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Nonlocal quantum correlations under amplitude damping decoherence
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Different nonlocal quantum correlations of entanglement, steering and Bell nonlocality are defined with
the help of local hidden state and local hidden variable models. Considering their unique roles in quantum
information processing, it is of importance to understand the individual nonlocal quantum correlation as well
as their relationship. Here, we investigate the effects of amplitude damping decoherence on different nonlocal
quantum correlations. In particular, we have theoretically and experimentally shown that the entanglement
sudden death phenomenon is distinct from those of steering and Bell nonlocality. In our scenario, we found
that all the initial states present sudden death of steering and Bell nonlocality, while only some of the states show
entanglement sudden death. These results suggest that the environmental effect can be different for different
nonlocal quantum correlations and, thus, it provides distinct operational interpretations of different quantum
correlations.
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I. INTRODUCTION

Nonlocal quantum correlations are not only significant due
to their foundational aspects in quantum information theory
but also due to their applications in various quantum informa-
tion processing tasks. According to the different local models
based on the properties of underlying systems, nonlocal quan-
tum correlations can be categorized into three different forms
of entanglement, Einstein-Podolsky-Rosen (EPR) steering,
and Bell nonlocality [1–3]. A bipartite quantum system is
entangled if it cannot be written as a statistical mixture of
products of local states of individual systems. Therefore, for
a bipartite entangled state, the correlation cannot be described
by a LHS-LHS model (where “LHS” stands for “local hidden
state”). If we weaken the LHS-LHS model to a LHS–local-
hidden-variable (LHS-LHV) model, i.e., one of the systems
is not trusted as a quantum system, then the nonseparability
becomes EPR steering [3,4]. If we further relax the condi-
tion to a LHV-LHV model, then the nonseparability defines
Bell nonlocality [2,5,6]. Therefore, three forms of nonlocal
quantum correlations are interconnected via their definitions.
In particular, all Bell nonlocal states are steerable, and all
steerable states are entangled. However, there exist some en-
tangled states that are not steerable, and some steerable states
are not Bell nonlocal. Therefore, we can explicitly present the
relationship between nonlocal quantum correlations as Bell
nonlocality ⊂ EPR steering ⊂ entanglement.

In practice, nonlocal quantum correlations are used as
resources of quantum information processing. Entanglement
is known as a basic resource for many quantum informa-
tion processing tasks such as quantum teleportation [7–9],
quantum communication [10–13], and quantum computation
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[14,15]. However, in order for entanglement to play roles,
both systems should be trusted as quantum systems, and there
should be no quantum hacking attempts on either system. On
the other hand, EPR steering and Bell nonlocality can play
roles in the quantum information processing even when there
exist quantum hacking attacks on one of the systems [16] and
on both systems [12,17–20], respectively.

In real world implementation, quantum systems interact
with the environment, and it usually causes unavoidable de-
coherence. As a result, quantum correlations usually gradu-
ally decrease with the increasing interaction time, and com-
pletely vanish after an infinite time of interaction [21–24].
Remarkably, the system-environment interaction sometimes
causes much faster degradation of quantum correlations, so
the quantum system can completely lose quantum correlations
in finite interaction time. This phenomenon is known as the
sudden death of quantum correlations [21,22,25–28]. We also
note that the environmental interaction sometimes increases
quantum correlations in certain circumstances [29–32].

The effect of decoherence on entanglement has been
widely studied both in theory and experiment [21,22,25–27].
However, there are only a few theoretical studies on other
nonlocal quantum correlations [33–36]. These studies deal
with the entanglement sudden death (ESD) [21,22,25,26] and
Bell nonlocality sudden death (BNSD) [36], however, the
study of EPR steering sudden death (SSD) is still missing.
Moreover, all of these works are limited to one of the nonlocal
quantum correlations, and thus they fail to present unified
results of the environmental effect on various nonlocal quan-
tum correlations. Considering their relationship and unique
roles in quantum information processing, it is of importance
to investigate the dynamics of various nonlocal quantum
correlations in the presence of decoherence.

In this paper, we theoretically and experimentally inves-
tigate entanglement, EPR steering, and Bell nonlocality un-
der an amplitude damping channel (ADC). We found that
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different quantum correlations present very different environ-
mental effects. For example, in our scenario, all the states
present SSD and BNSD, while ESD happens for only some
of the initial states. Moreover, we can prepare two different
bipartite states with an equal amount of entanglement, but
one of them shows sudden death of all nonlocal quantum
correlations while the other only shows steering and Bell
nonlocality sudden deaths, but not ESD. Therefore, in the
presence of an ADC, entanglement behaves very differently
from the other nonlocal quantum correlations, and it provides
distinct operational interpretations of different nonlocal quan-
tum correlations.

