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Physically, quantum gates (unitary gates) for quantum computation are implemented by controlling the
Hamiltonian dynamics of quantum systems. When full descriptions of the Hamiltonians are given, the set of
implementable quantum gates is easily characterized by quantum control theory. In many real systems, however,
the Hamiltonians may include unknown parameters due to the difficulty of performing precise measurements
or instability of the system. In this paper, we consider the situation that some parameters of the Hamiltonian
are unknown, but we still want to perform a robust control of the Hamiltonian dynamics to implement a
quantum gate irrespectively to the unknown parameters. The existence of the robust control was previously
shown for single-qubit systems, and a constructive method was developed for two-qubit systems if a full
control of each qubit is available. We analytically investigate the robust controllability of two-qubit systems,
and apply Lie-algebraic approaches to handle the cases where only one of the two qubits is controllable. We
also numerically analyze the robust controllability of the two-qubit systems where the analytical approach is
not necessarily applicable and investigate the relationship between the robust controllability of systems with a
discrete and continuous unknown parameter.
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I. INTRODUCTION

To implement the quantum circuit model of quantum com-
putation [1] in physical systems, each quantum gate (unitary
gate) is generated by Hamiltonian dynamics of the physical
systems such as Nuclear Magnetic Resonance (NMR) [2,3],
nitrogen-vacancy (NV) center [4–6], and superconducting
qubits [7–9]. However, the Hamiltonians of available phys-
ical systems may not be the exact generators of the unitary
gates. We can still implement unitary gates by using time-
dependent Hamiltonians, if some parts of the Hamiltonian
can be changed in time. For a given Hamiltonian and its
time-controllable parts, a set of implementable gates can
be obtained by quantum control theory [10–12]. Consider a
simple example in which a system Hamiltonian is given by
H̃ (t̃ ) = u(t̃ )H̃0 + v(t̃ )H̃1, where H̃0 and H̃1 are fixed time-
independent Hamiltonians and u(t̃ ) and v(t̃ ) are functions
representing the time-dependent part that we can control in
time. The functions of u(t̃ ) and v(t̃ ) are referred to as control
pulses in quantum control theory and we will assume that they
can take both positive and negative values. The corresponding
unitary evolution operator of the Hamiltonian dynamics of
H̃ (t̃ ) is given by U (t̃ ) = T̂ e− i

h̄

∫
dt̃H̃ (t̃ ), where T̂ represents the

time-ordering operator.
There are two key formulas for deriving the set of imple-

mentable unitary gates [11,13,14], i.e., for any bounded oper-
ators A, B and t ∈ R+. (i) Commutator expansion formula:

U[A,B](t ) := e−A
√

t e−B
√

t eA
√

t eB
√

t

= 1 + [A, B]t + O(t3/2),
(1)

(ii) Trotter expansion formula:

UA,B(t ) := eAt eBt = 1 + (A + B)t + O(t2). (2)

We define a dimensionless quantity of the system Hamiltonian
H̃ (t̃ ) by H (t ) = H̃ (t̃ )/(h̄ωc) where h̄ωc denotes a charac-
teristic energy scale of H̃ (t̃ ) and t = ωct̃ is a dimension-
less parameter. For H (t ) = u(t )H0 + v(t )H1, the commuta-
tor expansion guarantees that the Hamiltonian dynamics of
1
i [iH0, iH1] is simulable by appropriately setting the con-
trol pulses u(t ) and v(t ) as limN→∞[U[A,B](t/N )]N = e[A,B]t .
Here, we implicitly use the condition that the values of u(t )
and v(t ) can be positive and negative. This formula further
implies that dynamics of multiple commutators of iH0 and
iH1 such as 1

i [iH0, [iH0, iH1]] is also simulable as e[B,A] =
e−[A,B], and thus the negative times can be simulated. The
Trotter expansion formula verifies that the dynamics of all
linear combinations of these multiple commutators of iH0

and iH1 are simulable due to limN→∞[UA,B(t/N )]N = e(A+B)t .
Therefore, a set of simulable Hamiltonians has a Lie-algebraic
structure, and any unitary gates are implementable by appro-
priately setting u(t ) and v(t ) if the multiple commutators of
the Hamiltonians span all Hermitian operators on the system.
We call such systems to be fully controllable.

In fact, one of the control pulses is not necessary for
achieving the full control [10–12]. Consider that the total
Hamiltonian is given by H (t ) = H0 + v(t )H1, where H0 is
called a drift Hamiltonian constantly applied on the system
and we cannot change any part of H0 in time. It is still
possible to implement the same set of unitary gates generated
by H (t ) = u(t )H0 + v(t )H1 if H0 is a finite-dimensional op-
erator, since we can effectively control the contribution of H0

by setting v(t ) = 0 and simulating the action of its inverse
−H0 within an arbitrary error ε by choosing the evolution
time T ′ = Tr − t , where Tr is the recurrence time of H0, i.e.,
‖I − e−iH0Tr ‖ < ε. Implementing H1 alone is then a simple
consequence of the Trotter expansion formula.
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However, if there are unknown parameters in a drift Hamil-
tonian, which happens in real systems [3,6,9], the recurrence
time depends on the parameter, and the inverse unitary trick
cannot be used. Nevertheless, it has been shown that there
exist robustly controllable single-qubit systems with unknown
parameters in compact and continuous sets [15–20], i.e., we
can implement any single-qubit unitary gate irrespective to
the unknown parameter by a technique called the polynomial
approximation developed by Refs. [15–18] or a systematic
search of control pulses for canceling the unknown parameter
[19,20].

