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We study prepare-and-measure experiments where the sender (Alice) receives trusted quantum inputs but
has an untrusted state-preparation device and the receiver (Bob) has a fully untrusted measurement device. A
distributed-sampling task naturally arises in this scenario, where the goal is for Alice and Bob to reproduce the
statistics of his measurements on her quantum inputs using a fixed communication channel. Their performance of
this task can certify quantum communication (QC), and this is formalized by measurement-device-independent
QC witnesses. Furthermore, we prove that QC can provide an advantage (over classical communication) for
distributed sampling if and only if Bob’s measurements are incompatible. This gives an operational interpretation
to measurement incompatibility and motivates a generalized notion of it related to a subset of quantum states.
Our findings have both fundamental and applied implications.
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I. INTRODUCTION

The prepare-and-measure scenario is a ubiquitous frame-
work to investigate several foundational and communicational
problems. There, one has two distant parties, Alice and Bob,
and a referee, who sends them classical random inputs. Ac-
cordingly, Alice prepares a physical system, encoding a (clas-
sical or quantum) message that she sends to Bob. Bob then
makes a measurement on the system and returns his outcome
to the referee for final analysis. Depending on whether the
message is classical or quantum, this framework provides a
natural mindset for, e.g., classical and quantum dimension
witnesses [1,2], quantum key distribution [3], classical and
quantum random access codes [4,5], and self-testing [6,7].
All these tasks have been extensively studied in the so-called
device-independent (DI) paradigm, where both Alice’s state
preparation and Bob’s measurement stations are given by
untrusted apparatuses effectively treated as black-box devices
(the dimension of the communication channel is sometimes
assumed, though). This implies that both devices admit only
classical inputs and that Bob’s device generates only classical
outputs.

Alternatively, partially DI paradigms have also proven
to yield extremely fruitful research lines. These consist of
settings where the devices have both trusted (i.e., well-
characterized and with full quantum control) and untrusted
components. Notable instances thereof are the phenomena
of Einstein-Podolsky-Rosen (EPR) steering [8], semiquan-
tum instrumental causal networks [9], nonlocal correlations
with quantum inputs [10] (which can be interpreted as
measurement-device-independent entanglement certification
[11]), and certification of quantum memories [12]. These
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studies have revealed interesting aspects of quantum theory
that could not be properly addressed in the DI regime.

Here, we study the prepare-and-measure scenario with
quantum inputs for Alice, which we call semiquantum pre-
pare and measure (SQPM). More precisely, we consider a
hybrid device for Alice, which admits trusted quantum-state
preparations as inputs but is measurement DI, and a fully DI
black-box device for Bob (see Fig. 1). In contrast to the
usual prepare-and-measure scenario with classical inputs, in
SQPM not all well-defined statistics admit a physical realiza-
tion. Our first contribution is thus to characterize the set of
SQPM statistics that arise from quantum experiments. Then
we introduce a distributed-sampling (DS) problem where the
goal is for Bob to simulate the outputs (i.e., sample from the
outcome distribution) of measurements associated with his in-
puts on Alice’s quantum states, using as little communication
as possible. This is an information-theoretic task that can be
used to certify quantum communication (QC) from Alice to
Bob in the SQPM scenario. We formalize this through the no-
tion of measurement-DI quantum communication witnesses,
which can be efficiently obtained by means of semidefinite
programs (SDPs). Furthermore, DS also turns out to be in-
timately connected to the fundamental problem of quantum
measurement incompatibility [13]: We prove an equivalence
between the quantum communication advantage for DS [over
classical communication (CC)] and the incompatibility of
the measurements implemented by Bob’s black box. This
provides a precise operational interpretation of measurement
incompatibility and naturally leads to a generalized definition
of compatibility relative to the input states in DS.

II. PRELIMINARIES

Let H be a d-dimensional complex Hilbert space and
Herm(H) the set of linear operators acting on H. Let [n] =
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FIG. 1. Semiquantum prepare-and-measure scenario: A referee
sends a random state ρx to Alice (unknown to her) and a random
label y to Bob. Alice then sends a ρx-dependent message to Bob, who
makes a y-dependent measurement on it and returns the outcome b
to the referee.

{1, . . . , n}. The states of a quantum system associated with
H are given by linear operators ρ ∈ Herm(H) that are pos-
itive semidefinite and have unit trace, ρ � 0, Tr(ρ) = 1.
The quantum measurements with o outcomes on this system
are described by collections My = {Mb|y}b∈[o] ⊂ Herm(H) of
positive semidefinite operators acting on H that sum up to
the identity, Mb|y � 0,

∑
b Mb|y = I. We denote by S(H) and

M(H) the sets of all quantum states and measurements (with
any number of outcomes) on H, respectively.

A set of m quantum measurements M = {M1, . . . , Mm}
with o outcomes is said to be compatible, or jointly mea-
surable [13], if there exists a so-called mother measurement
N = {Na}a∈[n] and response functions f (·|y, a) : [o] → [0, 1],
with f (b|y, a) � 0 and

∑
b f (b|y, a) = 1 for all (b, y, a), such

that

Mb|y =
n∑

a=1

Na f (b|y, a) (1)

for all y ∈ [m] and b ∈ [o]. This expresses the fact that one can
perform N and, depending on y and the mother measurement’s
outcome a obtained, sample b from f (·|y, a) to determine
an outcome for My. Denoting the (convex) set of compatible
measurements COMP, we define the generalized robustness
of incompatibility of M by

RI (M) = min{η; {(1 − η)Mb|y + ηQb|y}b,y ∈ COMP,

× ∀y ∈ [m] {Qb|y}b ∈ M(H)}, (2)

i.e., the minimum amount of noise (represented by an arbitrary
measurement Q) needed to turn the combined measurement
compatible.

