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Entanglement is considered as a purely quantum effect. The present paper, however, joins many other works
that pursue the idea of describing it using classical quantities. In particular, we are interested in the entanglement
dynamics of a pure state composed of two parts, initially prepared in a product of coherent states and governed by
a generic Hamiltonian. In this scenario, the linear entropy of the reduced state, our entanglement quantifier, was
shown to be written, in the short-time regime, in terms of a real trajectory of the underlying classical dynamics.
We extend this semiclassical result by demonstrating that it is possible to include complex trajectories in the
calculation. This strategy contributes to improving the previous approximation, extending its accuracy for longer
values of time. We also show, for a particular Hamiltonian, a first application of the achieved formula, attesting
to its efficiency.
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I. INTRODUCTION

The connection between quantum entanglement of a given
physical system and features present in its classical descrip-
tion has attracted enormous attention from researchers in the
last 20 years. Such a fascination is intensified because entan-
glement, which is one of the main protagonists of the eminent
quantum-information theory [1,2], is usually considered as
a purely quantum effect. Given the context, an interesting
fundamental question naturally arises concerning the possible
classical mechanisms associated with entanglement dynam-
ics. Although there is a large number of approaches dealing
with this issue in the literature, in the present paper we argue
that it still deserves investigation.

Inspired by essential ideas of the quantum chaos theory
[3,4], in which, for instance, certain properties of the quantum
energy spectrum crucially depend on the dynamical regime
manifested by the classical description, many approaches
were developed to establish a correlation between the behav-
ior of the entanglement dynamics and the presence of chaos in
the correspondent classical system. Following this program,
some researchers have performed this characterization by
directly comparing classical and quantum descriptions with-
out defining a classical counterpart for entanglement [5–10],
while others developed such classical figures of merit in
order to quantitatively study the quantum-classical connection
[11–18].

Alternatively, other authors have deviated from the focus
on quantum chaos studies and followed the strategy of per-
forming semiclassical approximations on a proper quantum
description in order to force the emergence of a classical
connection with entanglement. This idea was implemented by
means of time-dependent perturbative theories [19–21], for
instance. In addition, it was also reached by applying semi-
classical methods to quantum propagators written in the path-
integral formalism, both in the position [22,23] and coherent-
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state [24,25] representations. In this case, the semiclassical
formula for entanglement becomes a functional of trajectories
of the corresponding classical system.

The present work can be seen as a substantial extension
of Ref. [24], where one deduces a semiclassical expression
for the reduced linear entropy, which is an entanglement
quantifier for bipartite pure states. There, the real classical
trajectory departing from the phase-space point defined by the
center of the initial state is identified as the main ingredient to
semiclassically evaluate entanglement. This approach leads to
a remarkably simple final formula, which is accurate only for
short values of time. By means of a case study, it was shown
that the semiclassical entropy according to this theory mono-
tonically increases with time, while its quantum counterpart
has a much richer dynamical behavior; for the studied system,
it is periodic, having many oscillations during a period. Here,
we revisit that formalism, finding a way to include complex
trajectories in the calculation. We point out that we do not
introduce ad hoc assumptions in this new theory. Effectively,
an analytic continuation in clear consonance with the whole
formalism—and unnoticed in Ref. [24]—is now performed
so that complex trajectories become crucial. Curiously, our
new expression for entanglement depends on sets of four
generally complex trajectories mutually connected through
what we call entangled boundary conditions. Considering the
same numerical example studied in Ref. [24], we also show
that the inclusion of these new ingredients means extending
the accuracy of the approximated formula for very long times.
Surprisingly, it faithfully reproduces even the oscillations seen
in the quantum result.

We organize the paper as follows. In Sec. II, we will present
the basic formalism used to achieve our main result, namely,
we will show the semiclassical formula for the quantum
propagator in the coherent-state representation, as well as its
complex conjugate, and their relation with the reduced linear
entropy. Then, we will develop our semiclassical approxi-
mation in Sec. III, which basically consists of solving the
integral representation of the reduced linear entropy through
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the steepest descent method. We will illustrate our theory by
applying their ideas to a specific Hamiltonian in Sec. IV, and,
at last, some important conclusions will be drawn in Sec. V.