Two-qubit unitary gates are necessary for constructing
global unitary operations [1,21] required for quantum comput-
ers to outperform classical counterparts. The robust controlla-
bility of two-qubit systems has been explored for the cases
where all single-qubit controls are achieved and a general and
constructive control method has been proposed [22].

In this paper, we take a more universal method by em-
ploying an Lie-algebraic approach to investigate the robust
controllability of two-qubit Hamiltonian dynamics even appli-
cable for the cases where the control pulse is available on the
Hamiltonian of only one of the two-qubits. We also consider
the robust controllability of the two-qubit systems where the
values of the unknown parameters are given as finite sets,
or a discretized subset of a given continuous set. The robust
controllability of the systems with unknown parameters given
in finite (discretized) sets has been well studied [18,23,24], but
the differences between continuous and discretized cases have
not been clarified, i.e., whether the robust controllability of the
systems with unknown parameters in all discretized subsets
of a given continuous set implies the robust controllability of
the continuous one. We investigate this problem by combining
analytical and numerical approaches.

This paper is organized as follows. We briefly review
the proofs of the robust controllability of given single-qubit
systems in Sec. II and show the robust controllability of
two-qubit systems in Sec. III. We also give systems whose
robust controllability is unclear by our analytical approach in
this section. In Sec. IV, we introduce another technique, dis-
cretization, to numerically investigate their robust controlla-
bility by using the QuTip control package [25,26] and provide
an example which does not seem robust controllable in Sec. V.
We also discuss the relation between robust controllability
for unknown parameters in continuous and discretized sets in
Sec. V. Finally, we present the summary and discussions in
Sec. VI.

II. REVIEW OF THE ROBUST CONTROL FOR
SINGLE-QUBIT SYSTEMS

The total Hamiltonian of the system is given by H (t ) =
Hd (ω) + v(t )Hc, where the drift Hamiltonian Hd (ω) contains
an unknown parameter ω and Hc is the part of the Hamiltonian
called the control Hamiltonian associated with the control
pulse v(t ). We set that the characteristic energy scale h̄ωc for
defining the dimensionless Hamiltonian H (t ) is given in terms
of the energy scale of the control Hamiltonian H̃c in this paper.
Note that parameters ω and t in H (t ) are also dimensionless
quantities. We allow v(t ) to consist of arbitrary piecewise
constant elements and the bang-bang style δ-function pulses

[27–29]. It is important to separate the drift Hamiltonian from
the controllable part by the control pulse for the case with
unknown parameters. We also assume ω is in [ω0, ω1] ⊂ R
and denote the set of Hamiltonians which can be simulated by
H (t ) as LH (t ).

The first example [15,16,19] of the robust control of the
single-qubit system is presented in the system whose Hamil-
tonian is Hd (ω) = ωX and Hc = Z , where X,Y , and Z are
Pauli operators. Note that the characteristic energy scale h̄ωc

for the dimensionless Hamiltonian H (t ) is defined in terms
of the control Hamiltonian, namely, H̃c = h̄ωcZ in this case.
By applying δ-function pulses, we can effectively apply the
unitary gate Z and thereby invert Hd (ω), i.e., −Hd (ω) ∈
LH (t ) because of ZXZ = −X and αHd (ω) + βHc ∈ LH (t )

by the Trotter expansion formula. According to the com-
mutator expansion formula, ωY = [iHd (ω), iHc]/(2i) is in
LH (t ) and ω2Hc = [iωY, iHd (ω)]/(2i) ∈ LH (t ). By induction,
the dynamics of ω2n+1X, ω2n+1Y are implementable for n =
0, 1, 2, . . . . Taking linear combinations with weighted coef-
ficients and using the Trotter expansion formula, we can see
ω f1(ω2)X + ω f2(ω2)Y ∈ LH (t ) for any polynomial functions
fi’s. fi(ω) can be approximated so that ω f1(ω2) = θ1 and
ω f2(ω2) = θ2 within an arbitrary small error for any ω ∈
[ω0, ω1] and constant θ1, θ2 ∈ R if ω0ω1 > 0 because ω fi(ω2)
is odd. Having any rotation around the X and Y axes at hand,
we can robustly perform any quantum gate on this system
when ω0ω1 > 0, and this technique is called the polynomial
approximation [15–17].

The second example is Hd (ω) = X + ωY and Hc = Z .
This has the same controllability of u(t )Hd (ω) + v(t )Hc since
−Hd (ω) = ZHd (ω)Z . By a similar procedure of the first
example, we can see

f1(ω2)Hd (ω) + f2(ω2)Hc + f3(ω2)H2(ω)

= [ f1(ω2) − ω f3(ω2)]X

+ [ f3(ω2) + ω f1(ω2)]Y + f2(ω2)Z,

where H2(ω) := Y − ωX is simulable [18] for arbitrary poly-
nomial functions fi(ω2). Assume there are robustly control-
lable functions f1, f3 satisfying f1(ω2) − ω f3(ω2) = θ1 and
f3(ω2) + ω f1(ω2) = θ2 for any θ1, θ2 ∈ R. Then,

f1(ω2) = θ1 + ωθ2

1 + ω2
, f3(ω2) = θ2 − ωθ1

1 + ω2
(3)

are required, and if ω0ω1 > 0, either ω =
√

ω2 or −ω =
√

ω2

is satisfied for all ω ∈ [ω0, ω1]; thus the right-hand sides
of Eqs. (3) are described by polynomials of ω2 within an
arbitrary accuracy, and this system is robustly controllable as
long as ω0ω1 > 0.