A quantum channel is a completely positive trace-
preserving linear map � : L(H) → L(H), forming a set
denoted CPTP. We say that � is non-steering-breaking
(NSB) if its adjoint �† is incompatibility-breaking, i.e.,
{�†(Mb|y)}b,y ∈ COMP for all sets of measurements {Mb|y}b,y

[14]. This follows from the fact that a set of measurements
is incompatible if and only if it is useful for demonstrating
EPR steering [15,16]. The generalized robustness of the non-
steering-breaking of � is

RNSB(�) = min{η; � ∈ CPTP,∀{Mb|y}b,y ⊂ M(H),

× {[(1 − η)� + η�]†(Mb|y)} ∈ COMP}. (3)

FIG. 2. General behaviors from a semiquantum prepare-and-
measure (SQPM) scenario admit a polytope characterization and are
illustrated by the external pentagon. The subset of quantum behaviors
(Q) can be characterized by postquantum behavior witnesses (WPQ)
(see Appendix A) and the subset of behaviors that can be generated
with classical communication (CC) can be characterized by quantum
communication witnesses (WQC).

III. THE SEMIQUANTUM
PREPARE-AND-MEASURE SCENARIO

Consider the scenario where a sender, Alice, receives a
quantum input ρx, and a receiver, Bob, is given a classi-
cal input y (see Fig. 1). We denote by S = {ρx}x the set
of quantum inputs for Alice. Alice’s and Bob’s inputs are
randomly chosen from S and [m], respectively, by a referee.
Alice then prepares a (potentially quantum) message by im-
plementing some (uncharacterized) operation on ρx and sends
it to Bob, who extracts a classical output b from it through
some (uncharacterized) measurement that may depend on y.
This experiment is described by a state-conditioned behavior
{(P(b|x, y), ρx )}b,x,y, where P(b|x, y) represents the condi-
tional probability of b given x (the classical label of Alice’s
quantum input) and y. The state-conditioned behavior thus
encapsulates the conditional probabilities of Bob’s outcomes
in explicit correspondence with the states ρx of Alice’s inputs.
Henceforth, we use the short-hand notation {P(b|ρx, y)}b,x,y

for state-conditioned behaviors and refer to them simply as
behaviors.

The standard prepare-and-measure scenario is recovered in
the case where the states in S can be perfectly discriminated.
Each choice S of trusted quantum states creates a different
instance of the scenario, which is completely defined by the
triple (S, m, o), where m and o fix the range of values for
the labels y and b, respectively. Thus, the standard proba-
bility constraints P(b|ρx, y) � 0,

∑
b P(b|ρx, y) = 1, for all

b ∈ [o], ρx ∈ S , and y ∈ [m], define the polytope of behav-
iors from this scenario, whose extremal points are the om|S|
deterministic behaviors (see Fig. 2).

The SQPM scenario is measurement device independent
by definition. Given P(b|ρx, y), the conditional on the quan-
tum state ρx and on the classical label y can be completely
arbitrary; in particular, we do not assume that the behavior
can be obtained from quantum measurements performed on
ρx. Whenever this is the case, we say that the behavior admits
a quantum realization.

Definition 1. A behavior {P(b|ρx, y)}b,x,y admits a quantum
realization if there exists a set of o-outcome measurements
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{My; y ∈ [m]} ⊂ M(H) such that

P(b|ρx, y) = Tr(ρxMb|y) (4)

for any b ∈ [o], ρx ∈ S , y ∈ [m]. For simplicity, we refer to
these as quantum behaviors and denote by Q the set formed
by them.

In contrast with the prepare-in-measure scenario with clas-
sical inputs, in the SQPM not all behaviors are quantum; some
statistics are incompatible with the given trusted quantum
states (see Appendix A). However, deciding whether there
exists a quantum realization for a given behavior can be done
efficiently by means of SDP, as shown in Appendix A.

IV. DISTRIBUTED SAMPLING AND
QUANTUM-COMMUNICATION WITNESSES

We now focus on quantum behaviors {P(b|ρx, y) =
Tr(ρxMb|y)}b,x,y. We define a distributed sampling task by the
following rules:

(1) A referee announces a set of states S and a set of m o-
outcome measurements M.

(2) The referee sends Alice a single copy of a randomly
chosen ρx ∈ S and sends Bob a randomly chosen classical
label y ∈ [m].

(3) Alice applies an arbitrary quantum operation on ρx,
producing a message that is sent to Bob.

(4) Conditioned on y and on the message, Bob generates
an output b ∈ [o] and sends it to the referee.

(5) Alice and Bob are successful if the conditional proba-
bility distributions observed by the referee after many rounds
match the behavior {Tr(ρxMb|y)}b,x,y.

Note that S is broadcast, but Alice does not know the
particular ρx (i.e., the value of x) sent to her in each run. The
essence of this task appears in [17], where the inputs are not
previously announced or restricted to limited sets, two-way
communication is allowed, and the main interest lies in CC
complexity. These differences allow us to focus on quantum
properties of the involved objects.

This task is trivial if Alice and Bob have access to a perfect
quantum communication channel, namely, the identity chan-
nel. In this case, Alice can simply send ρx to Bob, who will
then hold both inputs and can implement My, reproducing the
statistics accurately. References [18,19] investigate the task of
quantum compression, which can be interpreted as distributed
sampling with perfect but lower-dimensional communication
channels.

In contrast, consider now that Alice can only send classical
messages to Bob. In this case, her most general strategy is
to perform a quantum measurement N = {Na} on the state
ρx received by the referee and send the outcome a of her
measurement to Bob. He then outputs a classical message b
according to some response function, which may depend on
the outcome a sent by Alice and the classical input y received
from the referee.