II. PRELIMINARY RESULTS

In this work we are concerned with the entanglement dy-
namics of a pure bipartite state ρ̂ composed of the subsystems
x and y. It can be quantified by the linear entropy of the
reduced density matrix,

Slin(ρ̂y) = Slin(ρ̂x ) = 1 − P(ρ̂x ), (1)

where ρ̂x,y = Try,xρ̂ and ρ̂ = ρ̂(T ) is the time-evolved state.
For the sake of simplicity, in our calculations we will focus
on the time-dependent purity PT of the reduced density matrix
ρ̂x, defined simply by

PT ≡ P(ρ̂x ) = Trx
{
ρ̂2

x

} = Trx{[Tryρ̂(T )]2}. (2)

We also assume the initial separable state given by

|z0〉 = |z0x〉 ⊗ |z0y〉, (3)

where |z0r〉 (henceforward, the subscript r can assume x or
y) is a canonical one-dimensional coherent state, exhaustively
studied in Refs. [26–28]. Then, considering a generic time-
independent Hamiltonian Ĥ , by taking the traces in Eq. (2)
using the coherent-state basis, we have

PT =
∫

K+((w∗
x , z∗

y ), z0, T ) K−(z∗
0, (zx, zy), T )

× K+((z∗
x ,w

∗
y ), z0, T ) K−(z∗

0, (wx,wy), T )
× d2μ(zy) d2μ(wy) d2μ(zx ) d2μ(wx ),

(4)

where

d2μ(zr ) ≡ d[Re(zr )]d[Im(zr )]

π
≡ dzr dz∗

r

2π i
(5)

(and the equivalent for wr), implying that integration should
be done over the whole complex spaces zx, zy, wx, and wy.
The quantum forward propagator K+ and backward propaga-
tor K− are expressed by

K±(z∗
η, zμ, T ) ≡ 〈zη|e∓iĤT/h̄|zμ〉. (6)

Equation (4) is our starting point to perform a semiclassical
approximation. Basically, the strategy is to replace the four
quantum functions K± with their semiclassical versions and
properly evaluate the integral. We emphasize that, in the
present approach, the quantum description is initially well
established and, through the introduction of approximative
methods, an auxiliary equivalent classical system naturally
emerges. From the resulting scenario, one identifies cru-
cial classical elements—certain complex trajectories—and
deduces their contributions to the semiclassical calculation.
This is exactly the essence of the semiclassical approximation
for K+, derived many years ago for canonical [29–34] and spin
[35–39] degrees of freedom, and K−, achieved and studied
only recently [24,25,40]. In the next two subsections we sim-
ply present the useful results from these references, suggest-
ing, in particular, Refs. [24,32] as sources for further details.

A. Complex classical trajectories

Essentially, for both propagators defined by Eq. (6), com-
plex classical trajectories are the ingredients to calculate their

respective semiclassical approximations. For convenience,
such trajectories are expressed in terms of unusual variables,

{u(t ), v(t )} = {[ux(t ), uy(t )], [vx(t ), vy(t )]}. (7)

In addition, they are governed by Hamilton’s equation

∂H̃

∂ur
= −ih̄ v̇r and

∂H̃

∂vr
= ih̄ u̇r, (8)

where the classical auxiliary Hamiltonian H̃ is defined in
terms of the expectation value of the Hamilton operator Ĥ ,

H̃ ≡ H̃ (v, u), with H̃ (z∗, z) ≡ 〈z|Ĥ |z〉. (9)

Concerning the boundary conditions that contributing trajec-
tories must satisfy, we point out that there exist differences
between those applied to the forward propagator and those
relative to the backward one:

u′ = zμ and v′′ = z∗
η (for K+);

u′′ = zμ and v′ = z∗
η (for K−).

(10)

Here, a single (double) prime refers to initial (final) time.
The complex numbers zμ = (zμx, zμy) and z∗

η = (z∗
ηx, z∗

ηy) are
the labels of the coherent states involved in K±, as shown in
Eq. (6).

At this point, some comments are opportune. First, we
should emphasize that Eqs. (8)–(10) completely define the
trajectories to be considered in the semiclassical version of
K± as a function of their independent variables (z∗

η, zμ, T ).
However, more than one trajectory may be found for a given
set of these input parameters. A priori, all of them should be
included in the calculation, as we will show later.