II. THEORY

A. Amplitude damping channel

The interaction between the system S and the environment
E via an ADC with the interaction strength of 0 � D � 1 can
be modeled as [37,38]

|0〉S|0〉E → |0〉S|0〉E ,

|1〉S|0〉E → √
1 − D|1〉S|0〉E +

√
D|0〉S|0〉E . (1)

Here, we assume that the environment is initially in |0〉E . Let
us consider that a two-qubit system is initially prepared in a
pure state of |ψθ 〉 = cos θ |0〉A|0〉B + sin θ |1〉A|1〉B, where 0 �
θ � π/2 is the biasing parameter. Assuming both qubits A and
B are under an ADC with an equal interaction strength of D,
the state becomes [38]

ρD
θ =

⎛
⎜⎝

α11 0 0 α14

0 α21 0 0
0 0 α21 0

α14 0 0 α44

⎞
⎟⎠, (2)

where α11 = cos2 θ + D2 sin2 θ , α14 = (1 − D) cos θ sin θ ,
α21 = (1 − D)D sin2 θ , and α44 = (1 − D)2 sin2 θ , respec-
tively.

Now we study entanglement, EPR steering, and Bell non-
locality of the state ρD

θ . Here, we quantify the amount of
entanglement with concurrence [39,40]. Bell nonlocality is
determined by the Horodecki criterion, which provides the
necessary and sufficient condition for a 2 ⊗ 2 dimensional
system [41,42]. We apply the steering criterion developed in
Refs. [43,44] to capture the steerability of a given state. Note
that the steering criterion is necessary but not sufficient, and
thus it cannot determine the unsteerability of a given state.

To capture unsteerability, we employ the recently developed
sufficient criterion of nonsteerability [45]. Here, we only pro-
vide the results of the theoretical investigation. The detailed
estimation procedures can be found in the Appendixes.

B. Entanglement

The concurrence of ρD
θ is given by

C(θ, D) = max [0, 2(1 − D) sin θ (cos θ − D sin θ )] (3)

and depicted in Fig. 1(a). All the initial states of D = 0 has
nonzero concurrence, and thus are entangled except for θ = 0
or π/2. As the interaction strength D increases, concurrence
decreases. One can find that entanglement vanishes, and the
state ρD

θ becomes separable when cot θ � D. Therefore, the
ESD occurs along the red line which corresponds to D =
cot θ .

Note that entanglement of the initial state, C(θ, D = 0) =
sin 2θ , is symmetrical with respect to θ = π/4. Therefore,
the initial states |ψφ〉 and |ψπ

2 −φ〉, where 0 � φ < π
4 , have

the same amount of entanglement. This symmetry is broken
as C( π

2 − φ, D) < C(φ, D) after the amplitude damping de-
coherence, 0 < D. This asymmetrical nature becomes more
clear for the ESD, i.e., ESD occurs only for |ψπ

2 −φ〉, and never
happens for |ψφ〉. It originates from the asymmetrical nature
of the ADC where |1〉 experiences the damping decoherence
while |0〉 is unaffected.

We note that the nonzero concurrence provides the neces-
sary and sufficient condition of the existence of entanglement
in a two-qubit system [39,40]. Therefore, the entanglement
sudden death described above is a real physical phenomenon
although it has been investigated with the mathematical de-
scription of concurrence.

C. Einstein-Podolsky-Rosen steering

The LHS model restricts the correlation P(aA, bB ) between
the measurement outcomes a and b of the observables A and
B on the systems A and B, respectively, as

P(aA, bB ) =
∑

λ

P(λ)P(aA|λ)PQ(bB|λ), (4)

where P(λ) is the distribution of hidden variables. The sub-
script Q presents that Bob’s probability distribution is ob-
tained from the measurement of observable on the quantum
system B. The joint probability distribution P(aA, bB ) for the

FIG. 1. (a) Concurrence C(θ, D), (b) EPR steering (green) and unsteering (yellow) parameters of T16(θ, D) and TU (θ, D), and (c) Bell
parameter S(θ, D)with respect to θ . Above the C = 0, T16 = 0.503, TU = 0.503, and S = 2 planes indicate the existence of nonlocal quantum
correlations Blue and green curves present the boundaries of sudden death phenomena.
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shared bipartite state ρD
θ by Alice and Bob can be written as

Pρ (aA, bB ) = Tr

[(
I + (−1)aA

2
⊗ I + (−1)bB

2

)
ρD

θ

]
. (5)

The experimentally testable steering criterion can be de-
rived with the help of the LHS model of Eq. (4). Because the
quantum probability distribution {PQ(bB|λ)} for the measure-
ment of noncommuting observables is bounded by the uncer-
tainty principle, the correlation {P(aA, bB )} is also bounded
by the uncertainty principle. Several steering criteria have
been derived based on different forms of the uncertainty
relation along with the LHS model [45–49].

