
ZρZ (4)

for arbitrary state ρ. We do this for all erased qubits. This
approach is used in some of the decoders for quantum codes
over the erasure channel [16,18,20,22].

Now we summarize the map between the color code and
two copies of the toric code given in [27]. We assume that the
color code is defined on a 2-colex �. The vertices, edges, and
faces of � are denoted V(�), E(�), and F(�), respectively.
We use the notation i or vi to represent a qubit placed on the
vertex numbered i; see Fig. 1.

Pauli operators along the edges of � are called hopping
operators. One basis for the Pauli operators on the color code
is the set {Xu, Zu | u ∈ V(�)}. Another generating set that is
useful is the set of weight-2 operators acting along the c and c′
colored edges of � and two single-qubit operators Xu, Zv for
two (distinct) vertices of each c′′ colored face. Specifically,
XuXv and ZuZv for each edge (u, v) ∈ Ec(�) ∪ Ec′ (�) and
X2l f , Z2m f for each c′′ colored face f , where f contains 2l f

vertices numbered 1 to 2l f and 2m f � 2l f . These weight-2
operators are called hopping operators and some of them are
dependent. In fact, exactly one X type and one Z type hopping
operator for each c′′ face are dependent. If the vertices of a
c′′ colored face f are numbered from 1 to 2l f , the hopping
operators Z1Z2l f and X2m f X2m f +1 are dependent. For more
details, see [27].

Now we define a map π on the Pauli operators on the color
code. This map is defined in a recursive form for each c′′
colored face as follows. First the initialization is done as

π (Z1) = X2

m f∏
i=1

Z2i−1, (5)

π (X1) = X1, (6)

π
(
X2l f

) = X2l f −1, (7)

where 1 � m f � l f . For each c′′ colored face f , the parameter
m f can be chosen to be any integer satisfying the above
constraint. Furthermore, the action of π on other qubits is
given by

π (Z2 j ) = π (Z2 j−1)Z2 j−1, (8)

π (Z2 j−1) = π (Z2 j−2)X2 j−2X2 j . (9)
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For Z operators the recursion is twofold. First for 1 � j � m f ,

π (X2 j ) = π (X2 j−1)Z2 j, (10)

π (X2 j−1) = π (X2 j−2)X2 j−3X2 j−1. (11)

For m f + 1 � j � l f ,

π (X2 j−1) = π (X2 j )Z2 j, (12)

π (X2 j ) = π (X2 j+1)X2 j−1X2 j+1. (13)

If we map the Pauli operators by Eqs. (5)–(13) on all c′′
colored faces of the color code, then the color code will be
mapped to exactly two copies of the toric code. One toric
code is defined by the odd-numbered qubits and the other is
defined by the even-numbered qubits. The toric code lattice
�c is obtained by shrinking the c colored faces into vertices.
Hence the toric codes are constructed on the lattice �c, which
contains c colored faces of � as vertices, c colored edges of �

as edges, and c′ and c′′ colored faces of � as faces. The qubits
on odd-numbered vertices are moved to the c colored edges
incident on these vertices of the first toric code, while the
qubits on even-numbered vertices are moved to the c colored
edges of the second toric code. The details can be seen in [27].
The action of obtaining the toric code lattice from the color
code lattice is performed by a map τ . The map τ acts on the
c colored faces of 2-colex � and converts them into vertices
in the toric code lattice �c. Similarly, it converts the c′ and c′′
colored faces of 2-colex to faces of the toric code lattice. The
vertices of the color code are converted using the action of τ

as the edges on �c. An example of the map τ on qudits of the
color code to the toric codes is as shown in the Fig. 1. We use
[A]i to denote the operator A acting on the ith copy of the toric
code.

We can easily obtain the inverse map π−1. We have the
following:

π−1([Z2i−1]1) = Z2i−1Z2i, (14)

π−1([Z2i]2) = X2i−1X2i. (15)

For 1 � i � m f , we have

π−1([X2i−1]1) = X1X2, . . . , X2i−1, (16)

π−1([X2i]2) = Z2iZ2i+1, . . . , Z2m f . (17)

For m f + 1 � i � 	 f , we compute the inverse mapping as

π−1([X2i−1]1) = X2iX2i+1, . . . , X2l f , (18)

π−1([X2i]2) = Z2m f +1Z2m f +2, . . . , Z2i−1. (19)

III. MAPPING SYNDROME FROM COLOR CODE
TO TORIC CODES

To decode a color code, the information we have is the
positions of erasures and the syndrome measurement. So, to
design a decoder for a color code by mapping it to the toric
codes, we need two additional mappings: one for mapping
syndrome information from the color code to the toric codes,
and another to map the information about erasure positions.
These two mappings should be consistent with the map of

operators π between the color code and the toric codes. In this
section, we map syndromes from color code to toric codes.