Second, we would like to justify why these trajectories are
generically classified as complex. Let variables u and v be
written as

u = q + ip√
2h̄

and v = q − ip√
2h̄

. (11)

This choice is convenient because Hamilton’s equation (8)
would assume, in this case, the familiar form

∂H̄

∂qr
= −ṗr and

∂H̄

∂ pr
= q̇r, (12)

where H̄ = H̃ (v[q, p], u[q, p]). Additionally, let the coherent
states |zμ〉 and |zη〉 in Eq. (6) be such that

zμ = qμ + ipμ√
2h̄

and z∗
η = qη − ipη√

2h̄
. (13)

Then, first considering only K+ for simplicity, we conclude as
follows. If q and p are real variables, u and v are the complex
conjugate of each other, as shown by Eq. (11). The initial
boundary condition u′ = zμ of Eq. (10) would, therefore,
determine completely the contributing trajectory, because it
defines its initial phase-space point (q′, p′). In general, how-
ever, it would not naturally satisfy the final constraint v′′ = z∗

η,
given the arbitrariness of z∗

η and T . In the very particular case
where even the final boundary condition is satisfied, such a
trajectory should contribute to the evaluation of the semiclas-
sical propagator, and it is classified as a real trajectory, since
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it lives in an ordinary real phase space (q, p). Contrarily, in
the general case q and p are complex variables, so that u and v
are not the complex conjugate of each other, and the boundary
conditions are no more over-determined. Usually, Eq. (10) can
be satisfied, sometimes by more than one trajectory, and the
solutions are called complex trajectories, as they live in an
extended complex phase space (q, p). The same arguments
can be easily adapted to reach the same conclusion for K−.

B. Semiclassical propagators

The semiclassical formula for both forward and backward
coherent-state quantum propagators (6) is written as

K±(z∗
η, zμ, T ) =

∑
c.t.

D± e
i
h̄ (S±+G± )−�, (14)

where the sum runs over all complex classical trajectories
presented in the last section. The complex action S± =
S±(z∗

η, zμ, T ) is expressed in terms of them as

i

h̄
S± = ±

∫ T

0

[
1

2
(u · v̇ − v · u̇) − i

h̄
H̃

]
dt + �̃, (15)

and the function G± = G±(z∗
η, zμ, T ) as

G± = ±1

2

∫ T

0

(
i

h̄

∂2H̃

∂ux∂vx
+ i

h̄

∂2H̃

∂uy∂vy

)
dt . (16)

The element �, which accounts for the normalization, is given
by

� = 1
2 (z∗

η · zη + z∗
μ · zμ), (17)

while �̃ [see Eq. (15)] reads

�̃ = 1
2

(
u′v′ + u′′v′′). (18)

Finally, we write the prefactor D± as

D± =
[

det

(
i

h̄
S(±)

zμz∗
η

)]1/2

, (19)

where S(±)
zμz∗

η
is the 2 × 2 matrix

S(±)
zμz∗

η
=

⎛
⎜⎜⎜⎝

∂2S±
∂zμx ∂z∗

ηx

∂2S±
∂zμx ∂z∗

ηy

∂2S±
∂zμy ∂z∗

ηx

∂2S±
∂zμy ∂z∗

ηy

⎞
⎟⎟⎟⎠. (20)

Differentiating S±, we obtain results that will be important
for the present work:

i

h̄

∂S+
∂zμr

= v′
r,

i

h̄

∂S−
∂zμr

= v′′
r ,

i

h̄

∂S+
∂z∗

ηr

= u′′
r ,

i

h̄

∂S−
∂z∗

ηr

= u′
r .

(21)

Another important relation can be found by differentiating
Eq. (21). Rearranging the expression obtained, we conclude
that

i
h̄ S(+)

zμz∗
η
= M−1

vv , i
h̄ S(−)

zμz∗
η
= M−1

uu ,

i
h̄ S(+)

z∗
ηz∗

η
= MuvM−1

vv , i
h̄ S(−)

zμzμ
= MvuM−1

uu .

(22)

Quantities at the right-hand sides of these equalities are 2 × 2
blocks of the stability matrix M of the respective trajectory,
which is defined as(

δu′′
δv′′

)
= M

(
δu′
δv′

)
=

(
Muu Muv
Mvu Mvv

)(
δu′
δv′

)
, (23)

where δu′ and δv′ are arbitrarily small initial displacements
around the classical trajectory, while δu′′ and δv′′ represent
their propagation until the final time T .