Here, we employ the most widely accepted steering crite-
rion of Refs. [43,44] as

Tm = 1

m

m∑
k=1

〈αk (n̂k · �σ B)〉 � Cm, (6)

where m is the number of the measurement settings of Alice
and Bob, and the random variable αk ∈ {0, 1} is Alice’s mea-
surement result for the kth measurement. Bob’s kth measure-
ment corresponds to the spin measurement along the direction
n̂k and �σ B ∈ {σx, σy, σz}, where σx, σy, σz are the Pauli spin
operators. Cm is the maximum value of Tm when Bob’s system
can be described by a LHS model. The violation of Eq. (6)
guarantees the steerability of the shared bipartite state ρD

θ . The
efficiency of the Eq. (6) increases with m, i.e., for a larger
m, Eq. (6) captures a larger set of steerable states. Here, we
follow the technique used in the Refs. [43,44,50] to increase
the number of measurement settings, m. In Refs. [43,44,50],
the vertices of the three-dimensional Platonic solids are used
to design the measurement directions. There are only five
three-dimensional Platonic solids with 4, 6, 8, 12, and 20
vertices. The measurement directions are chosen along the
line by joining a vertex with its diametrically opposite ver-
tex, except for the Platonic solid with 4 vertices. With that,
we can obtain 3, 4, 6, 10 measurement settings from the
Platonic solids with 6, 8, 12, and 20 vertices, respectively.
We can increase the number of measurement settings by
combining the measurement directions from the four Platonic
solids. Here, we have chosen m = 16 measurement settings
by combining the axes of a dodecahedron (the Platonic solids
with 20 vertices) and its dual, the icosahedron (the Platonic
solids with 12 vertices). Note that we found that m = 16
measurement settings capture larger sets of steerable states
than other possible combinations using 4 Platonic solids in
our scenario. In this case, steerability is guaranteed by the
violation of the following inequality [43,44]:

T16(θ, D) = 1

16

16∑
k=1

〈αk (n̂k · �σ B)〉 � C16 = 0.503. (7)

Since the steering criterion (7) is necessary, but not suffi-
cient, it does not guarantee unsteerability. The unsteerability
of the state ρD

θ can be verified with the help of the sufficient
criterion of unsteerability derived in Ref. [45]. According to
this criterion, the unsteerability of ρD

θ is determined when

tU (θ, D) = max

[
α,

2 cos θ
√

1 − D√
γ

]
� 1, (8)

where γ = cos2 θ + D sin2 θ and α = {D2(γ − (1 −
D) sin2 θ )2 + 2(1 − D)γ }/γ 2.

Let us define the normalized unsteering parameter TU as

TU (θ, D) = 0.503tU (θ, D) � 0.503, (9)

in order to present the steering and unsteering criteria in the
same figure; see Fig. 1(b). The green and yellow surfaces
show T16(θ, D) > 0.503 and TU (θ, D) > 0.503, respectively.
Therefore, the states ρD

θ that lie on the green surface are
steerable. Note that, similar to entanglement, the steering pa-
rameter T16(θ, D) becomes asymmetrical with respect to θ =
π/4 after the ADC. The states ρD

θ becomes unsteerable when
TU (θ, D) � 0.503. Therefore, the SSD occurs for TU (θ, D) =
0.503 and is presented by a blue curve in the Fig. 1(b). It is
remarkable that SSD happens for all the initial states, unlike
ESD.

D. Bell nonlocality

The Bell nonlocality of a given state can be calculated
from the correlation matrix λθ,D

i j = Tr[σi ⊗ σ j · ρD
θ ], where

i, j ∈ {x, y, z} [41,42]. The eigenvalues of (λθ,D
i j )T λθ,D

i j , where
the superscript T denotes for transposition, are λ1 = [cos2 θ +
(1 − 2D)2 sin2 θ ]2, and λ2 = (1 − D)2 sin2 2θ (with degener-
acy). Therefore, the Bell parameter S = 〈α1β1〉 + 〈α1β2〉 +
〈α2β1〉 − 〈α2β2〉, where {α1, α2} and {β1, β2} are sets of Pauli
operators for Alice and Bob, respectively, is given by [41,42]

S(θ, D) = max[2
√

2λ2, 2
√

λ1 + λ2]. (10)

The state is Bell nonlocal if S(θ, D) > 2. The Bell parameter
S(θ, D) is plotted in Fig. 1(c). The orange curve shows the
Bell nonlocality of state ρD

θ and BNSD occurs along the green
line represented by S(θ, D) = 2 where the orange surface
touches the horizontal surface. Similar to SSD, BNSD occurs
for all the initial states.

E. Sudden death of nonlocal quantum correlations

The initial state |ψθ 〉 is entangled, steerable, and Bell
nonlocal for all values of θ chosen from the range of 0 <

θ < π/2. As a result of ADC, nonlocal quantum correlations
decrease with the increasing interaction strength D. To com-
pare the sudden death phenomena of various quantum correla-
tions, we present the local-nonlocal boundaries of C(θ, D) =
0, T16(θ, D) = 0.503, TU (θ, D) = 0.503, and S(θ, D) = 2 in
Fig. 2.