Definition 2. A behavior {P(b|ρx, y)}b,x,y admits a dis-
tributed sampling realization with classical communication
(CC realization) if there exists a quantum measurement N =
{Na}n

a=1 ∈ M(H) and response functions { f (·|y, a)}y,a such

that

P(b|ρx, y) =
n∑

a=1

Tr(ρxNa) f (b|y, a) (5)

for any b ∈ [o], ρx ∈ S, y ∈ [m].
Characterizing the set CC of behaviors that admit a CC re-

alization can be done by means of an SDP. Moreover, this SDP
can quantify how far a given behavior P = {P(b|ρx, y)}b,x,y is
from being CC realizable by calculating

RNCC(P) = min{η; (1 − η)P + ηq ∈ CC,

q = {q(b|ρx, y)}b,x,y ∈ Q}. (6)

We call this quantity the generalized robustness of non–CC
realizability of the behavior. Also, since CC is convex and
compact, we can describe its border by means of witnesses.

Definition 3. A quantum communication witness is a pair
WQC = ({μbxy}b,x,y, β ), with β,μbxy ∈ R, such that∑

b,x,y

μbxyP(b|ρx, y)�β (7)

is satisfied by all CC-realizable behaviors, but violated by
some behavior, in the scenario with trusted states S = {ρx}x.

Therefore, the violation of (7) is a measurement-DI way of
certifying that Alice and Bob share a quantum communication
channel.

Theorem 1. Let S ⊂ S(H) be a finite set of states and o, m
be positive integers. Then any behavior P = {P(b|ρx, y); ρx ∈
S, b ∈ [o], y ∈ [m]} /∈ CC violates some quantum communi-
cation witness. Moreover, the maximal violation over all wit-
nesses provides exactly the non-CC-realizability generalized
robustness of this behavior,

RNCC(P) = max
WQC

∑
b,x,y

μbxyP(b|ρx, y) − β. (8)

In Appendix B we provide the proof of Theorem 1 and
details on the SDP approach. As an application, we study
the advantage for distributed sampling of a paradigmatic
noisy quantum channel over classical ones. The results are
graphically summarized in Fig. 3.

V. MEASUREMENT INCOMPATIBILITY

Next, we show that measurement compatibility is a “clas-
sical” property that matches precisely the classical commu-
nication case of distributed sampling. This implies that any
distributedly sampled quantum behavior can be used to esti-
mate both the degree of incompatibility of the implemented
measurements and the degree of non-steering-breaking of the
utilized channel.

Theorem 2. A set of measurements M ⊂ M(H) is com-
patible if and only if the behavior {Tr(ρxMb|y); ρx ∈ S, My ∈
M} admits a distributed sampling realization with classical
communication for any set of states S ⊂ S(H) that spans
Herm(H). Moreover, for any distributedly sampled quantum
behavior P = {P(b|ρx, y) = Tr(�̃(ρx )M̃b|y)} ∈ Q, we have

RNCC(P) � RI (M̃) and RNCC(P) � RNSB(�̃), (9)

where M̃ and �̃ are the uncharacterized measurements and
communication channel, respectively, used in the sampling of
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FIG. 3. Robustness of the properties of behaviors, set of
measurements, and quantum channel involved in the distributed
sampling with the depolarizing qubit channel Dη : A �→ (1 −
η)A + ηTr(A)I/2 of noise 0 � η � 1. Consider the sets of
states S1 = {|0〉〈0|, |+〉〈+|}, S2 = {|0〉〈0|, |+〉〈+|, |r〉〈r|}, and S3 =
{|0〉〈0|, |+〉〈+|, |r〉〈r|, I/2}, where |+〉, |r〉, and |0〉 are, respectively,
the positive-eigenvalue eigenstates of the Pauli matrices σx , σy, and
σz, and the measurement set M ≡ {σx, σy, σz}. The figure shows the
robustness of the non-classical-communication realizability of the
resulting behaviors P1, P2, and P3, i.e., the critical noise at which
the behavior admits a distributed sampling realization with classical
communication. Since Dη(M) is compatible for η � 1 − 1/

√
3 ≈

0.4226, for this range Dη is replaceable by a classical channel
regardless of the input states. In turn, for η � 1/2 the adjoint channel
breaks the incompatibility of any set of projective measurements, and
for η � 2/3 the channel is entanglement breaking. More details are
given in Appendix E.

P. The equality holds in the first case if S spans Herm(H)
and in the second case if, besides that, the measurements
{�̃†(M̃b|y)}b,y present the greatest generalized robustness of
incompatibility in its dimension.

The proof is presented in Appendix C.
Theorem 2 provides an operational interpretation for joint

measurability in terms of a communicational task. The first
inequality in (9) shows that any incompatible set of mea-
surements generates some behavior that can certify quantum
communication via distributed sampling. Similarly, the sec-
ond inequality in (9) implies that a channel � is useless to
certify quantum communication in this scenario if and only if
�† is incompatibility-breaking (i.e., � is steering-breaking).

A consequence of Theorem 2 is that a certification of
quantum communication via distributed sampling also detects
the incompatibility of the implemented measurements. Hence,
quantum communication witnesses form a particular class of
measurement incompatibility witnesses [21]. In general, the
latter are defined by a set of Hermitian operators {Fby}b,y

acting on the same space as the measurements and a scalar
γ such that the condition∑

b,y

Tr(FbyMb|y) � γ (10)

is satisfied for any compatible set M = {Mb|y}b,y but vio-
lated by some incompatible set. Our next result shows that,
conversely, every measurement incompatibility witness also
detects the exchange of quantum communication in the ap-
propriate DS context.

Theorem 3. For any measurement incompatibility witness
WMI = ({Fby}, γ ) there exists a set of states S = {ρx}x and
a quantum communication witness WQC = ({μbxy}, β ) that

detects the incompatibility of the same sets of measurements
as WMI.

The proof can be found in Appendix C.