III. SEMICLASSICAL LINEAR ENTROPY

We now focus on the evaluation of integral (4), replacing
the quantum propagators with their semiclassical formulas
(14):

K+((w∗
x , z∗

y ), z0, T ) → K+((w∗
x , z∗

y ), z0, T ),
K−(z∗

0, (zx, zy), T ) → K−(z∗
0, (zx, zy), T ),

K+((z∗
x ,w

∗
y ), z0, T ) → K+((z∗

x ,w
∗
y ), z0, T ),

K−(z∗
0, (wx,wy), T ) → K−(z∗

0, (wx,wy), T ).

(24)

As it will become clear soon, it is convenient to change our
notation in the following way:

K+((w∗
x , z∗

y ), z0, T ) → K1((v′′
1x, v

′′
1y), z0, T ),

K−(z∗
0, (zx, zy), T ) → K2(z∗

0, (u′′
2x, u′′

2y), T ),
K+((z∗

x ,w
∗
y ), z0, T ) → K3((v′′

3x, v
′′
3y), z0, T ),

K−(z∗
0, (wx,wy), T ) → K4(z∗

0, (u′′
4x, u′′

4y), T ),

(25)

where, induced by Eq. (10), we implicitly renamed the inte-
gration variables of (4); in what follows, the functions D j ,
S j , and so on will be evidently related to the propagator
K j (for j = 1, . . . , 4). Notice that the integral with these
replacements involves four semiclassical propagators, each
of them with possibly many contributing trajectories. To
avoid this difficulty at this point, we will momentarily assume
that there exists only one contribution for each propagator.
Then, the semiclassical version of PT is

PT =
∫

D1D2D3D4 eE
du′′

2y dv′′
1y

2π i

du′′
4y dv′′

3y

2π i

× du′′
2x dv′′

3x

2π i

du′′
4x dv′′

1x

2π i
,

(26)

where

E = i

h̄

∑
j=1,4

(
S j + G j

) − 2|z0|2

− u′′
2yv

′′
1y − u′′

4yv
′′
3y − u′′

2xv
′′
3x − u′′

4xv
′′
1x.

(27)

Integrating expression (26) in a straightforward way would
effectively demand an enormous effort. For a given point
in the set of integration variables, generally four different
trajectories relative to their respective propagator should be
found. Precisely, they should satisfy the following boundary
conditions:

u′
1 = z0, v′′

1 = (v′′
1x, v

′′
1y), for K1((v′′

1x, v
′′
1y), z0, T );

v′
2 = z∗

0, u′′
2 = (u′′

2x, u′′
2y), for K2(z∗

0, (u′′
2x, u′′

2y), T );
u′

3 = z0, v′′
3 = (v′′

3x, v
′′
3y), for K3((v′′

3x, v
′′
3y), z0, T );

v′
4 = z∗

0, u′′
4 = (u′′

4x, u′′
4y), for K4(z∗

0, (u′′
4x, u′′

4y), T );
(28)
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as predicted by Eq. (10). Once the four trajectories are defined,
the next step is evaluating the integrand with them. Obviously,
this procedure should be repeated for all points of the integra-
tion variables set, summing each contribution to evaluate PT .

In the present approach, instead of using the strategy men-
tioned above, we will solve Eq. (26) using the steepest descent
method [41], in accordance with the formalism adopted to
derive the semiclassical expression (14). Such a method is
proper to evaluate integrals like

∫
C g(z) exp [λ f (z)]dz in the

asymptotic limit λ → ∞, which is similar to the integral (26)
for h̄ → 0, except for the number of integration variables.
Basically, the method consists of finding the saddle point
z̄ of f (z); changing the path of integration C in order to
coincide with the steepest descents of z̄; expanding f (z) up
to second order around the saddle point; and performing the
remaining Gaussian integral. All these points will be done in
the following, adapted to Eq. (26), except for the discussion
about the possibility of deforming C, assumed here to be true.
Following Ref. [41], critical points to evaluate (26) are the
saddle points defined by eight equations,

∂ Ē
∂ ū′′

2y

= ∂ Ē
∂ v̄′′

1y

= ∂ Ē
∂ ū′′

4y

= · · · = ∂ Ē
∂ v̄′′

1x

= 0, (29)

where the bar over the symbols stands for the critical point.
As usual, derivatives of functions G j are disregarded [32]
in comparison with derivatives of S j . Thus, using Eq. (21),
conditions for the saddle point become

v̄′′
2y = v̄′′

1y, ū′′
1y = ū′′

2y, v̄′′
4y = v̄′′

3y, ū′′
3y = ū′′

4y,

v̄′′
2x = v̄′′

3x, ū′′
3x = ū′′

2x, v̄′′
4x = v̄′′

1x, ū′′
1x = ū′′

4x.