The syndrome for a stabilizer code is obtained by measur-
ing the stabilizer generators. A color code is a Calderbank-
Shor-Steane (CSS) code [30] and every face can be associated
with an X -type and a Z-type stabilizer. In projecting the
syndrome on the color code to the surface codes, we require
the following to be satisfied:

(i) Consistency: Suppose E is an error on the color code
and sE is its syndrome. We require the syndrome mapped on
the surface code to be the syndrome of π (E ), i.e., it should be
the syndrome of the image of the error on the surface codes.

(ii) Locally computable: Given sE , the syndrome of an
error E on the color code, we want to be able to compute the
syndrome on the surface codes only from sE and not from E .
Further, we want to be able to compute the syndrome in a
local fashion. In other words, the syndrome computation on
the surface code must depend only on the syndromes in the
“neighborhood of the syndrome.” This condition is imposed to
ensure that the complexity of syndrome computation is linear.

Consider a stabilizer generator Bσ
f for σ ∈ {X, Z} on the

color code. Let π (Bσ
f ) = ∏n1

i=1 Avi

∏n2
j=1 B f j , where Avi and

B f j are vertex and face stabilizer generators on the surface
codes. Suppose an error E produces the syndrome s with
respect to Bσ

f . Then we want π (E ) to produce the same
syndrome with respect to π (Bσ

f ). On the surface codes, the
syndrome is determined by whether Avi and B f j commute with
π (E ) or not.

Recall that the syndrome associated with a stabilizer
generator S with respect to an error is given by SE =
(−1)sES, where s = 0 if E commutes with S and s = 1
otherwise. Let Bσ

f E = (−1)sEBσ
f , Avi E = (−1)si EAvi , and

B f j E = (−1)s′
j EB f j Therefore, we must have

(−1)s =
∏

i

(−1)si
∏

j

(−1)s′
j , (20)

s = s1 + · · · + sn1 + s′
1 + · · · s′

n2
. (21)

The sum of these syndromes si and s′
j must be the same as the

syndrome for E with respect to Bσ
f . Here we know s, while

si and s′
j are unknown. From the preceding discussion, we

see that the syndromes on the surface codes can be found
by solving a system of linear equations. This can lead to a
superlinear overhead in general. Fortunately, we can solve this
in linear time since some of the stabilizers Bσ

f are mapped
to exactly one stabilizer generator on the surface code. In
this case, the right-hand side of Eq. (21) contains only one
variable, in other words the syndrome on the color code is pro-
jected directly onto the surface code. This happens whenever
f ∈ Fc′ (�) ∪ Fc′′ (�), as will be shown in Theorem 1. If f ∈
Fc(�), then, as will be shown in Theorem 2, the right-hand
side of Eq. (21) contains only one unknown variable, and all
other variables will be known from faces in Fc′ (�) ∪ Fc′′ (�).
Thus we are able to map the syndromes from the color code
to the surface codes. The locality of this map follows from the
fact that π is local so each Bσ

f is mapped onto a collection
of local stabilizers in each copy of the surface code. We shall
now prove this formally in the rest of the section. We shall use
the notation sσ

f to denote the syndrome of Bσ
f . First, we need to
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find the images of the stabilizers on the color code for which
we define a dependent edge set.

Definition 1. Dependent edge set. Let DX be the set of c′
colored edges on � that are defined as the dependent edges
for X hopping operators under π . Likewise, DZ represents the
c′ colored edges that are dependent for Z hopping operators.

Let f �e
c′′ be the unique c′′-face that contains the c′-edge e in

its boundary.
Lemma 1. Images of stabilizers. Let f ∈ Fc′ (�) ∪ Fc′′ (�).

Then

π
(
BZ

f

) = [
Bτ ( f )

]
1, (22)

π
(
BX

f

) = [
Bτ ( f )

]
2. (23)

If f ∈ Fc(�), then

π
(
BX

f

) = [
Aτ ( f )

]
1

∏
e∈∂ ( f )∩DX

[
Bτ ( f �e

c′′ )
]

2, (24)

π
(
BZ

f

) = [
Aτ ( f )

]
2

∏
e∈∂ ( f )∩DZ

[
Bτ ( f �e

c′′ )
]

1, (25)

where DX and DZ are the set of dependent c′-edges for
magnetic and electric hopping operators, respectively.