VI. MEASUREMENT COMPATIBILITY ON A
RESTRICTED SET OF STATES

Theorem 2 unveils a direct connection between distributed
sampling and measurement compatibility, in which compati-
bility is equivalent to CC realizability with an informationally
complete set of states. For more restricted sets of states,
behaviors that can be CC realized are directly connected to
a relaxed notion of compatibility which we now define.

Definition 4. A set of o-outcome measurements {Mb|y}b,y

is compatible on S = {ρx}x if there exists a mother mea-
surement N = {Na}a and response functions f (·|y, a) : [o] →
[0, 1] such that

Tr(ρxMb|y) =
n∑

a=1

Tr(ρxNa) f (b|y, a) (11)

for all ρx ∈ S , y ∈ [m], and b ∈ [o].
Definition 4 can be applied to all situations where the

experimenter is guaranteed that all states in the experiment lie
in a restricted set S , e.g., a qubit experiment where all states
involved lie in the xz plane of the Bloch sphere. In such cases,
the standard definition of joint measurability may represent
an overkill, and the relaxed notion may be more suitable. See
Fig. 3 and Appendix E for more on this topic.

VII. FINAL DISCUSSION

We have formalized the semiquantum prepare-and-
measure scenario and presented a distributed sampling task
potentially interesting on its own beyond the scope of this
work. In turn, this leads to non-classical-communication cer-
tification via quantum communication witnesses. The under-
lying feature that allows this is the non-steering-breaking
property of the communication channel, a notion strictly
stronger than non-entanglement-breaking [20]. Hence, our
framework cannot certify steering-breaking channels that are
non-entanglement-breaking (and, therefore, still nonclassi-
cal). On the other hand, both properties usually require en-
tanglement for their certification, while our framework uses
single systems only (see Ref. [12] for non-entanglement-
breaking channel certification in a scenario with two quantum
inputs).

Measurement incompatibility is known to have opera-
tional interpretations in terms of EPR steering [15,16] and
state discrimination games with postmeasurement informa-
tion [21–23]. Our findings also provide a communication task
that captures precisely the essence of this property, comple-
menting the operational interpretations from previous results
(although being essentially different from them; see Appendix
D for a discussion of state discrimination).

Note that if two parties share an entangled quantum state
and classical communication they can simulate a quantum
channel via the teleportation protocol. Also, teleportation can
be regarded as a protocol where Alice has a quantum input
and Bob can do tomography on his final state. Since in
our scenario Bob’s measurements are untrusted, our results
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point towards a realization of quantum teleportation as DI as
possible, where only Alice’s input state is trusted.

Further open problems for future research are the charac-
terization of the inner structure of the SQPM polytope and
a quantitative study of the amount of classical or quantum
communication required for approximate or probabilistic dis-
tributed sampling. For the classical case, it would be inter-
esting to see how the results in Ref. [17] relate to measure-
ment incompatibility. Finally, the quantum communication
witnesses developed here are experimentally relevant and
implementable with current technology.

All code and calculations can be found in the repository at
Ref. [24].
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APPENDIX A: QUANTUM REALIZATIONS

Let S ∈ S(H) be a set of quantum states and m, o be
positive integers. Not all semiquantum prepare-and-measure
behaviors {P(b|ρx, y); ρx ∈ S, b ∈ [o], y ∈ [m]} admit a
quantum realization, i.e., can be written as P(b|ρx, y) =
Tr(ρxMb|y), for some measurements {Mb|y}b,y ⊂ M(H).
Indeed, consider H = C2, S = {|0〉〈0|, |1〉〈1|, I/2}, o =
2, m = 1, and the behavior specified by

P(1||0〉〈0|, 1) = P(1||1〉〈1|, 1) = 0, (A1a)

P

(
1|I

2
, 1

)
= 1, (A1b)

together with the normalization constraints. If this behavior is
quantum samplable, then there exists a quantum measurement
M1 = {M1|1, M2|1} satisfying

0 = P(1||0〉〈0|, 1) + P(1||1〉〈1|, 1) (A2a)

= Tr(|0〉〈0|M1|1) + Tr(|1〉〈1|M1|1) (A2b)

= 2Tr

(
I

2
M1|1

)
(A2c)

= 2P

(
1|I

2
, 1

)
= 2, (A2d)

an obvious contradiction.
More generally, we can decide whether a behavior

{P(b|ρx, y); ρx ∈ S, b ∈ [o], y ∈ [m]} admits a quantum real-
ization with the semidefinite program

given {P(b|ρx, y)}b,x,y

min
{q(·|ρx,y)},{My}

η

s.t. (1 − η)P(b|ρx, y) + q(b|ρx, y)

= Tr(ρxMb|y), ∀ρx, b, y,

× q(b|ρx, y) � 0, ∀ρx, b, y,∑
b

q(b|ρx, y) = η, ∀ρx, y,

Mb|y � 0, ∀b, y,∑
b

Mb|y = I, ∀y. (A3)

The probabilities {q(·|ρx, y)/η}x,y represent an arbitrary noise,
which is mixed with the given behavior until it accepts a quan-
tum description {Tr(ρxMb|y)}b,x,y. Hence, the input behavior
admits a quantum realization if and only if the optimal value
obtained is η∗ � 0.

For a fixed triple (S, o, m), it follows from the convexity
of the set of quantum measurements that the set of quantum
behaviors is convex, as well as compact. Hence, due to the
separating hyperplane theorem [25] we have that such a set
can be characterized by postquantum behavior witnesses.

Definition 5. A postquantum behavior witness is a pair
WPQ = ({λbxy}, α) formed by real coefficients λbxy and a
bound α such that ∑

b,x,y

λbxyP(b|ρx, y)�α (A4)

is satisfied for all quantum behaviors {P(b|ρx, y)} but violated
by some behavior of the scenario. Hence, even if a given
behavior {P(b|x, y)}b,x,y may arise from some quantum exper-
iment, a violation of (A4) ensures that this experiment does
not involve states {ρx}x, calculated from the dual formulation
of SDP (A3).