III. ROBUSTLY CONTROLLABILITY OF
TWO-QUBIT SYSTEMS

We show that there exist robustly controllable two-qubit
systems for a compact and continuous unknown parameter
with the polynomial approximation in Sec. III A. In Sec. III B,
we will give systems for which we cannot show the robust
controllability by the polynomial approximation. Whether
these systems are robustly controllable is an open problem.
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A. Proofs of robust controllability by the
polynomial approximation

We show four robustly controllable two-qubit systems in
this subsection. The total Hamiltonian of each system has
either one or two control Hamiltonians, e.g., H (t ) = Hd (ω) +
v(t )Hc or H (t ) = Hd (ω) + u(t )Hc1 + v(t )Hc2 . The first two
systems (systems A and B) have one control Hamiltonian, and
the unknown parameter ω of systems A and B is on a local
Hamiltonian of one of the two qubits and on an interaction
Hamiltonian between two qubits, respectively. The other two
systems (systems C and D) have two control Hamiltonians,
and their unknown parameter ω is the coupling strength of
the two-qubit Heisenberg interaction. Also, system D has a
second unknown parameter ν corresponding to an additional
local field.

1. System A: Hd (ω) = ωX ⊗ I + X ⊗ X + Y ⊗ Y + Z ⊗ Z and
Hc = Z ⊗ I (one unknown parameter ω on a local Hamiltonian

and one control pulse)

This system can simulate the Hamiltonians dynamics of the
following Hamiltonians:

Hd (ω) and ± Hc, (4)

−Hd (ω) + 2Z ⊗ Z and ± Z ⊗ Z, (5)

−Hd (ω) and ± ωX ⊗ I, (6)

±(X ⊗ X+ Y ⊗ Y + Z ⊗ Z ). (7)

The Hamiltonians in (4) are simulable by the δ-function tech-
nique for v(t ). From the observation of (Z ⊗ I )[Hd (ω)](Z ⊗
I ) = −Hd (ω) + 2Z ⊗ Z , we obtain Hamiltonians in (5) by
the Trotter formula and the finding recurrence time of Z ⊗ Z .
Hence, the Hamiltonians in (6) are simulable by the Trotter ex-
pansion formula and the commutator expansion formula since
ωX ⊗ I ∝ [Z ⊗ Z, [Hd (ω), Z ⊗ Z]], and finally Hamiltonians
given by (7) are obtained by the Trotter expansion formula.

We showed in Sec. II that adjusting ±ωX and ±Z is
sufficient to robustly control single-qubit dynamics for ω ∈
[ω0, ω1] if ω0ω1 > 0 is satisfied. Full control for one of
the qubits and the two-qubit Heisenberg interaction achieve
the full controllability of the two-qubit system; thus we can
implement any unitary gate in SU(4) on the system as long as
ω0ω1 > 0.

This procedure also works for the system with Hd (ω) =
X ⊗ I + ωY ⊗ I + X ⊗ X + Y ⊗ Y + Z ⊗ Z and Hc = Z ⊗
I . That is, we can obtain the same simulable Hamiltonians
given by (4)–(7) except the right Hamiltonian of (6), i.e.,
ωX ⊗ I → X ⊗ I + ωY ⊗ I . Adjusting X ⊗ I + ωY ⊗ I and
Z ⊗ I is sufficient to robustly control single-qubit dynamics,
and therefore this system is also robustly controllable.

2. System B: Hd (ω) = X ⊗ I + I ⊗ X + ω(X ⊗ X + Y ⊗ Y ) and
Hc = Z ⊗ I (one unknown parameter ω on an interaction

Hamiltonian and one control pulse)

The simulable Hamiltonians of this system are

Hd (ω) and ± Z ⊗ I, (8)

−Hd (ω) + 2I ⊗ X and ± I ⊗ X, (9)

−Hd (ω) and ± ωY ⊗ Y. (10)

The procedure of obtaining Hamiltonians in (8)–(10)
are the same as in (4)–(6) due to ωY ⊗ Y ∝ [I ⊗
X, [I ⊗ X, Hd (ω)]]. By the commutator expansion for-
mula, ω2I ⊗ Y ∝ [I ⊗ X, [Hd (ω), [Z ⊗ I, Hd (ω)]]], ω2I ⊗
Z ∝ [I ⊗ X, ω2I ⊗ Y ], and ω4I ⊗ X ∝ [ω2I ⊗ Y, ω2I ⊗ Z]
are simulable, and thus ω4n+2I ⊗ Y ∝ [ω4I ⊗ X, ω4n−2I ⊗
Z] and ω4n+2I ⊗ Z ∝ [ω4I ⊗ X, ω4n−2I ⊗ Y ] are inductively
simulable for any n = 1, 2, . . . , and I ⊗ Y is robustly sim-
ulable by the polynomial approximation if [ω0, ω1] does
not include zero. Now we obtain ωX ⊗ X ∝ [Z ⊗ I, [I ⊗
Z, ωY ⊗ Y ]] and thus X ⊗ I + I ⊗ X by the Trotter expansion
formula. X ⊗ X and Y ⊗ Y are robustly simulable via multiple
commutators of ω2I ⊗ Z if ω0ω1 > 0. System B is robustly
controllable because controlling X ⊗ I + I ⊗ X, I ⊗ Y, X ⊗
X , and Y ⊗ Y is sufficient to implement any unitary gates in
SU(4).