(30)

Notice, at this point, that the saddle point definition (29) has
become a prescription for contributing trajectories (30), which
will be interpreted below.

Take, for instance, the first two equalities of Eq. (30). If we
return to the original integration variables, they will become
v̄′′

2y = z∗
y and ū′′

1y = zy. On the other hand, from Eq. (28) we
would have ū′′

2y = zy and v̄′′
1y = z∗

y , which implies that v̄′′
2y and

ū′′
2y are the complex conjugate of each other, and the same for

v̄′′
1y and ū′′

1y. When all expressions of Eq. (30) are taken into
account, by following this reasoning we conclude that v̄′′

jr and
ū′′

jr are the complex conjugate of each other for any j and r.
Exactly as asserted in Refs. [24,25], this means that only real
trajectories contribute to the calculation. Furthermore, the four
trajectories can be easily proven to be the same, depending
only on the initial coherent-state label z0,

u′ = z0 and v′′ = z∗
0 (real trajectory).

At this point, the present work takes a different route from
that of Refs. [24,25]. Instead of returning to the original
integration variables, we will interpret Eq. (30) as they are
presented. Effectively, it is equivalent to treat zr and z∗

r (the
same for wr and w∗

r ) as independent variables, a strategy
which is in clear consonance with the approach used to
deduce Eq. (14). In fact, from this reasoning, Eq. (30) together
with Eq. (28) finally establish the conditions for the critical

trajectories involved in PT :

ū′
1 = z0, v̄′′

1 = (v̄′′
1x, v̄

′′
1y), and ū′′

1 = (ū′′
4x, ū′′

2y);
v̄′

2 = z∗
0, ū′′

2 = (ū′′
2x, ū′′

2y ), and v̄′′
2 = (v̄′′

3x, v̄
′′
1y);

ū′
3 = z0, v̄′′

3 = (v̄′′
3x, v̄

′′
3y), and ū′′

3 = (ū′′
2x, ū′′

4y);
v̄′

4 = z∗
0, ū′′

4 = (ū′′
4x, ū′′

4y), and v̄′′
4 = (v̄′′

1x, v̄
′′
3y).

(31)

Notice that the final coordinates of the four trajectories are
mutually connected. That is, v̄′′

1x = v̄′′
4x, v̄′′

1y = v̄′′
2y, and so on.

In this sense, we say that the semiclassical linear entropy
depends on sets of four trajectories with entangled boundary
conditions at the final time. Clearly, the set of four real
trajectories described above also satisfies conditions (31) and
should be included in the calculation. We emphasize that these
boundary conditions are by no means inserted by hand in
the theory. They naturally arise from the application of the
steepest descent method on integral (26), provided that we
allow a proper analytic continuation, as discussed above. At
last, we point out that this result is achieved without assuming
any consideration concerning the Hamiltonian.

With the conditions of critical trajectories well defined,
we assume that solutions of Eq. (31) can be generally found
and proceed with the evaluation of integral (26). Following
Ref. [41], we should expand the integrand up to second
order around the parameters of the critical set of trajectories.
Actually, as rigorously discussed in Ref. [32], the expansion
is not performed for functions G j and prefactors D j . They
are simply evaluated at the saddle point, without harming the
accuracy of the approximation. We then get

PT =
∑
sets

D̄1 D̄2 D̄3 D̄4 eĒ I. (32)

The sum spans all sets of critical trajectories and naturally
encompasses the hitherto neglected sum of Eq. (14). Also,

I =
∫

exp

{
1

2
δrt Ā δr

}
d[δu′′

2y] d[δv′′
1y]

2π i

× d[δu′′
4y] d[δv′′

3y]

2π i
d[δu′′

2x] d[δv′′
3x]

2π i
d[δu′′

4x] d[δv′′
1x]