We now show that postquantum behavior witnesses can
be associated with the generalized robustness [26,27] of the
property of the inputs under study (in our case, it is the
’postquantumness’ of the behavior), since we optimize over
all possible noises. Let us now fix an arbitrary noise, that
is, consider {q(·|ρx, y)/η}y not as variables but as inputs
selected previously. This variation of SDP (A3) admits the
Lagrangian

L(η, {Mb|y}) = η

⎛⎝1 +
∑
b,x,y

λbxy[P(b|ρx, y) − q(b|ρx, y)]

⎞⎠
(A5a)

−
∑
b,y

Tr

(
Mb|y

[
Uby + Ay −

∑
x

λbxyρx

])
(A5b)

−
∑
b,x,y

λbxyq(b|ρx, y) +
∑

y

Tr(Ay) (A5c)

for arbitrary scalars λbxy and operators Uby � 0, Ay. Each
choice of these parameters yields an upper bound for the opti-
mal value t∗ of SDP (A3). Minimizing over them, considering
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feasibility constraints, and eliminating the slack variables Uby,
we obtain the dual formulation1 of SDP (A3),

given {P(b|ρx, y)}b,x,y, {q(b|ρx, y)}b,x,y

max
{λbxy},{Ay}

∑
y

Tr(Ay) −
∑
bxy

λbxyP(b|ρx, y) (A6a)

s.t.
∑

x

λbxyρx � Ay, ∀b, y (A6b)∑
bxy

λbxy(q(b|ρx, y) − P(b|ρx, y)) = 1. (A6c)

Consider the following result.
Theorem 4. Let S ⊂ S(H) be a finite set of states and o, m

be positive integers. Then every behavior {P(b|ρx, y); ρx ∈
S, b ∈ [o], y ∈ [m]} that is not quantum violates some
postquantum behavior witness.

The separating hyperplane theorem suffices to prove The-
orem VII. Nonetheless, we now present a second demonstra-
tion, more constructive, that is based on SDPs (A3) and (A6).
Duality theory says that the optimal solution for the dual
problem is always an upper bound for the optimal solution of
its primal. Sometimes, however, we may have strong duality
between them, meaning that the problems are such that both
optimal values coincide. A sufficient requirement for ensuring
strong duality is called Slater’s condition, which is satisfied
whenever there is a feasible point satisfying all equality con-
straints and strictly satisfying the inequalities ones, for either
one of the problems. Our second proof of Theorem 4 is based
on proving that the two SDPs above satisfy Slater’s condition
and are therefore strongly dual.

Proof. The behavior {P(b|ρx, y)} admits a quantum real-
ization if and only if SDP (A3) yields an optimal solution
η∗ � 1. This SDP is strictly feasible: for η = 1 we obtain a
solution by placing q(b|ρx, y) = Tr(ρxMb|y), for any arbitrary
measurements {Mb|y}b,y. In particular, choosing Mb|y = I/o
for all b, y we have that Mb|y are strictly positive operators,
while q(b|ρx, y) are strictly positive scalars. Hence, by Slater’s
condition [25] we have that (A3) and (A6) present strong dual-
ity. This implies that {P(b|ρx, y)} admits a quantum realization
if and only if the dual SDP (A6) yields an optimal solution less
than or equal to 0 or, equivalently,∑

bxy

λ∗
bxyP(b|ρx, y) �

∑
y

Tr(A∗
y ), (A7)

where λ∗
bxy, A∗

Y are provided by the optimal solution of (A6).
Taking α = ∑

y Tr(A∗
y ) concludes the proof.

As an example, inputting the behavior defined in Eqs. (A1)
in SDP (A6) we obtain the postquantum realization witness

− 1
2 [P(2|ρ1, 1) + P(2|ρ2, 1)] − P(1|ρ3, 1) � −1. (A8)

The left-hand side of the above witness equals −2 when eval-
uated on behavior (A1), confirming its “postquantumness.”

1By fixing the noise we simplify SDP (A3); leaving the noise
unspecified would lead to the same dual with an extra constraint,
concerning the nonnegativity of variables q(·|ρx, y).

APPENDIX B: DISTRIBUTED SAMPLING WITH
CLASSICAL COMMUNICATION

Recall that a behavior {P(b|ρx, y)}b,x,y admits a distributed
sampling realization with classical communication (is CC
realizable) if there exists a quantum measurement N ∈ M(H)
and response functions { f (·|y, a)}y,a such that

P(b|ρx, y) =
n∑

a=1

Tr(ρxNa) f (b|y, a) (B1)

for any b ∈ [o], ρx ∈ S, y ∈ [m]. Note that every such be-
havior is quantum realizable, associated with the measure-
ments Mb|y = ∑

a Na f (b|y, a). Hence, admitting a quantum
realization is a necessary condition for a behavior to be CC
realizable.

The subset of behaviors that can be distributedly sampled
with classical communication forms the convex and compact
set CC. Consequently, Theorem 1 can also be seen as an
application of the separating hyperplane theorem [25]. In what
follows, we provide an SDP approach to the problem and an
alternative proof of Theorem 1.

Note that we can always take Bob’s response function
to be deterministic by mapping its local randomness to the
measurement N. In other words, if such a strategy is possible,
then it can be done with N having at most n = (o)m outcomes,
given by a = a1 . . . am, with ai ∈ [o]. These outcomes already
encode Bob’s answer; he simply outputs the yth symbol of the
classical message a, which corresponds to applying the map
p(b|y, a) = δay,b.