3. System C: Hd (ω) = ω(X ⊗ X + Y ⊗ Y + Z ⊗ Z), Hc1 = X ⊗ I
and Hc2 = Z ⊗ I (one unknown parameter ω on an interaction

Hamiltonian and two control pulses)

The simulable Hamiltonians of this system are

Hd (ω) and ± X ⊗ I and ± Z ⊗ I, (11)

−Hd (ω) + 2ωX ⊗ X and − Hd (ω) + 2ωY ⊗ Y

and −Hd (ω) + 2ωZ ⊗ Z,
(12)

±ωX ⊗ X and ± ωY ⊗ Y and ± ωZ ⊗ Z. (13)

Hamiltonians in (12) are obtained by applying strong lo-
cal fields, i.e., σiHd (ω)σ †

i for i = 1, 2, 3, where σ1 = X ⊗
I, σ2 = (Z ⊗ I )(X ⊗ I ), and σ3 = Z ⊗ I , respectively. By
the Trotter expansion formula and the δ-function technique,
we can simulate Hamiltonians in (13) and ±ω2n+1X ⊗
X, ±ω2n+1Y ⊗ Y and ±ω2n+1X ⊗ X for n = 0, 1, 2, . . .

since ω2n+1X ⊗ X ∝ [Z ⊗ I, [ωX ⊗ X, [ωX ⊗ X, [ω2n−1X ⊗
X, Z ⊗ I]]]] holds and so on. Thus, we obtain X ⊗ X, Y ⊗ Y ,
and Z ⊗ Z dynamics by the polynomial approximation if
ω ∈ [ω0, ω1] and ω0ω1 > 0, and the robust controllability of
system C is shown by using the full controllability of each
single qubit and the Heisenberg interaction.

4. System D: Hd (ν, ω) = νX ⊗ I + ω(X ⊗ X + Y ⊗ Y + Z ⊗ Z),
Hc1 = X ⊗ I and Hc2 = Z ⊗ I (two unknown parameters ν, ω and

two control pulses)

The simulable Hamiltonians of system D are almost same
as the Hamiltonians given by (11)–(13) except ωX ⊗ X →
νX ⊗ I + ωX ⊗ X . We can robustly simulate Y ⊗ Y and
Z ⊗ Z similarly to system C, and ±νX ⊗ I ∝ [Y ⊗ Y, [νX ⊗
I + ωX ⊗ X,Y ⊗ Y ]] are obtained, i.e., canceling ωX ⊗ I is
possible. Thus, system D is robustly controllable for ω ∈
[ω0, ω1] (ω0ω1 > 0) and any ν ∈ R in principle.

In systems A to D, we introduced three techniques to
show robust controllability, obtaining a set of Hamiltonians
whose inverse dynamics are simulable, showing simulable
Hamiltonians generated by the set via Lie-algebraic approach
and the polynomial approximation. However, there are the
cases where we cannot obtain a large enough set of invertible
Hamiltonians to algebraically show robust controllability, as
presented in the next subsection.
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B. Systems whose robust controllability is unclear

We show examples of the systems whose robust control-
lability is unclear via the polynomial approximation in this
subsection.

1. System E: Hd (ω) = X ⊗ I + ω(X ⊗ X + Y ⊗ Y + Z ⊗ Z) and
Hc = Z ⊗ I (one unknown parameter ω on an interaction

Hamiltonian and one control pulse)

Simulable Hamiltonians are the following ones obtained by
the same procedure of system A:

Hd (ω) and ± Z ⊗ I, (14)

−Hd (ω) + 2ωZ ⊗ Z and ωZ ⊗ Z. (15)

However, the simulability of −ωZ ⊗ Z is unclear since the
recurrence time of ωZ ⊗ Z depends on the unknown param-
eter ω. Also strong fields do not work because ωZ ⊗ Z is
commuting with Hc. Hence, we cannot apply the procedure
for obtaining (5) and (6), and the Hamiltonians (14) and
(15) are not enough to prove the robust controllability of
system E. Whether this system is robustly controllable is
unclear from the polynomial approximation, as there may be
less direct ways involving nonalgebraic evolutions leading to
robust elements.

This kind of problem happens even in a single-qubit system
such as Hd (ω) = X + ωZ and Hc = Z . By applying strong
fields, we can simulate Z (−Hd (ω))Z = −Hd (ω) + 2ωZ and
ωZ by the Trotter expansion formula. However, simulability
of −ωZ is unclear because ωZ and Hc commute, and thus the
robust controllability of this system is also unclear with our
Lie-algebraic approach. Note that, however, it does not neces-
sarily imply that these systems are not robustly controllable.

In the following section, we will numerically investigate
the robust controllability by using a method called discretiza-
tion [18,23,24] for a given region of the unknown ω to provide
a robust control pulse and investigate the robust controllability
of system E for the region. In addition, system E is a good
candidate to see the difference between the robust controlla-
bility for continuous and discretized unknown parameters as
mentioned in Sec. V B.

IV. DISCRETIZATION OF THE UNKNOWN PARAMETER

In this section, we introduce another method to seek robust
controllability, discretization. The idea is to make sure that
the controls are robust on equally spaced points in the interval
and hope that the robust controllability is kept in other points
between them. This may seem to be a natural strategy, but with
increasing number of points the control time also increases,
and thus it is not clear if this strategy works toward the
continuous limit.