2π i ,

(33)

where δrt (t stands for transpose) is a line vector containing
the new integration variables ordered in a specific way,

δrt ≡ (δv′′
1x, δv′′

1y, δu′′
2x, δu′′

2y, δv′′
3x, δv′′

3y, δu′′
4x, δu′′

4y),

with δv′′
1x ≡ (v′′

1x − v̄′′
1x ), δv′′

1y = (v′′
1y − v̄′′

1y), and so on. We
now present the matrix

Ā =

⎛
⎜⎜⎜⎝

i
h̄ S̄(1)

v′′v′′ −1y 0 −1x

−1y
i
h̄ S̄(2)

u′′u′′ −1x 0

0 −1x
i
h̄ S̄(3)

v′′v′′ −1y

−1x 0 −1y
i
h̄ S̄(4)

u′′u′′

⎞
⎟⎟⎟⎠,

where

1x =
(

1 0
0 0

)
, 1y =

(
0 0
0 1

)
,

and the 2 × 2 blocks in the diagonal of Ā are defined in
analogy to Eq. (20) and can be written in terms of the tangent
matrix M according to Eq. (22).

Our last step to reach an expression for quantum entan-
glement in terms of classical ingredients is to solve integral
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I, which is simply a Gaussian integral [32] whose result is
1/

√
det Ā. Finally, the linear entropy (1) can be semiclassi-

cally expressed as

Slin = 1 −
∑
sets

D1 D2 D3 D4 eE√
det A

. (34)

This is our final formula. Notice that we removed the bars
over the functions for the sake of clearness. We emphasize that
sets of four trajectories contributing to Slin should satisfy the
entangled boundary conditions (31). Once these trajectories
are determined, all functions involved in Eq. (34) can be
evaluated. In the following, we will check for a particular
system that, although the set of real trajectories is inefficient
to accurately describe entanglement for longer values of time
[24], the inclusion of a few sets of complex trajectories, as
prescribed by (34), leads to excellent results.

IV. APPLICATION

In this section we will apply the present formalism to the
same physical system used in Ref. [24]. Our intention is to
show that the improvement performed on that theory gives
rise to semiclassical results in excellent agreement with the
full quantum calculation, even for very long values of time.

The Hamiltonian to be studied is given by

Ĥ = Ĥx ⊗ 1y + 1x ⊗ Ĥy + λĤx ⊗ Ĥy, (35)

where

Ĥr = p̂2
r

2mr
+ mrω

2
r q̂2

r

2
(36)

refers to the harmonic oscillator system. For our purposes,
we will assume the initial state as the coherent state |z0〉 =
|z0x〉 ⊗ |z0y〉, where |z0r〉 is associated to Ĥr . In this scenario,
we remember that the label of the initial coherent state can be
written in terms of

z0r = 1√
2

(
q0r

br
+ ip0r

cr

)
, (37)

where the pair (q0r, p0r ) gives the center of the wave packet
|z0〉 in phase space and (br, cr ) its respective uncertainties.

In terms of the annihilation and creation operators

âr = 1√
2

(
q̂r

br
+ i p̂r

cr

)
and â†

r = 1√
2

(
q̂r

br
− i p̂r

cr

)
,

respectively, with

br =
√

h̄

mrωr
and cr =

√
mr h̄ωr,

the Hamiltonian becomes

Ĥ = h̄
xâ†
x âx + h̄
yâ†

y ây + h̄�â†
x âx â†

y ây + ε0, (38)

where


r = ωr + �

2
, � = λh̄ωxωy, and ε0 = h̄

2
(ωx + ωy).

The linear entropy (1) of the reduced density matrix for this
system can be straightforwardly evaluated, resulting in

Slin = 1 − PT , (39)

where

PT = e−2|z0x |2
∑
n,m

|z0x|2(n+m)

n!m!
e
−4|z0y|2 sin2

[
�T (n−m)

2

]
.

Equation (39) reveals that the entanglement dynamics for this
particular system is periodic, with the period given by Tr ≡
2π/� named the recoherence time. It can be easily checked
that Slin(T = jTr ) = 0, for j = 0, 1, . . .. For this reason, in
what follows we will adopt the dimensionless time

τ ≡ T

Tr
= �T

2π
(40)

and restrict our study to the interval 0 � τ < 1. Notice that all
the dynamics is present in this range.