Hence we can decide whether {P(b|ρx, y)}b,x,y ∈ CC via
the generalized robustness SDP:

given {P(b|ρx, y)}b,x,y

min
N,{M̃b|y}

η

s.t. (1 − η)P(b|ρx, y) + Tr(ρxM̃b|y)

= sumaTr(ρxNa )δay,b, ∀x, b, y

M̃b|y � 0, ∀b, y

=
∑

b

M̃b|y = ηI, ∀y

Na � 0, ∀a ∈ {1, . . . , o}×|M|∑
a

Na = I, (B2)

where {M̃b|y/η}b,y is an arbitrary measurement that provides
the quantum noise {Tr(ρxM̃b|y)/η}b,x,y. Running SDP
(B2), if the optimal value obtained is η∗ > 0, then some
amount of noise is needed and we know that {P(b|ρx, y)}
requires quantum communication to be distributedly
sampled.

Let us now fix an arbitrary quantum noise {q(b|ρx, y) =
Tr(ρxM̃b|y)}b,x,y (see footnote 1 in Appendix A). The obtained
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SDP admits the Lagrangian

L(η, {Na}) = η

⎛⎝1 +
∑
b,x,y

μbxy[P(b|ρx, y) − q(b|ρx, y)]

⎞⎠
(B3a)

+
∑

a

Tr

⎛⎝Na

⎡⎣Va + B −
∑
b,x,y

μbxyρxδay,b

⎤⎦⎞⎠
(B3b)

× Tr(B) −
∑
b,x,y

μbxyq(b|x, y) (B3c)

for arbitrary scalars λbxy and operators Va � 0, B. Minimizing
over these parameters, considering feasibility constraints, and
eliminating the slack variables Va, we obtain the dual formu-
lation

min
{μbxy},B

Tr(B) −
∑
b,x,y

μbxyTr(ρxMb|y) (B4a)

s.t.
∑
b,x,y

μbxyρxδay,b � B, ∀a ∈ [o]×m (B4b)

∑
bxy

μbxy[q(b|ρx, y) − P(b|ρx, y)] = 1. (B4c)

We now show that these two problems indeed display
strong duality. This implies that every behavior whose dis-
tributed sampling cannot be implemented only with classical
communication violates a quantum communication witness
and proves Theorem 1.

Proof. Since behaviors that are not quantum realizable
cannot be CC realizable, we can restrict our proof to quantum
realizable behaviors.

Let {P(b|ρx, y) = Tr(ρxMb|y)}b,x,y be a quantum realizable
behavior. Let Dt : A �→ (1 − η)A + ηTr(A)I/d be the depo-
larizing map, with robustness η ∈ [0, 1]. Given the above
behavior, we obtain a strictly feasible solution for SDP (B2)
by setting q(b|x, y) = Tr(Mb|y)/d as white noise and 1 > η >

0 close enough to 1 so that the depolarized measurements
Mη = {Dη(Mb|y)} are jointly measurable. From the con-
nection between joint measurability and Einstein-Podolsky-
Rosen steering [15,16], we know this happens for η strictly
less than 1 [28]. If the corresponding mother measurement
N = {Na}a possesses a zero eigenvalue, then the set Mt ′ , with
1 > η′ > η, admits a mother N′ = {�η′/η(Na)}, with strictly
positive elements. Hence, by Slater’s condition [25] the SDPs
(B2) and (B4) present strong duality.

Therefore, if the behavior can be distributedly sampled
with classical communication, the primal SDP yields η∗ � 0.
Strong duality ensures that the optimal solution for the dual
matches η∗, being also � 0, and thus we have∑

b,x,y

μbxyTr(ρxMb|y) � Tr(B) (B5)

for some real coefficients {μbxy}b,x,y and some matrix B
acting on H satisfying Eq. (B4b). Moreover, RNCC = η∗ =
maxWQC β∗ − ∑

b,x,y μ∗
bxyTr(ρxMb|y), where this is the maxi-

mum violation of some witness for the given behavior.

As a concrete example, consider in dimension d = 2 the
distributed sampling of the statistics generated by the set of
states Ŝ = {|+〉〈+|, |y〉〈y|, |0〉〈0|, I/2}, formed by one eigen-
state of each Pauli matrix X, Y , and Z and the maximally
mixed state, and the set of measurements M̂ = {Mx, My}
associated with X and Y . Running SDP (B4) with q set as
white noise, we obtain the quantum communication witness
WQC given by

−1

2
[P(1|ρ1, 1) + P(1|ρ3, 2)]

+ 1

2
[P(2|ρ1, 1) + P(2|ρ3, 2)]

+ 1

2
√

2
[P(1|ρ2, 1) + P(2|ρ2, 1)]

+ P(1|ρ4, 2) − P(2|ρ4, 1) � −1

2
√

2
.

The behavior yielded by Ŝ and M̂ violates it up to 1/(2
√

2) −
1. Note that S spans the set of Hermitian operators acting
in C2, therefore every incompatible set of measurements is
detected by some WQC constructed from S .

APPENDIX C: PROOFS OF THEOREMS 2 AND 3

Here we restate and prove theorems from the text.
Theorem 2. A set of measurements M ⊂ M(H) is com-

patible if and only if the behavior {Tr(ρxMb|y); ρx ∈ S, My ∈
M} admits a distributed sampling realization with classical
communication for any set of states S ⊂ S(H) that spans
Herm(H). Moreover, for any distributedly sampled quantum
behavior P = {P(b|ρx, y) = Tr(�̃(ρx )M̃b|y)} ∈ Q, we have

RNCC(P) � RI (M̃) and RNCC(P) � RNSB(�̃), (C1)

where M̃ and �̃ are the uncharacterized measurements and
communication channel, respectively, used in the sampling of
P. The equality holds in the first case if S spans Herm(H)
and in the second case if, besides that, the measurements
{�̃†(M̃b|y)}b,y present the greatest generalized robustness of
incompatibility in its dimension.