Proof. Let f ∈ Fc′ (�) ∪ Fc′′ (�). Let us number the vertices
of f as 1, 2, . . . , 2	 f such that (1,2) is a c colored edge. Let
τ (v2i ) = τ (v2i−1) = ei, where ei is an edge in �c. Then

π
(
BX

f

) = π

⎛
⎝

l f∏
i=1

Xv2i−1 Xv2i

⎞
⎠ =

	 f∏
i=1

π
(
Xv2i−1 Xv2i

)
(26)

(a)=
	 f∏

i=1

[
Zτ (v2i )

]
2

(b)=
	 f∏

i=1

[
Zei

]
2

(d )= [
Bτ ( f )

]
2, (27)

where (a) comes from the definition of π , (b) comes from the
definition of τ , and (d ) comes from the structure of the toric
code. Arguing similarly, we have π (BZ

f ) = [Bτ ( f )]1.
Now let f ∈ Fc(�). Number the vertices as 1, 2, . . . , 2	 f

such that (1,2) is a c′ colored edge. Then,

π
(
BX

f

) = π

⎛
⎝

	 f∏
i=1

Xv2i−1 Xv2i

⎞
⎠ =

	 f∏
i=1

π
(
Xv2i−1 Xv2i

)
.

If e = (v2i−1, v2i ) is an independent c′-edge, then
π (Xv2i−1 Xv2i ) = [Xτ (v2i−1 )Xτ (v2i )]1, otherwise π (Xv2i−1 Xv2i ) =
[Xτ (v2i−1 )Xτ (v2i )]1[Bτ ( f �e

c′′ )]2. In this case, the dependent edge e
is in DX , and we can write

π
(
BX

f

) =
	 f∏

i=1

[
Xτ (v2i−1 )Xτ (v2i )

]
1

∏
e∈∂ ( f )∩DX

[
Bτ ( f �e

c′′ )
]

2

=
	 f∏

i=1

[
Xτ (v2i−1 )Xτ (v2i )

]
1

∏
e∈∂ ( f )∩DX

π
(
BX

f �e
c′′

)
.

Now note that {τ (vi )|1 � i � 2	 f } is the set of edges incident
on the vertex τ ( f ) in �c. This implies that

π
(
BX

f

) = [
Aπ ( f )

]
1

∏
e∈∂ ( f )∩DX

[
Bτ ( f �e

c′′ )
]

2.

We can prove Eq. (25) in a similar fashion. We omit the proof
for brevity.

Now we show how to compute the syndromes on the
surface codes given the syndromes on the color codes.

Theorem 1. Face syndromes on surface codes. Let f ∈
Fc′ (�) ∪ Fc′′ (�) and s f ,i be the syndrome associated with
[Bτ ( f )]i of the ith surface code. Then

s f ,1 = sZ
f and s f ,2 = sX

f , (28)

where sσ
f is the syndrome for Bσ

f on the color code.
Proof. From Lemma 1 we have π (BX

f ) = [Bτ ( f )]2. So the
syndrome of an error E with respect to BX

f must be exactly the
same as the syndrome of [Bτ ( f )]2 with respect to π (E ).

Similarly, π (BZ
f ) = [Bτ ( f )]1. Therefore, the syndrome of E

with respect to BZ
f is identical to the syndrome of [Bτ ( f )]1 with

respect to π (E ).
Theorem 2. Vertex syndromes on surface codes. Let f ∈

Fc(�) and s f ,i be the syndrome associated with [Aτ ( f )]i of the
ith surface code. Then

s f ,1 = sX
f

⊕
e∈∂ ( f )∩DX

sX
f �e
c′′

, (29)

s f ,2 = sZ
f

⊕
e∈∂ ( f )∩DZ

sZ
f �e
c′′

, (30)

where sσ
f is the syndrome for Bσ

f .
Proof. From Eq. (25) we obtain

π

⎛
⎝BX

f

∏
e∈∂ ( f )∩DX

BX
f �e
c′′

⎞
⎠ = [

Aπ ( f )
]

1.

From this we immediately obtain the syndrome s f ,1 as stated.
The proof for s f ,2 is similar, and we skip the details.