The red line corresponds to C(θ, D) = 0, and hence it
divides entangled states from separable states. It signifies
that the state |ψθ 〉 with 0 < θ � π/4 does not show ESD
in the ADC. The green curve presents S(θ, D) = 2 and thus
shows the BNSD boundary. It has discontinuities at (θ, D) ∼
(0.35π, 0.101) and (0.21π, 0.269) due to the maximization
over two functions in Eq. (10). The purple and blue curves
correspond to T16(θ, D) = 0.503 and TU (θ, D) = 0.503, and
thus they are boundaries for steerable and unsteerable states,
respectively. Between these two boundaries, there exists an
undetermined area in gray where steerability of a given state
cannot be concluded with the existing steering and unsteering
criteria. As can be seen in the black-shaded region where
the steering criterion fails to reveal the EPR steering for Bell
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FIG. 2. The regions of various nonlocal quantum correlations for
the bipartite state ρD

θ . Red, purple, blue, and green lines correspond to
C(θ, D) = 0, T16(θ, D) = 0.503, TU (θ, D) = 0.503, and S(θ, D) =
2, respectively.

nonlocal states, the steering criterion becomes invalid as θ →
0. This nonideal presentation can be improved by increasing
the number of measurement settings [43].

It is interesting to compare the sudden death phenomena
among various nonlocal quantum correlations. Although all
quantum correlations of the initial state |ψθ 〉 are symmetrical
with respect to the parameter θ , they become asymmetrical
after ADC. This happens due to the asymmetrical nature of the
ADC, i.e., the ADC does not affect |0〉 and |1〉 symmetrically.
As discussed above, while both states |ψφ〉 and |ψφ+π/4〉,
where φ < π/4, have the same amount of entanglement, ESD
never happens for states |ψθ 〉. Whereas, all states with 0 <

φ < π/2 show SSD and BNSD. These results indicate that
different nonlocal quantum correlations are affected by ADC
in very different ways.

III. EXPERIMENT

A. Experimental setup

Figure 3 shows the experimental setup to explore non-
local quantum correlations affected by the ADC. The max-
imally entangled photon pair of |ψ〉 = 1√

2
(|00〉 + |11〉) =

FIG. 3. Experimental setup for (a) the initial-state preparation,
(b) amplitude damping channel, and (c) state measurement for in-
equality test and quantum state tomography. BD: beam displacer,
H: half-wave plate, Q: quarter-wave plate, BS: beam splitter, Pol.:
polarizer, SPD: single-photon detector.

1√
2
(|HH〉 + |VV 〉) at 780 nm is generated at a sandwich BBO

crystal via spontaneous parametric downconversion pumped
by a femtosecond laser pulse. Here, |H〉 and |V 〉 denote
horizontal and vertical polarization states, respectively. The
sandwich BBO crystal, which is composed of two type-II
BBO crystals and a half wave plate in between, is specially
designed for efficient generation of two-photon entangled
states [51].

To implement the amplitude damping channel (ADC), one
needs to keep the probability amplitude of |0〉 unchanged
while that of |1〉 changes to |0〉 with the probability D.
Figure 3(b) shows our implementation of ADC with polar-
ization qubits. Two beam displacers (BD) which transmit
(reflect) horizontal (vertical) polarization state form a Mach-
Zehnder interferometer. With the half wave plates (HWP, H)
in the interferometer, one can independently control the ratio
between two outputs |0〉E and |1〉E of BD2 for the horizontal
and vertical polarization states. In the experiment, we set the
HWP at the horizontal polarization path at 45◦ in order to
have all horizontal input photons at |0〉E . On the other hand,
the vertical polarization input state can be found both at |0〉E

and |1〉E according to the angle of the HWP at the vertical
polarization path. To cancel out the effect of the HWP in the
interferometer, we position HWP at 45◦ both at |0〉E , and |1〉E .
The environment qubit is traced out by incoherently mixing
|0〉E and |1〉E at a beam splitter (BS) [37].

As shown in Fig. 3(c), two-qubit quantum state tomogra-
phy (QST) and various inequality tests are conducted by two-
qubit projective measurement and coincidence detection. In
the experiment, concurrence C and the unsteering parameter
TU are calculated from the QST result whereas the Bell pa-
rameter S and the steering parameter T16 are directly obtained
from the inequality test data. The details of calculating entan-
glement and unsteerability as well as measurement settings
for Bell nonlocality test and steering test can be found in the
Appendixes.

B. Experimental results

For experimental verification of the effect of different
quantum correlations in the presence of amplitude damping
decoherence, we have prepared maximally entangled po-
larization photon pairs from spontaneous parametric down
conversion. To test Bell nonlocality and steerability, we use
Clauser–Horne–Shimony–Holt and steering inequalities de-
rived in the Refs. [43,44]. To confirm unsteerability, we ex-
perimentally test the sufficient condition of unsteerability of
Eq. (9) via quantum state tomography [52,53]. The details of
experiment can be found in the Appendixes.