Specifically, consider ω in a finite set 
N =
{ω(1), ω(2), . . . , ω(N )} ⊂ [ω0, ω1]. In this case, we only need to
guarantee the robustness for N different configurations of the
systems whose Hamiltonians are given by Hd (ω(n) ) + v(t )Hc

for n = 1, 2, . . . , N . Our goal is to implement any target
unitary gate U on each configuration of the systems in
the same time. The robust controllability for ω ∈ 
N is
guaranteed by quantum control theory; i.e., the system

can be described by a larger dimensional system with a
fully known system by defining another total Hamiltonian
H̄ (t ) = H̄d (
N ) + v(t )H̄c, where

H̄d (
N ) = ⊕N
n=1Hd (ω(n) ),

=

⎡
⎢⎢⎢⎣

Hd (ω(1) )
Hd (ω(2) )

. . .
Hd (ω(N ) )

⎤
⎥⎥⎥⎦,

H̄c = ⊕N
n=1Hc,

are given in block-diagonal forms. The recurrence time of
the extended fully known system H̄d (
N ) can be derived in
principle, and thus this system has the same controllability
of u(t )H̄d (
N ) + v(t )H̄c. Now, the problem to be solved
becomes the number of linearly independent Hamiltonians
generated by the multiple commutators between H̄d (
N ) and
H̄c. The maximal number is N (d2 − 1) since H̄ (t ) are in
the block-diagonal form, where d is the dimension of the
individual systems. To achieve the maximal number, there is a
useful lemma for controllability of such a block-diagonalized
Hamiltonian system [18,23,24]: The system with Hω(t ) :=
Hd (ω) + v(t )Hc is robustly controllable for ω ∈ 
N within an
arbitrary small error if and only if the following are true:

(1) The system with Hamiltonian Hω(t ) is fully control-
lable for each ω ∈ 
N .

(2) All Hamiltonians Hω∈
N (t ) are not mutually unitarily
equivalent.

Note that an operator A is unitarily equivalent to another
operator B via a unitary operator X if the relation A = XBX †

holds.
The first condition guarantees to implement an arbitrary

quantum gate on the individual systems. The second condition
is required to perform quantum gates on each of the systems
independently. Note that the first condition is not necessary
if full controllability is not required and satisfying the second
condition implies not only robust but also ensemble control-
lability; i.e., we can implement Ū = ⊕N

i=1Ui for any Ui’s in
SU(d ). A special case of ensemble control where all Ui for all
i are identical to a given target gate U , namely Ui = U for all
i corresponds to robust control.

From the second condition, we can see the reason why
ω0ω1 > 0 is required in the case of Hd (ω) = ωX and Hc = Z .
It is trivial for ω = 0, and thus we assume that ω0ω1 < 0, i.e.,
ω0 < 0 < ω1, then there exists ξ > 0 such that ±ξ ∈ [ω0, ω1].
Hξ (t ) is unitarily equivalent to H−ξ (t ) via Z and the second
condition is violated.

Discretizing the unknown parameter is a useful technique
for numerically searching an appropriate v(t ), as the search
can be reduced for finding a robust control pulse v(t ) to
implement Ū = ⊕N

i=1U by the fully known block-diagonal
Hamiltonian H̄ (t ) for a target gate U . The gradient ascent
pulse engineering (GRAPE) algorithm [30] is a well-known
method to solve this kind of problem, although there are many
other methods to search control pulses [31–37]. We use the
QuTip control package [25,26] to find the robust control pulse
v(t ) by the discretization approach in Sec. V.

By using numerical searches with the discretization, we
can estimate the control time Tε(N ) to achieve ε error for all N
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FIG. 1. The error spectrum ε(ω) for dimensionless ω ∈ [1, 2]
to implement a controlled-NOT (CNOT) gate by the dynamics of
H (t ) = Hd (ω) + v(t )Hc for Hd (ω) = ωX ⊗ I + X ⊗ X + Y ⊗ Y +
Z ⊗ Z and Hc = Z ⊗ I (system A), where v(t ) is numerically ob-
tained by the discretization approach for 
11 = {1.0, 1.1, . . . , 2.0}.
The black line represents errors (a vertical axis) of the dynamics with
ω ∈ [1, 2] (a horizontal axis) from the ideal CNOT gate evaluated by
Eq. (17) where d = 4 and T = 32. The black dots represent errors
for the points in 
11.

points. If the scaling of Tε(N ) is less than O(N ), then we can
see the worst error between N points becomes smaller with
increasing N . To see this, we use the inequality [38]

‖Uωa (t ) − Uωb (t )‖ � t‖Hd (ωa) − Hd (ωb)‖, (16)

where Uω(t ) = T̂ e−i
∫ t

0 dτHω (τ ). For any ωa ∈ [ω0, ω1], there
exists ωb ∈ 
N such that ‖Hd (ωa) − Hd (ωb)‖ ∝ |ωa − ωb| �
1/2(N − 1), and ‖Hd (ωa) − Hd (ωb)‖Tε(N ) decreases with
N if Tε(N ) < O(N ). Thus, the robust controllability for a
continuous unknown parameter can be clear with respect to
a given allowed error by estimating Tε(N ). Although the re-
search in Refs. [19,20] show methods to obtain robust control
pulses for several single-qubit systems, two-qubit and more
general single-qubit cases are still unclear. Thus, we use the
discretizing approach to see the robust contollability.

V. NUMERICAL RESULTS OF ROBUST CONTROL

The analytical result provides the existence of a control
pulse v(t ) approximating any unitary gate in SU(4) in arbi-
trary accuracy for a compact and positive (or negative) con-
tinuous parameters, but it does not provide the construction of
v(t ). We investigate whether the pulse sequences numerically
obtained by the discretization approach can be also applicable
to achieve the robust control for the continuous range of
the corresponding unknown parameter [31–37] and whether
the applicability depends on the types of Hamiltonians whose
robust controllability for a continuous unknown parameter is
analytically shown (system A) or not (system E).