Proof. Let S ∈ S (H) be an arbitrary set of states and ρx ∈
S . Assuming M to be jointly measurable, Alice can perform
the mother measurement N on ρx and send the obtained
outcome a to Bob, who applies f (·|y, a), one of the post-
processing distributions that accompanies N. The statistics
generated are described by

P(b|ρx, y) =
n∑

a=1

Tr(ρxNa) f (b|y, a) (C2)

for any b ∈ [o], ρx ∈ S, y ∈ [m], where the equality is guar-
anteed, independently of ρx, by the joint measurability hy-
pothesis,

Mb|y =
n∑

a=1

Na f (b|y, a), (C3)

for all y ∈ [m] and b ∈ [o]. It follows that RNCC(P) � RI (M).
On the other hand, suppose that there exists N and

{p(·|y, a)}y,a such that
∑

a Tr(Naρ)p(b|y, a) = Tr(ρxMb|y) for
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all (ρx, My) ∈ S × M. If S spans Herm(H), this implies the
relation between measurement operators given in Eq. (1).
Hence M is jointly measurable, admitting N as a mother
measurement and { f (·|y, a)}y,a as postprocessing maps. Thus,
RNCC(P) � RI (M) can be saturated for informationally com-
plete sets S .

Finally, we can write P(b|ρx, y) = Tr(�̃(ρx )M̃b|y) =
Tr(ρx�̃

†(M̃b|y)) to describe the effective communication
channel �̃ (which comprehends Alice’s preparation on ρx and
is a quantum-classical channel in the classical communication
case) and the effective measurements {M̃b|y} that generate the
behavior. For large enough η, there exists some noise channel
� such that (1 − η)� + η� is steering breaking. At this point,
{[(1 − η)� + η�]†(M̃b|y)} is compatible and its correspond-
ing statistics are CC realizable, by the first part of the theorem.
Therefore, RNSB(�̃) � RNCC(P), which is saturated if {ρx}x

spans Herm(H)—thus detecting the standard incompatibility
of the underlying measurements �̃(M̃)—and if those are the
most incompatible acting in H—thus implying that the noisy
channel would break the incompatibility of any other set of
measurements as well.

Theorem 3. For any measurement incompatibility witness
WMI = ({Fby}, γ ) there exists a set of states {ρx}x and a
quantum communication witness WQC = ({μbxy}, β ) in the
corresponding distributed sampling scenario that detects the
incompatibility of the same sets of measurements as WMI.

Proof. Let {ρx}x be a set of states that spans {Fby}, i.e.,
satisfies

Fby =
∑

x

λby
x ρx (C4)

for some real coefficients {λby
x }b,x,y. Such a set always exists,

since any Hermitian operator can be written as the difference
between two positive operators, which can be renormalized
to be trace 1. Applying this procedure to a basis of the space
of Hermitian operators acting in the underlying Hilbert space
provides a set of quantum states that span the set of Hermitian
operators.

Consider now the expression∑
b,x,y

λby
x Tr(ρxMb|y). (C5)

If the behavior {Tr(ρxMb|y)}b,x,y admits a CC sampling, there
exists a measurement N and response functions f (·|y, a) such
that we can rewrite (C5) as∑

b,x,y

λby
x Tr(ρxMb|y) =

∑
b,x,y

λby
x

∑
a

Tr(ρxNa) f (b|y, a) (C6a)

=
∑
b,y

Tr

(∑
x

λby
x ρx

[∑
a

Na f (b|y, a)

])
(C6b)

=
∑
b,y

Tr(Fby[M̃b|y]) (C6c)

for some set of measurements {M̃b|y := ∑
a Na f (b|y, a)}b,y,

which is compatible by definition. Since ({Fby}, γ ) is an
incompatibility witness, the expressions above are lower-
bounded by γ .

By definition, ({Fby}, γ ) detects some incompatible set of
measurements {M̂b|y}b,y and, hence, ({λbxy}, γ ) detects the
quantum communication in the distributed sampling of the be-
havior {Tr(ρxM̂b|y)}. Therefore, ({λx

by}, γ ) defines a quantum
communication witness, which detects the same incompatible
measurements (with the trusted states ρx) as ({Fby}, γ ) by
construction.

APPENDIX D: RELATION WITH STATE
DISCRIMINATION

We start by pointing out that if a set of states S = {ρx}x can
be perfectly discriminated, then Alice can identify the label x
and send it to Bob, who will again hold both inputs. Therefore,
perfect discrimination implies a CC realization in our DS
task. Consequently, a violation of a quantum communication
witness detects not only the quantum communication needed
for realizing the behavior and the incompatibility of the mea-
surements, but also that S is not perfectly discriminable.

It is shown in Theorem 3 that every incompatibility witness
corresponds to a quantum communication witness. As proven
in Refs. [21–23], the former can also be phrased in terms of a
discrimination game of suitable ensembles. Hence, we detail
here how to translate from one formulation to the other. Note
that the distributed sampling related to one set of states {ρx}
ensures as much incompatibility as the discrimination of a dif-
ferent set of states {σ y

b }, reflecting the fact that the translation
is nontrivial and the tasks are intrinsically different.