We make two important remarks about the map on the
syndromes. First, note that the syndrome computations are
efficient as they only depend on the syndromes of faces
adjacent to a given face on the color code. Second, π pre-
serves the CSS structure of the color code. A bit flip error
causes nonzero syndromes on the vertices of the first copy and
faces of the second copy of the surface code and vice versa for
a phase flip error.

We illustrate the syndrome computation with the following
example. Figure 2 is an example of a syndrome map for phase
flip errors. It shows a portion of the square octagonal lattice
defining the color code and the associated syndromes, and
how they are mapped onto the surface codes. We show a
similar computation for the bit flip errors in Fig. 3. This
example also illustrates how π preserves the CSS structure
of the color code. Syndromes due to Z errors are mapped
to syndromes due to Z-type errors only on the first surface
code and X errors only on the second surface code. Before we
present the simulation results, we study the error model on the
surface codes.

IV. PERFORMANCE OVER THE QUANTUM
ERASURE CHANNEL

In this section, we study the performance of color codes
over the quantum erasure channel. As in the case of the bit
flip channel, we shall apply the equivalence between the color

042312-4



ERASURE DECODING OF TWO-DIMENSIONAL COLOR … PHYSICAL REVIEW A 100, 042312 (2019)

1 2
3

4
56

7

8

910
11

12
13 14

15

16

1 2
3

4
56

7

8
1

8

12
3 2

3
1

15

4
5 9

16
6

7
0

11

1
13 14

5

9
6

10
1

1 2
2 1

3

4
9

14

56
1 1

7

8

10

13

sX
10

sX
0 sX

1

sX
3sX

2

sX
8 sX

9

sX
12

sX
11

sX
4

sX
6

sX
7

sX
5

1 2
3

4
56

7

8

910
11

12
13 14

15

16

1 2
3

4
56

7

8

910
11

12
13 14

15

16

sX
0 + sX

8sX
0 + sX

8 sX
1s
X
1

sX
3 + sX

10sX
3 + sX

10sX
2s
X
2

sX
8s
X
8 sX

9s
X
9

sX
11sX
11 sX

12sX
12

sX
4s
X
4

sX
5s
X
5

sX
7s
X
7

sX
6s
X
6sX

10sX
10

FIG. 2. Example of a syndrome map for Z errors; we assume that
X4X5 and X12Z13 are dependent hopping operators.

code and the copies of surface codes for decoding the color
code over the erasure channel.

We model the erasure channel as follows (see also [20]):
We replace each of the erased qubits in the color code by a
qubit in the completely mixed state I/2. Then we perform
the syndrome measurement. Since I/2 = ρ+XρX+ZρZ+Y ρY
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FIG. 3. Example of a syndrome map for X errors; we assume that
Z1Z8 and Z9Z16 are dependent hopping operators.
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FIG. 4. Threshold for the quantum erasure channel of a color
code using the naive erasure map. The code parameters are given
by [[16L2

c , 4, 4Lc]].

any single-qubit density matrix ρ we can project an erasure
error onto one of the Pauli errors I , X , Y , or Z with equal
probability. We can measure the syndrome on the color code
and map it onto the surface codes using Theorems 1 and 2.
Finally, we estimate the error using the projected syndrome
on the surface codes and lift the error back to the color
code.

A subtle point must be borne in mind when dealing with
the erasures. While the locations of erasures on the color code
can be explicitly specified, the locations of the erasures on
the copies of the induced surface code are not obvious. An
erasure on the color code can affect multiple qubits of the
surface codes.

A. Naive erasure map

A naive method to map the erasure locations onto the sur-
face codes is as follows. Suppose the ith qubit is erased. Then,
on the surface codes erase those qubits that are in support of
π (Xi ), π (Zi ), or π (Yi). However, observe that supp (π (Yi)) =
supp (π (Xi )) ∪ supp (π (Zi )), and hence for any Pauli error
PE acting nontrivially on the set of qubits E , supp (π (PE )) ⊆
∪i∈E supp (π (Yi)). Suppose E is the erasure pattern and π (E )
is the set of qubits on which the erasure E is mapped. Then
we can extend the map π from color codes to surface codes to
erasures as follows:

π (E ) = ∪i∈E supp (π (Yi )). (31)

While this map is conceptually simple, it places more
erasures on the surface codes than required. Certain com-
binations of erasures lead to a smaller set of erasures on
the surface codes than this map requires. A decoder based
on such an erasure mapping does not perform well. We
observed a threshold of about �21% with such an approach
(Fig. 4).
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Algorithm 1: Erasure decoding of 2D color codes using a naive
erasure map.