A. Numerically searching robust control pulses by discretization

We show the discretization trick helps to find the ro-
bust control pulse for a continuous unknown parameter ω ∈

FIG. 2. The control pulse v(t ) for the robust control realizing the
error spectrum shown in Fig. 1. The total time of control T is 32.
We divide the total time by 128, and set v(t ) be a constant in t ∈
[(n − 1)T/128, nT/128] for any n = 1, 2, . . . , 128 where t and T
are dimensionless parameters.

[ω0, ω1] by an example of system A, where the robust con-
trollability is analytically shown. For the numerical search
of v(t ), we first choose 
11 = {1.0, 1.1, . . . , 2.0} ⊂ [1, 2],
i.e., ω0 = 1 and ω1 = 2, and a controlled-NOT (CNOT) gate as
the target unitary gate. We obtain v(t ) by using the QuTip
control package [25,26]. The accuracy of robust control is
evaluated by the error ε(ω) of the dynamics Uω(T ) generated
by Hd (ω) + v(t )Hc with a control time T against the target
gate operation Utarg given by

ε(ω) = 1 − (1/d )Tr(U †
targUω(T )), (17)

where d is the dimension of the system and d = 4 is selected
in the numerical analysis.

Figure 1 represents the error spectrum ε(ω) over ω ∈ [1, 2]
(the black line), and the black dots represents the errors ε(ω)
for the discrete points in 
11, where the control time is T =
32. The error spectrum is kept around O(10−4) and the robust
control is achieved in ω ∈ [1, 2] despite the fact that v(t ) is
obtained by the algorithm guaranteeing the accuracy only for
ω ∈ 
11. Figure 2 represents the control pulse v(t ) generating
the robust control of Fig. 1. Note that the δ-function-like
large amplitude control pulses are necessary to show the
robust controllability for the continuous unknown parameter
analytically by the method presented in Secs. II and III, but
such pulses do not appear in Fig. 2.

B. Robust controllability of system E

We investigate the robust controllability of system E by
numerical approaches where the robust controllability is un-
clear within our analytical approach. System E with Hω(t ) is
fully controllable for each ω ∈ [1, 2] and all Hω(t ) and Hω′ (t )
with ω �= ω′ ∈ [1, 2] are not mutually unitarily equivalent;
thus, there exists a robust control pulse v(t ) for ω ∈ 
11 in
an arbitrary small error according to the lemma presented
in the previous section. In this sense, investigating the ro-
bust controllability of system E helps us to understand the
relations between the robust controllability for continuous
and discretized unknown parameters. To search the robust
control pulse for a continuous unknown parameter ω ∈ [1, 2],
we choose 
11 := {1.0, 1.1, . . . , 2.0} ⊂ [1, 2], the CNOT gate
as the target gate, and T = 32. We obtain Fig. 3, whose
black dots represents the errors of the dynamics generated by
Hd (ω) + v(t )Hc with a duration time T = 32 for the discrete
points in 
11, and the black line represents ε(ω) over ω ∈
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FIG. 3. The error spectrum ε(ω) for dimensionless ω ∈ [1, 2] to
implement a CNOT gate by the dynamics of H (t ) = Hd (ω) + v(t )Hc

for Hd (ω) = X ⊗ I + ω(X ⊗ X + Y ⊗ Y + Z ⊗ Z ) and Hc = Z ⊗ I
(system E), where v(t ) is numerically obtained by the discretization
approach for 
11 = {1.0, 1.1, . . . , 2.0}. The black line represents
errors (a vertical axis) of the dynamics with ω ∈ [1, 2] (a horizontal
axis) from the ideal CNOT gate evaluated by Eq. (17) where d = 4
and T = 32. The black dots represent errors for the points in 
11.

[1, 2] by using the same control pulse v(t ) for the cases of both
discretized and continuous unknown parameters. The error
spectrum is kept around O(10−4) over ω ∈ [1, 2].

The question now is whether we can obtain the robust
control pulse for an arbitrary small allowed error. To see this,
we numerically estimate the minimum control time Tε(N ) for
given N and ε, where N is the number of discretization such
as 
N := {1 + n

N−1 | n = 0, 1, . . . , N − 1} ∈ [1, 2], and ε is
an allowed error for each configuration. We set the target
gate to the CNOT gate and investigate the time in the cases
of allowed errors 10−2, 10−3, 10−4, and 10−5 for system E
with discretizing 
3,
5, . . . , where we search the time in
only integers as control time and check if the error of each

configuration ω ∈ 
N is under a given allowed error which
is estimated by Eq. (17). We also investigate system A to
compare the results of system E.

The results of systems A and E are shown in Figs. 4(a)
and 4(b), respectively. They represent the minimum control
time Tε(N ) (a vertical axis) to let all the N (a horizontal axis)
points in 
N be under a given allowed error (a color of lines),
where 
1 := {1.0}. The black dots show the minimum control
time Tε(N ) achieving the CNOT gate within each of allowed
errors (10−2, 10−3, 10−4, 10−5) for all ω ∈ 
N . We can find a
robust control pulse to be under a given allowed error for all
ω ∈ [1, 2] on points with a red square.