Recall that our witnesses are given by∑
b,x,y

μbxyTr(ρxMb|y) � Tr(B), (D1)

where the sum runs over b = 1, . . . , o, x = 1, . . . , |S|, and
y = 1, . . . , m. Applying the reasoning depicted in Theorem
1 of [21], we find that a violation of (D1) provides the
advantage the set M = {Mb|y}b,y presents over compatible
sets when discriminating states from the subensembles E1 =
({σ 1

b }, p1(b))b, . . . , Em = ({σ m
b }, pm(b))b given by

py(b)σ y
b = α

(∑
x

λbxyρx + νI

)
, (D2)

where ν = ∑
b,y maxx |λbxy| and α =

(
∑

bxy λbxy + omν/d )−1.
Returning to the example of the witness WQC in Appendix

B, measurements that provide its maximum violation can
optimally discriminate the ensembles given by

σ 1
1 =I − 0.0551(X + Y )

2
, p1(1) = 0.2711,

σ 1
2 =I + 0.0551(X − Y )

2
, p1(2) = 0.2289,

σ 2
1 =I

2
, p2(1) = 0.2711,

σ 2
2 =I + 0.1306Y

2
, p2(2) = 0.2289.
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APPENDIX E: DEPOLARIZING CHANNELS AND
RESTRICTED MEASUREMENT COMPATIBILITY

In the case where Alice and Bob share a perfect quantum
channel � : ρ �→ ρ, distributed sampling is a trivial task,
since Alice can send Bob her input state ρx. In Fig. 3, we
consider the case where both players exchange imperfect
quantum communication, represented by a depolarizing quan-
tum channel given by Dt : Herm(C2) → Herm(C2), ρ �→
tρ + (1 − t )I/2, for a fixed transmittance rate t = 1 − η ∈
[0, 1]. Thus, the parameter η marks the amount of white noise
acquired in the communication. Also, the depolarizing chan-
nel is self-adjoint, meaning that Tr[Dt (ρ)Mb] = Tr[ρDt (Mb)],
for any state ρ and measurement element Mb.

We now calculate the critical parameter t that makes Dt

replaceable by a classical channel, in the distributed sam-
pling context. This will be the threshold for our quantum
communication detection, and the white-noise robustness of
non-steering-breaking of the identity channel. Our main tool
to answer this question is a variation of SDP (B2) in which we
fix the noise to be completely random (white noise), M̃by =
Tr(Mb|y)I/d , where {Mb|y} is the underlying measurement
that yielded the behavior. At the obtained critical transmit-
tance rate t∗ = 1 − η∗, the transmitted information is classical
enough to camouflage any quantumness from the channel. The
quantity η∗ is then defined to be the behavior’s white-noise
robustness of non–CC realizability, denoted Rw

NCCn(P).
Let H = C2 and M be the set of qubit measurements

associated with the Pauli observables σx, σy, σz. For any
S = {ρx}x, we denote Dt (S ) ≡ {Dt (ρx )}x, and similarly for
Dt (M).

If S1 = {|0〉〈0|, |+〉〈+|}, where

|+〉 = |0〉 + |1〉√
2

, (E1)

then by SDP (B2) we see that the behavior generated
by depolarized states (Dt∗

1
(S1),M) is CC realizable at

the critical parameter t∗
1 = 0.9449. Similarly, for S2 =

{|0〉〈0|, |+〉〈+|, |r〉〈r|}, where

|r〉 = |0〉 + i|1〉√
2

(E2)

is an eigenstate of σy, we obtain t∗
2 = 0.8165 ≈ √

2/3. For
S3 = {|0〉〈0|, |+〉〈+|, |r〉〈r|, I/2} we achieve the critical pa-
rameter t∗

3 = 0.5774 ≈ 1/
√

3. We note that the set S3 spans
the qubit Hermitian operators space, and the critical value
t∗
3 = 1/

√
3 can also be obtained analytically [29].

From the point of view of measurement incompatibility of
a restricted set of states, defined in the text, we can interpret
these t∗ values as the critical parameters for which set M
becomes compatible with each of the sets S1, S2, and S3.
Since S3 spans Herm(C2), we have that Dt∗

3
(M) is compatible

in the standard sense. By Theorem 2, this in turn implies that
the behavior generated by (Dt∗

3
(S ),M) is CC realizable for

any set of states S , hence Dt∗
3

does not offer any advantage
over classical channels.

The general qudit depolarizing channel Dt is known to be
incompatibility-breaking for qudit projective measurements
if and only if t � tproj

d := 1
d−1 (−1 + ∑d

k=1
1
k ) [8,14–16,30].

Thus the qubit critical transmittance is 1/2. This implies
that if t � tproj

d , the set of states ρx received by Alice lies in
Herm(Cd ), and Bob performs projective measurements, then
no quantum communication can be certified. On the other
hand, if t > tproj

d and the set of states ρx received by Alice
spans Herm(Cd ), then any incompatible set of projective
measurements in Herm(Cd ) implemented by Bob certifies
quantum communication.

For general POVMs, by noting that the local hidden vari-
able model in Ref. [30] can be transformed into a local
hidden state model (“steering model”) and using the con-
nection between joint measurability established in Refs. [15]
and [16], we can show that the qudit depolarizing chan-
nel Dt is incompatibility-breaking for all measurements if
t � t all

d := (3d−1)(d−1)d−1

(d−1)dd . Hence when t � t all
d and the set of

states {ρx}x lies in Herm(Cd), all behaviors admit a CC
realization, regardless of the measurements performed by
Bob.

For the case where the number of measurements performed
by Bob is a finite n ∈ N, it follows from Theorem 2 that
a channel can be used to certify QC if and only if it is
n-incompatibility-breaking [14], i.e., it breaks the incom-
patibility of any n measurements. For this situation, there
exists a systematic numerical method with a sequence of
algorithms that converge to the exact critical value for the
depolarizing channel to be n-incompatibility-breaking [31].
This numerical approach provides upper and lower bounds for
the n-incompatibility-breaking critical value of Dt in finitely
many steps.

We also remark that Dt is entanglement-breaking if and
only if t � 1

d+1 [20]. Also, a channel is entanglement-
breaking if and only if it admits a measure-and-prepare re-
alization, that is, it can be described as ρ �→ ∑

b Tr(ρNb)σb,
for some measurement N and states {σb}b. This description
provides a clear recipe for a CC realization of distributed
sampling that simulates these channels.
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