We present parameters of different nonlocal quantum cor-
relations for the initially maximally entangled state |ψθ=π/4〉
with respect to the interaction strength D in Fig. 4. Figure 4(a)
shows theoretically and experimentally obtained concurrence
C. It clearly shows that entanglement gradually degrades as
D increases, and the state becomes separable when D = 1.
Therefore, entanglement does not show sudden death phe-
nomenon.

Figure 4(b) represents the Bell parameter S. The horizontal
straight line corresponds to the upper bound of Bell inequality
under the LHV model, S = 2. Similar to the concurrence,
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FIG. 4. Experimental results of the parameters of (a) entangle-
ment, (b) Bell nonlocality, (c) EPR steering, and (d) unsteering for
the initially maximally entangled state ρD

θ=π/4, respectively. Red and
blue lines and markers are theoretical and experimentally obtained
values, respectively. Error bars are smaller than the size of makers.
The horizontal black lines denote the local-nonlocal boundaries.
Entanglement does not show the sudden death phenomenon, whereas
sudden death happens for Bell nonlocality and EPR steering. (d) The
undetermined region for EPR steering is presented in gray.

S decreases as D increases. More interestingly, S becomes
smaller than 2 even for D < 1, which indicates that sudden
death of Bell nonlocality happens. In particular, we theoreti-
cally found that the sudden death of Bell nonlocality happens
at D ≈ 0.29. Our experimental result coincides with the theo-
retical finding as the Bell nonlocal state at D = 0.2 becomes
Bell local at D = 0.4. It is notable that, unlike entanglement,
Fig. 4(b) shows the nonmonotonic nature of Bell local corre-
lation (i.e., the Bell parameter S lies below 2) with respect to
the decoherence parameter D. The values of S decreases when
D increases from 0 to 0.66, but for further increment of D
from 0.66 to 1, S increases up to 2. However, it never exceeds
the classical-quantum boundary of S = 2. Due to the loss
of quantum coherence measured by off-diagonal elements,
different nonlocal quantum correlations, entanglement and
Bell nonlocal correlation decrease gradually with the strength
of decoherence and show monotonic behavior. However, ap-
pearing and disappearing of the diagonal elements due to the
effect of ADC is the source of nonmonotonic behavior of the
local correlations, Bell local correlation (explained by local
hidden variable theory).

The theoretical and experimental results of EPR steering
and unsteerability are presented in Figs. 4(c) and 4(d), respec-
tively. The horizontal lines in the Figs. 4(c) and 4(d) are the
upper bounds of steering inequality allowed by LHS model,
i.e., T16 = 0.503, and the upper bound of sufficient criterion
of unsteerability, i.e., TU = 0.503, respectively. The vertical
red (blue) line denotes the value of D corresponding to the
intersection between theoretical T16 (TU ) and the horizontal

line of T16 = 0.503 (TU = 0.503). The light red shaded re-
gions in both Figs. 4(c) and 4(d) represent the range of D
for which the state ρD

π/4 is steerable. The light blue shaded
region in Fig. 4(d) shows the unsteerable region with respect
to the parameter D. The steerable and unsteerable regions are
separated by the gray region of 0.495 � D � 0.6 where the
state cannot be concluded whether steerable or unsteerable
with the existing criteria. The existence of a unsteerable region
verifies the EPR steering sudden death of the state ρD

π/4.
Similar to the Bell local correlation, nonmonotonic behavior
of unsteerability explained by local hidden state model occurs
due to the effect of the ADC on the diagonal elements.

IV. CONCLUSION

We have theoretically and experimentally investigated dif-
ferent nonlocal quantum correlations of entanglement, EPR
steering, and Bell nonlocality under an amplitude damping
channel (ADC). Our results also show the dynamics of entan-
glement is completely different from those of EPR steering
and Bell nonlocality in the presence of an ADC. For example,
in our scenario, entanglement sudden death depends on the
preparation of initial entangled states whereas steering and
Bell nonlocality sudden deaths happen for all initial states.
Therefore, our findings present clear theoretical and exper-
imental evidence of structural difference between different
nonlocal quantum correlations [54]. They also indicate the
operational difference of nonlocal quantum correlations in
the presence of decoherence. Considering the fundamental
and practical importance of nonlocal quantum correlations
in quantum information science, our results not only provide
better understanding, but also inspire various applications of
quantum information.
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APPENDIX A: CALCULATION OF ENTANGLEMENT

Entanglement of a bipartite state can easily be verified
from its concurrence. If concurrence is positive, then the state
is said to be entangled. The concurrence of the state ρD