System E looks robustly controllable since we can find the
robust control pulse for ω ∈ [1, 2] under 10−5 error, which is
the same level as system A, although this result does not mean
the existence of the control pulses achieving an arbitrary small
error. The numerical search for the robust control pulse for
system E is more difficult than that for system A since the
large N is required to obtain the pulses for a given allowed
error to implement the CNOT gate. This tendency also appears
in the cases of implementing another target unitary gate or
the single-qubit systems. For example, this tendency appears
when we compare the system with Hd (ω) = X + ωY and
the system with Hc = Z with Hd (ω) = X + ωZ and Hc = Z ,
where the former system is shown to be robustly controllable
but the latter is not.

VI. SUMMARY AND DISCUSSIONS

We performed a Lie-algebraic analysis on robust control-
lability for two-qubit systems and showed that there exist
robustly controllable two-qubit systems by constructing ex-
amples (systems A, B, C, and D). In the examples we have
shown, the control pulse v(t ) of the control Hamiltonians is
applied only on one of the two qubits and the robust control is
achieved for an unknown parameter in a compact and positive
(or negative) continuous set. We also numerically analyzed
the robust controllability of systems A and found the robust
control pulses by using the QuTip control package. Then, we
numerically investigated a system whose robust controllabil-
ity is analytically unclear (system E), and we obtained a robust

FIG. 4. (a) System A. (b) System E. The minimum control time Tε (N ) (a vertical axis) to let all the N (a horizontal axis) points in 
N be
under a given allowed error (line style) where 
1 := {1.0} and we search the time in only integers. The black dots show the minimum control
time Tε (N ) achieving the CNOT gate within each of allowed errors (10−2, 10−3, 10−4, 10−5) for all ω ∈ 
N , and we can find a robust control
pulse to be under a given allowed error for all ω ∈ [1, 2] on points with a gray square. Tε (N ) is a dimensionless quantity.
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control pulse achieving around 10−4 error for all ω ∈ [1, 2] as
shown in Fig. 3. To study the robust controllability of system E
within an arbitrarily small error, we investigate the minimum
control time for a given N-discretized ω ∈ 
N by the same
numerical approach. As a result, the robust controllability of
under 10−5 error for all ω ∈ [1, 2] on systems A and E are
numerically shown in Fig. 4. Thus, we conjecture that system
E is also robustly controllable for continuous unknown ω, and
any systems which satisfy the conditions (1) and (2) presented
in Sec. IV [39]. It is worth noting that the difficulty of finding
the robust control pulses via the QuTip control package may

be related with the invertibility of a drift Hamiltonian, as we
observed this tendency in our numerical results.

ACKNOWLEDGMENTS

We thank Alexander Pitchford for assisting our numerical
calculations. This work is supported by ALPS, JSPS KAK-
ENHI (Grants No. 15H01677, No. 16H01050, No. 17H01694,
No. 18H04286, and No. 18K13467) and MEXT Quantum
Leap Flagship Program (MEXT Q-LEAP) Grant No. JP-
MXS0118069605.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2011).

[2] M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61
(1986).

[3] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2004).

[4] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, Phys. Rep. 528, 1 (2013).

[5] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S.
Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. S.-Herbrüggen,
J. Biamonte, and J. Wrachtrup, Nat. Commun. 5, 3371 (2014).

[6] T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J.
Schmiedmayer, F. Mintert, and J. Majer, Phys. Rev. Lett. 115,
190801 (2015).

[7] G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral,
Nature (London) 407, 355 (2000).

[8] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[9] N. Lambert, Y. Matsuzaki, K. Kakuyanagi, N. Ishida, S. Saito,

and F. Nori, Phys. Rev. B 94, 224510 (2016).
[10] V. Jurdjevic and H. J. Sussmann, J. Diff. Eqns. 12, 313 (1972).
[11] D. D’Alessandro, J. Phys. A: Math. Theor. 42, 395301 (2009).
[12] D. Dong and I. R. Petersen, IET Control Theory Appl. 4, 2651

(2010).
[13] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
[14] M. Suzuki, Commun. Math. Phys. 51, 183 (1976).
[15] J.-S. Li and N. Khaneja, Phys. Rev. A 73, 030302(R) (2006).
[16] J.-S. Li and N. Khaneja, IEEE Trans. Autom, Control 54, 528

(2009).
[17] K. Beauchard, J.-N. Coron, and P. Rouchon, Commun. Math.

Phys 296, 525 (2010).
[18] M. Belhadj, J. Salomon, and G. Turinici, Eur. J. Control 22, 23

(2015).
[19] X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and S.

Das Sarma, Nat. Commun. 3, 997 (2012).
[20] E. Barnes, X. Wang, and S. Das Sarma, Sci. Rep. 5, 12685

(2015).

[21] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Phys. Rev. A 52, 3457 (1995).

[22] C. D. Hill, Phys. Rev. Lett. 98, 180501 (2007).
[23] G. Turinici, V. Ramakhrishna, B. Li, and H. Rabitz, J. Phys. A:

Math. Gen. 37, 273 (2004).
[24] G. Dirr, U. Helmke, and F. Rüpple, Math. Control Signals Syst.

28, 14 (2016).
[25] J. Johansson, P. Nation, and F. Nori, Comp. Phys. Comm. 183,

1760 (2012).
[26] J. Johansson, P. Nation, and F. Nori, Comp. Phys. Comm. 184,

1234 (2013).
[27] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[28] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417

(1999).
[29] L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett. 83, 4888

(1999).
[30] N. Khaneja, T. Reiss, C. Kehlet, T. S. Herbrüggen, and S. J.

Glaser, J. Magn. Reson. 172, 296 (2005).
[31] R. L. Kosut, M. D. Grace, and C. Brif, Phys. Rev. A 88, 052326

(2013).
[32] B. Bartels and F. Mintert, Phys. Rev. A 88, 052315

(2013).
[33] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Phys. Rev.