Input: A 2-colex � and an erasure pattern E .
Output: Error estimate Ê

1: Replace each erased qubit by a qubit in the completely
mixed state.

2: Perform syndrome measurement on the color code.
3: Map the syndromes obtained on the color code using

Eqs. (28)–(30).
4: //Map erasures onto the surface codes as follows.
5: for all erasure vi do

6: Put erasures on supp (π (Yvi )).
7: end for
8: Decode both the surface codes and obtain the error estimate

on surface codes Ês.
9: Lift Ês to color code using Eqs. (14)–(19).

Ê = π−1(Ês ).

B. An improved erasure map

Suppose a qubit is erased. Then we replace this qubit with
a completely mixed state and measure stabilizer generators.
As we discussed earlier, this measurement induces one of
the Pauli errors on the qubit with equal probabilities. Our
objective is to estimate this error from the measured syndrome
and the position of erasures. Since we are dealing with a CSS
code and the two copies of surface codes, both bit flip errors
and phase flip errors lead to two instances of decoding each.
In the naive map, we used the same erasure positions in each
of these instances. See Fig. 5 for an illustration of this when
one qubit is erased.

Suppose that an X error was induced by the stabilizer
measurement. This error will then cause a nonzero syndrome
on only two instances of decoding. Therefore, it would be
unnecessary to place erasures on the remaining instances.
Similarly, if a Z error is induced, then it will be decoded using
the remaining two instances and there is no need to place the
erasures on those instances that are used for bit flip decoding.
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FIG. 5. Map of a single erasure on a color code based on the
naive method given in Eq. (31).
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FIG. 6. Map of a single erasure on a color code based on the
improved method given in Eqs. (32) and (33).

In other words, we map the erasures to each of the instances
consistent with the image of error on that decoding instance
(see Fig. 6). For the decoding instances corresponding to bit
flip errors, we have

π (E ) = ∪i∈E supp (π (Xi )). (32)

For the decoding instances corresponding to the phase flip
errors, we have

π (E ) = ∪i∈E supp (π (Zi )). (33)

This method is described in Algorithm 2, and for the
square octagonal lattice we obtained a threshold of �30.8%.
Simulation results are shown in Fig. 7.

C. Jointly decoding on the color code and surface codes

Consider the face f , which contains only one erasure on
vertex v of the color code. If the syndrome sX

f on this face
is nonzero, then we can be sure that the qubit placed on v

has undergone a Z-type error. This is because in the erasure.
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FIG. 7. Threshold for the quantum erasure channel of a color
code using the erasure map in Eqs. (32) and (33). The code parame-
ters are given by [[16L2

c , 4, 4Lc]].
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Algorithm 2: Erasure decoding of 2D color codes.

Input: A 2-colex � and an erasure pattern E .
Output: Error estimate Ê

1: Replace each erased qubit by a qubit in the completely
mixed state.

2: Perform syndrome measurement on the color code.
3: Map the syndromes obtained on the color code using

Eqs. (28)–(30).
4: //Map erasures onto the surface codes as follows.
5: For vertex syndromes: If there an erasure on qubit

v2i−1 or v2i place an erasure on qubit τ (v2i−1) on both
copies of the surface codes.

6: For face syndromes:
7: //Map erasures onto the first copy of surface code
8: if 1 � i � 2mf them
9: if there is an erasure among v2i, v2i+1, . . . , v2m f ,

then place an erasure on τ (v2i−1)
10: end if
11: else
12: if there is an erasure among v2m f +1, v2m f +2, . . . , v2i−1,

then place an erasure on τ (v2i−1)
13: end if
14: end if
15: //Map erasures onto the second copy of surface code
16: if 1 � i � 2mf then
17: if there is an erasure among v1, v2, . . . , v2i−1,

then place an erasure on τ (v2i−1)
18: end if
19: else
20: if there is an erasure among v2i, v2i+1, . . . , v2l f ,

then place an erasure on τ (v2i−1)
21: end if
22: end if
23: Decode both the surface codes and obtain the error estimate

on surface codes Ês.
24: Lift Ês to color code using Eqs. (14)–(19).