θ

can be calculated from the eigenvalues of �C = ρD
θ [(σy ⊗

σy)(ρD
θ )∗(σy ⊗ σy)], where the asterisk “∗” stands for com-

plex conjugation. For the state ρθ , the eigenvalues of �C in
decreasing order become

λ1 = (1 − D)2 sin θ2(
√

cos2 θ + D2 sin2 θ + cos θ )2,

λ2 = λ3 = (1 − D)2D2 sin4 θ,

λ4 = (1 − D)2 sin θ2(
√

cos2 θ + D2 sin2 θ − cos θ )2. (A1)

Using the above eigenvalues, the concurrence of the state ρD
θ

can be calculated as

C(θ, D) = max[0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ3]

= 2(1 − D) sin θ (cos θ − D sin θ ). (A2)
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APPENDIX B: CALCULATION OF UNSTEERABILITY

To derive a sufficient criterion for an existing local hidden
state (LHS) model of the state ρD

θ , we need to transform it
into the canonical form 
 = 1

4 (I + �a · �σ + ∑
i=x,y,z Tiσi ⊗ σi ),

where �a ∈ {ax, ay, az} is Alice’s local vector and {Tx, Ty, Tz}
forms a correlation matrix. ρD

θ can be converted to the above
canonical form with the help of following transformation:


θ = I ⊗ [(
ρD

θ

)B]−1/2
ρD

θ I ⊗ [(
ρD

θ

)B]−1/2
, (B1)

where (ρD
θ )B = TrA[ρθ ]. Then the sufficient criterion for un-

steerability,

TU (θ, D) = max
[
a2

z + 2|Tz|, 2|Tx|
]

� 1, (B2)

becomes

max

[
α,

2 cos θ
√

1 − D√
γ

]
� 1, (B3)

where γ = cos2 θ + D sin2 θ and α = {D2[γ − (1 − D)
sin2 θ ]2 + 2(1 − D)γ }/γ 2.

APPENDIX C: CALCULATION OF MEASUREMENT
SETTINGS FOR BELL NONLOCALITY

The Horodecki criterion provides maximum Bell violation
of a given state in 2 ⊗ 2 dimensional systems [41,42]. The
measurement settings for both Alice and Bob corresponding
to Bell violation as predicted by the Horodecki criterion can
be calculated with the help of Refs. [55–57]. To obtain Alice’s
and Bob’s measurement settings corresponding to the Bell
violation S(θ = π/4, D) of Eq. (12) in the main text, let us
consider the two following scenarios: In the first scenario,
Alice measures either observable A1 = σx or A2 = σy on her
system A. Bob’s choice of observables are

B1 = σx cos ϕ1 + σy sin ϕ1, B2 = σx cos ϕ2 + σy sin ϕ2.

(C1)

Then, the Bell parameter S becomes

S1(θ = π/4, D)

= (1 − D)(cos ϕ1 + cos ϕ2 − sin ϕ1 + sin ϕ2). (C2)

The maximum value of S1(θ = π/4, D) can be found
for ϕ1 = 7π/4, and ϕ2 = π/4. Note that,S1(θ = π/4, D) =
S(θ = π/4, D) for 0 � D � 0.5.

In the second scenario, Alice chooses observables from the
set {A1 = σx, A2 = σz} and Bob’s set is given by

B1 = σz cos χ1 + σx sin χ1, B2 = σz cos χ2 + σx sin χ2.

(C3)

In this case, the Bell parameter S is given by

S2(θ = π/4, D)

= [1 − 2(1 − D)D] cos χ1 − [1 − 2(1 − D)D] cos χ2

+ (1 − D)(sin χ1 + sin χ2), (C4)

which becomes maximum for χ1 = arctan[(1 − D)/{1 −
2(1 − D)D}] and χ2 = π + arctan[−(1 − D)/{1 − 2(1 −
D)D}]. In this scenario, S2(θ = π/4, D) = S(θ = π/4, D)
for 0.5 � D � 1. Therefore, when decoherence parameter
lies in the range 0 � D � 0.5, Alice and Bob choose the first
scenario; otherwise, they choose the second scenario.

APPENDIX D: CALCULATION OF MEASUREMENT
SETTINGS FOR STEERABILITY

To test the steering inequality with 16 measurement set-
tings on each subsystem, Bob chooses a spin measurement
along the vertex to vertex of a dodecahedron and an icosa-
hedron, and Alice’s measurement settings are calculated by
maximizing T16. Here, Bob’s direction of the ith spin mea-
surement and Alice’s direction of the corresponding spin
measurement settings are given by Bi ∈ {ni

x, ni
y, ni

z} and Ai ∈
{sin αi cos βi, sin αi sin βi, cos αi}, respectively. The above
measurement settings {Ai,Bi} maximize the expectation
value 〈AB〉 for the shared state ρD

θ . Given below are the 16
sets of measurement settings:

{A1,B1} ≡
{{

1√
3
,

1√
3
,

1√
3

}
,

{
α1 = arctan

[
−γ1

δ1

]
, β1 = arctan [−1]