Lett. 111, 050404 (2013).
[34] L. Van-Damme, D. Schraft, G. T. Genov, D. Sugny, T.

Halfmann, and S. Guérin, Phys. Rev. A 96, 022309 (2017).
[35] C. Chen, D. Dong, R. Long, I. R. Petersen, and H. A. Rabitz,

Phys. Rev. A 89, 023402 (2014).
[36] D. Dong, C. Wu, C. Chen, B. Qi, I. R. Petersen, and F. Nori,

Sci. Rep. 6, 36090 (2016).
[37] C. Chen, D. Dong, B. Qi, I. R. Petersen, and H. Rabitz, IEEE

Trans. Neural Netw. Learn. Syst. 28, 1345 (2017).
[38] C. Arenz, B. Russell, D. Burgarth, and H. Rabitz, New J. Phys.

19, 103015 (2017).
[39] G. Dirr, Oberwolfach Rep. 12, 674 (2012); F. Allgöwer, V.

Blondel, and U. Helmke, ibid. 9, 661 (2012).

042305-7

https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1103/PhysRevLett.115.190801
https://doi.org/10.1103/PhysRevLett.115.190801
https://doi.org/10.1103/PhysRevLett.115.190801
https://doi.org/10.1103/PhysRevLett.115.190801
https://doi.org/10.1038/35030052
https://doi.org/10.1038/35030052
https://doi.org/10.1038/35030052
https://doi.org/10.1038/35030052
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1103/PhysRevB.94.224510
https://doi.org/10.1103/PhysRevB.94.224510
https://doi.org/10.1103/PhysRevB.94.224510
https://doi.org/10.1103/PhysRevB.94.224510
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1088/1751-8113/42/39/395301
https://doi.org/10.1088/1751-8113/42/39/395301
https://doi.org/10.1088/1751-8113/42/39/395301
https://doi.org/10.1088/1751-8113/42/39/395301
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevA.73.030302
https://doi.org/10.1103/PhysRevA.73.030302
https://doi.org/10.1103/PhysRevA.73.030302
https://doi.org/10.1103/PhysRevA.73.030302
https://doi.org/10.1109/TAC.2009.2012983
https://doi.org/10.1109/TAC.2009.2012983
https://doi.org/10.1109/TAC.2009.2012983
https://doi.org/10.1109/TAC.2009.2012983
https://doi.org/10.1007/s00220-010-1008-9
https://doi.org/10.1007/s00220-010-1008-9
https://doi.org/10.1007/s00220-010-1008-9
https://doi.org/10.1007/s00220-010-1008-9
https://doi.org/10.1016/j.ejcon.2014.12.003
https://doi.org/10.1016/j.ejcon.2014.12.003
https://doi.org/10.1016/j.ejcon.2014.12.003
https://doi.org/10.1016/j.ejcon.2014.12.003
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1038/srep12685
https://doi.org/10.1038/srep12685
https://doi.org/10.1038/srep12685
https://doi.org/10.1038/srep12685
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevLett.98.180501
https://doi.org/10.1103/PhysRevLett.98.180501
https://doi.org/10.1103/PhysRevLett.98.180501
https://doi.org/10.1103/PhysRevLett.98.180501
https://doi.org/10.1088/0305-4470/37/1/019
https://doi.org/10.1088/0305-4470/37/1/019
https://doi.org/10.1088/0305-4470/37/1/019
https://doi.org/10.1088/0305-4470/37/1/019
https://doi.org/10.1007/s00498-016-0165-6
https://doi.org/10.1007/s00498-016-0165-6
https://doi.org/10.1007/s00498-016-0165-6
https://doi.org/10.1007/s00498-016-0165-6
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.83.4888
https://doi.org/10.1103/PhysRevLett.83.4888
https://doi.org/10.1103/PhysRevLett.83.4888
https://doi.org/10.1103/PhysRevLett.83.4888
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052315
https://doi.org/10.1103/PhysRevA.88.052315
https://doi.org/10.1103/PhysRevA.88.052315
https://doi.org/10.1103/PhysRevA.88.052315
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevLett.111.050404
https://doi.org/10.1103/PhysRevA.96.022309
https://doi.org/10.1103/PhysRevA.96.022309
https://doi.org/10.1103/PhysRevA.96.022309
https://doi.org/10.1103/PhysRevA.96.022309
https://doi.org/10.1103/PhysRevA.89.023402
https://doi.org/10.1103/PhysRevA.89.023402
https://doi.org/10.1103/PhysRevA.89.023402
https://doi.org/10.1103/PhysRevA.89.023402
https://doi.org/10.1038/srep36090
https://doi.org/10.1038/srep36090
https://doi.org/10.1038/srep36090
https://doi.org/10.1038/srep36090
https://doi.org/10.1109/TNNLS.2016.2540719
https://doi.org/10.1109/TNNLS.2016.2540719
https://doi.org/10.1109/TNNLS.2016.2540719
https://doi.org/10.1109/TNNLS.2016.2540719
https://doi.org/10.1088/1367-2630/aa8242
https://doi.org/10.1088/1367-2630/aa8242
https://doi.org/10.1088/1367-2630/aa8242
https://doi.org/10.1088/1367-2630/aa8242
https://doi.org/10.4171/OWR/2012/12
https://doi.org/10.4171/OWR/2012/12
https://doi.org/10.4171/OWR/2012/12
https://doi.org/10.4171/OWR/2012/12