Ê = π−1(Ês).

channel model, there will not be any error in the unerased
qubits. Using the same procedure for sZ

f , we can estimate the
X -type error undergone by this qubit v. With this, we can
confirm the presence or absence of the X and Z error on this
qubit. A Y -type error is equivalent to the product of X - and
Z-type errors, hence detecting both X and Z on this vertex
implies the presence of a Y -type error on this qubit. With this
procedure, we can identify the error estimate on qubit v. After
identifying the appropriate error estimate at the vertex v, we
can remove this vertex from the set of erasures. Now again we
can check for faces with only one erased vertex, and we can
use the same procedure. We can repeat this until no faces with
only one erasure exist

The process we described above is called peeling, and it
has been used in the context of decoding erasures [18]. We
do peeling as long as possible, in other words as long as
there is a check in which there is exactly one erased qubit.
At some point we will encounter a situation in which all the
faces (checks) are supported on at least two vertices from the
erased qubits. In such a situation, we would be unable to do
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FIG. 8. Threshold for the quantum erasure channel of a color
code using the naive erasure map with joint decoding. The code
parameters are given by [[16L2

c , 4, 4Lc]].

peeling, thus we would have to apply our earlier decoders. We
summarize this procedure in the Algorithm 3.

We have simulated this joint decoder with both Algorithms
1 and 2. We obtained improved thresholds of �42.6% and
�44.3%, respectively (Figs. 8 and 9), for the color code
defined on the square octagonal lattice. We also note that the
peeling decoder by itself gives a poor performance on the
color code and is worse than either of the algorithms.

We obtained the thresholds based on the logical error
rate. The color code (in the simulations) encodes four logical
qubits. We count the number of logical errors made by the
decoder in each run. Each data point in the threshold curves
is obtained by running the decoder until we accumulate 2000
logical errors or 10 000 runs, whichever occurs first. We also
simulated the performance using a block error rate. In this
case, one or more logical errors in a single run are counted as
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FIG. 9. Threshold for the quantum erasure channel of a color
code using the erasure map in Eqs. (32) and (33) with joint decoding.
The code parameters are given by [[16L2

c , 4, 4Lc]].
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Algorithm 3: Jointly decoding on the color code and surface
codes.

Input: A 2-colex � and an erasure pattern E .
Output: Error estimate Ê

1: Initialize Ê = I
2: Replace each erased qubit by a qubit in the completely

mixed state.
3: Perform syndrome measurement on the color code.
4: while There exists a face f that carries only one erasure v do
5: if X -type syndrome on face f is nonzero then
6: Update the error estimate Ê = ÊZv

7: end if
8: if Z-type syndrome on face f is nonzero then
9: Update the error estimate Ê = ÊXv

10: end if
11: Remove v from erasure set.
12: end while
13: Use Alg. 1 or Alg. 2 to estimate the remaining error ÊR

14: Update the error estimate Ê = Ê ÊR

one block error. The thresholds for the block error rate are
about 0.1–0.8% lower.

In our simulations, the toric code erasure decoder that we
used in line 8 of Algorithm 1 and line 23 of Algorithm 2 is
that of Delfosse et al. [20]. As can be seen from our channel
model in Eq. (3), we have considered a pure erasure channel.
In other words, the channel has only erasures and no errors.
Therefore, nonzero syndromes must be adjacent to erasures.
In this decoding algorithm, we choose a nonzero syndrome as
the root node, and we construct a tree from the set of erased
qubits. We repeat this process with another nonzero syndrome
that is not in the constructed tree. This leads to a forest in the
subset of erasures that contains all the nonzero syndromes.
Then we use the peeling algorithm to estimate the errors on
the erased qubits, which are then lifted back to the color code.

The map π gives rise to two toric codes. Although the
error model on the color is independent, the error model
on the toric codes is not. In our decoding algorithms, we
decoded the errors on these copies independently. Clearly, this
is suboptimal. Therefore, the performance of our decoding
algorithms can be improved by decoding the two copies
together. Alternatively, the erasures can be mapped to reflect
the dependencies between the two copies of toric codes.

V. CONCLUSION

We have proposed methods to decode color codes over the
quantum erasure channel. Along the way we have extended
the results of [27], which shows how to map Pauli errors
on color codes to Pauli errors on two copies of toric codes.
More precisely, we have shown how to project syndromes
and erasures on a color code to the associated pair of toric
codes. While mapping the erasures, we used a naive method
and an improved method reducing the number of erasures.
Finally, we improved our decoders by jointly decoding on the
color code and toric codes. Using this method, we obtained a
threshold of �44.3% for the color code defined on the square
octagonal lattice. We also observed that the joint decoding
with the color code increases the threshold considerably even
while using the naive erasure map. Our result of �44.3% is
comparable to the result of Vodola et al. [19]. Considering
that we are decoding the toric codes independently, it seems
possible to improve the proposed decoders.
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