}}
,

{A2,B2} ≡
{{

− 1√
3
,

1√
3
,

1√
3

}
,

{
α2 = α1, β2 = 5π

4

}}
,

{A3,B3} ≡
{{

1√
3
,− 1√

3
,

1√
3

}
,
{
α3 = α1, β3 = π

4

}}
,

{A4,B4} ≡
{{

1√
3
,

1√
3
,− 1√

3

}
,

{
α4 = π + arctan

[
−γ1

δ4

]
, β4 = −π

4

}}
,

{A5,B5} ≡
{{

0,
a

b
, ab

}
,

{
α5 = arctan

[
−γ5

δ5

]
, β5 = π

2

}}
,

{A6,B6} ≡
{{

0,−a

b
, ab

}
,

{
α6 = α5, β6 = 3π

2

}}
,

{A7,B7} ≡
{{a

b
, ab, 0

}
,

{
α7 = π

2
, β7 = arctan

[
−3 + √

5

2

]}}
,
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{A8,B8} ≡
{{

−a

b
, ab, 0

}
,

{
α8 = π

2
, β8 = π + arctan

[
3 + √

5

2

]}}
,

{A9,B9} ≡
{{

ab, 0,
a

b

}
,

{
α9 = arctan

[
−γ9

δ4

]
, β9 = 0

}}
,

{A10,B10} ≡
{{

ab, 0,−a

b

}
,

{
α10 = π + arctan

[
γ9

δ4

]
, β10 = 0

}}
,

{A11,B11} ≡
{{

0,
c

d
,− 1

d

}
,

{
α11 = π + arctan

[
γ11

δ4

]
, β11 = 3π

2

}}
,

{A12,B12} ≡
{{

0,
c

d
,

1

d

}
,

{
α12 = arctan

[
γ11

δ4

]
, β12 = 3π

2

}}
,

{A13,B13} ≡
{{

c

d
,

1

d
, 0

}
,

{
α13 = π

2
, β13 = arctan

[
− 2

1 + √
5

]}}
,

{A14,B14} ≡
{{

− c

d
,

1

d
, 0

}
,

{
α14 = π

2
, β14 = π + arctan

[
2

1 + √
5

]}}
,

{A15,B15} ≡
{{

1

d
, 0,

c

d

}
,

{
α15 = arctan

[
− γ5

δ15

]
, β15 = 0

}}
,

{A16,B16} ≡
{{

− 1

d
, 0,

c

d

}
, {α16 = α15, β16 = π}

}
, (D1)

where

γ1 =
√

2(1 − D) sin 2θ, δ1 = 4D(1 − D) sin2 θ − 1,

δ4 = cos2 θ + (1 − 2D)2 sin2 θ,

γ5 = 2(1 − D) sin 2θ, δ5 = (3 +
√

5)[2D − 1 − 2D2 − 2D(1 − D) cos 2θ ],

γ9 = −(3 +
√

5)(1 − D) sin θ cos θ,

γ11 = −(1 +
√

5)(1 − D) sin θ cos θ,

δ15 = (1 +
√

5)[2D − 1 − 2D2 − 2D(1 − D) cos 2θ ],

a = c = 1 + √
5

2
, b = 1√

3
, d =

√
1

2
(5 +

√
5). (D2)
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[42] M. Żukowski and Č. Brukner, Phys. Rev. Lett. 88, 210401
(2002).

[43] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,
Nat. Phys. 6, 845 (2010).

[44] A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G.
Cavalcanti, H. M. Wiseman, and G. J. Pryde, Phys. Rev. X 2,
031003 (2012).

[45] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, Phys. Rev.
A 93, 022121 (2016).

[46] P. Skrzypczyk, M. Navascues, and D. Cavalcanti, Phys. Rev.
Lett. 112, 180404 (2014).

[47] T. Pramanik, M. Kaplan, and A. S. Majumdar, Phys. Rev. A 90,
050305(R) (2014).

[48] J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti,
and J. C. Howell, Phys. Rev. A 87, 062103 (2013).

[49] P. Chowdhury, T. Pramanik, and A. S. Majumdar, Phys. Rev. A
92, 042317 (2015).

[50] D. A. Evans, E. G. Cavalcanti, and H. M. Wiseman, Phys. Rev.
A 88, 022106 (2013).

[51] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen,
Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang,
C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W.
Pan, Phys. Rev. Lett. 117, 210502 (2016).

[52] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi,
Phys. Rev. A 61, 010304(R) (1999).

[53] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,
Phys. Rev. A 64, 052312 (2001).

[54] T. Pramanik, Y. W. Cho, S. W. Han, S. Y. Lee, Y. S. Kim, and
S. Moon, Phys. Rev. A 99, 030101(R) (2019).

[55] N. Gisin, Phys. Lett. A 154, 201 (1991).
[56] N. Gisin and A. Peres, Phys. Lett. A 162, 15 (1992).
[57] S. Popescu and D. Rohrlich, Phys. Lett. A 166, 293 (1992).

042311-8

https://doi.org/10.1126/science.1167343
https://doi.org/10.1126/science.1167343
https://doi.org/10.1126/science.1167343
https://doi.org/10.1126/science.1167343
https://doi.org/10.1103/PhysRevA.78.022322
https://doi.org/10.1103/PhysRevA.78.022322
https://doi.org/10.1103/PhysRevA.78.022322
https://doi.org/10.1103/PhysRevA.78.022322
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1103/PhysRevA.86.012108
https://doi.org/10.1103/PhysRevA.91.022101
https://doi.org/10.1103/PhysRevA.91.022101
https://doi.org/10.1103/PhysRevA.91.022101
https://doi.org/10.1103/PhysRevA.91.022101
https://doi.org/10.1126/science.1139892
https://doi.org/10.1126/science.1139892
https://doi.org/10.1126/science.1139892
https://doi.org/10.1126/science.1139892
https://doi.org/10.1103/PhysRevLett.97.140403
https://doi.org/10.1103/PhysRevLett.97.140403
https://doi.org/10.1103/PhysRevLett.97.140403
https://doi.org/10.1103/PhysRevLett.97.140403
https://doi.org/10.1103/PhysRevA.69.052105
https://doi.org/10.1103/PhysRevA.69.052105
https://doi.org/10.1103/PhysRevA.69.052105
https://doi.org/10.1103/PhysRevA.69.052105
https://doi.org/10.1140/epjd/e2016-70680-8
https://doi.org/10.1140/epjd/e2016-70680-8
https://doi.org/10.1140/epjd/e2016-70680-8
https://doi.org/10.1140/epjd/e2016-70680-8
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1103/PhysRevLett.88.197901
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevA.74.052315
https://doi.org/10.1103/PhysRevA.74.052315
https://doi.org/10.1103/PhysRevA.74.052315
https://doi.org/10.1103/PhysRevA.74.052315
https://doi.org/10.1038/srep39651
https://doi.org/10.1038/srep39651
https://doi.org/10.1038/srep39651
https://doi.org/10.1038/srep39651
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1364/JOSAB.32.000A82
https://doi.org/10.1088/1612-202X/aae222
https://doi.org/10.1088/1612-202X/aae222
https://doi.org/10.1088/1612-202X/aae222
https://doi.org/10.1088/1612-202X/aae222
https://doi.org/10.1016/j.physleta.2007.11.036
https://doi.org/10.1016/j.physleta.2007.11.036
https://doi.org/10.1016/j.physleta.2007.11.036
https://doi.org/10.1016/j.physleta.2007.11.036
https://doi.org/10.1364/OE.19.016309
https://doi.org/10.1364/OE.19.016309
https://doi.org/10.1364/OE.19.016309
https://doi.org/10.1364/OE.19.016309
https://doi.org/10.1038/nphys2178
https://doi.org/10.1038/nphys2178
https://doi.org/10.1038/nphys2178
https://doi.org/10.1038/nphys2178
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1103/PhysRevLett.88.210401
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevX.2.031003
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevLett.112.180404
https://doi.org/10.1103/PhysRevA.90.050305
https://doi.org/10.1103/PhysRevA.90.050305
https://doi.org/10.1103/PhysRevA.90.050305
https://doi.org/10.1103/PhysRevA.90.050305
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.1103/PhysRevA.92.042317
https://doi.org/10.1103/PhysRevA.92.042317
https://doi.org/10.1103/PhysRevA.92.042317
https://doi.org/10.1103/PhysRevA.92.042317
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevA.88.022106
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1103/PhysRevA.61.010304
https://doi.org/10.1103/PhysRevA.61.010304
https://doi.org/10.1103/PhysRevA.61.010304
https://doi.org/10.1103/PhysRevA.61.010304
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.99.030101
https://doi.org/10.1103/PhysRevA.99.030101
https://doi.org/10.1103/PhysRevA.99.030101
https://doi.org/10.1103/PhysRevA.99.030101
https://doi.org/10.1016/0375-9601(91)90805-I
https://doi.org/10.1016/0375-9601(91)90805-I
https://doi.org/10.1016/0375-9601(91)90805-I
https://doi.org/10.1016/0375-9601(91)90805-I
https://doi.org/10.1016/0375-9601(92)90949-M
https://doi.org/10.1016/0375-9601(92)90949-M
https://doi.org/10.1016/0375-9601(92)90949-M
https://doi.org/10.1016/0375-9601(92)90949-M
https://doi.org/10.1016/0375-9601(92)90711-T
https://doi.org/10.1016/0375-9601(92)90711-T
https://doi.org/10.1016/0375-9601(92)90711-T
https://doi.org/10.1016/0375-9601(92)90711-T