Numerical parameters for the present application were
chosen according to the following reasoning. The label of the
initial state |z0〉 is such that

|z0r |2 = 1

h̄ωr

(
p2

r

2mr
+ mrω

2
r q2

r

2

)
≡ E0r

h̄ωr
, (41)

which, roughly speaking, suggests that to reach a semiclassi-
cal regime, the harmonic oscillator energy E0r should be much
larger than h̄ωr . Then we hold that E0r = ω0r = λ = 1 and
define, for simplicity, z0r = √

E0r/(h̄ωr ) = h̄−1/2, meaning
that z0r is numerically equivalent to h̄−1/2. By decreasing
h̄ from 1, we formally go, in principle, from a quantum
to semiclassical limit. Additionaly, concerning the physical
timescale related to T , we notice that the harmonic oscillator
period now is Tho ≡ 2π/ωr = 2π and the recoherence time is
Tr = Tho/h̄. Then, decreasing h̄ means increasing Tr.

We have, therefore, the following dilemma. If we take
h̄ = 1, for instance, although the semiclassical regime is not
achieved, the entanglement dynamics during a cycle is simple
because it lasts a short time, equivalent to only one period
of the harmonic oscillator. On the other hand, by taking very
small values of h̄, the semiclassical regime can be reached, but
Tr can be much larger and the dynamics much more evolved.
Figure 1 clearly illustrates this discussion, while it shows
(black solid line) the behavior of Slin as a function of τ , during
a whole cycle, for three values of h̄: approximately 1.0, 0.63,
and 0.21 for Figs. 1(a), 1(b), and 1(c), respectively. Inversely,
for each plot, the recoherence time increases: 2π , 10, and
30, respectively. Thus, as we intend to semiclassically study
a complete cycle Tr , we cannot adopt very small values of h̄,
neither the largest ones, so that in the next calculations we will
use h̄ = π/5 ≈ 0.63, the value used in Fig. 1(b).

A. Auxiliary dynamics

In order to evaluate the semiclassical version of Eq. (39),
we need an underlying classical Hamiltonian which, accord-
ing to our prescription (9), is

H (v, u) = h̄
xvxux + h̄
yvyuy + h̄�vxux vyuy + ε0. (42)

The classical trajectories can be readily integrated according
to Eq. (8). In terms of the initial coordinates u′

x, v′
x, u′

y, and v′
y,
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FIG. 1. Black solid lines represent quantum linear entropy of the reduced state (39) as a function of the dimensionless time τ , for (a) h̄ = 1,
(b) h̄ = π/5, and (c) h̄ = π/15. Other numerical parameters are E0r = ω0r = λ = 1 and z0r = √

E0r/(h̄ωr ). In panel (b), the black dashed curve
shows the contribution of the set of real trajectories to Slin, while the red dotted line presents the equivalent result when a few sets of complex
trajectories are considered.

they are ⎛
⎜⎜⎝

ux(t )
uy(t )
vx(t )
vy(t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u′
xe−λxt

u′
ye−λyt

v′
xe+λxt

v′
ye+λyt

⎞
⎟⎟⎠, (43)

where λx = i(
x + �u′
yv

′
y) and λy = i(
y + �u′

xv
′
x ). The tan-

gent matrix (23) can be evaluated by differentiating the last
equation so that ⎛

⎜⎜⎝
δu′′

x
δu′′

y

δv′′
x

δv′′
y

⎞
⎟⎟⎠ = MBMA

⎛
⎜⎜⎝

δu′
x

δu′
y

δv′
x

δv′
y

⎞
⎟⎟⎠, (44)

where

MA =

⎛
⎜⎜⎝

1 −au′
xv

′
y 0 −au′

xu′
y

−au′
yv

′
x 1 −au′

yu′
x 0

0 av′
xv

′
y 1 av′

xu′
y

av′
yv

′
x 0 av′

yu′
x 1

⎞
⎟⎟⎠, (45)

with a = i�T and

MB =

⎛
⎜⎜⎝

e−λxT 0 0 0
0 e−λyT 0 0
0 0 e+λxT 0
0 0 0 e+λyT

⎞
⎟⎟⎠. (46)

From these classical results, we need to identify the trajecto-
ries contributing to the semiclassical formula (34).

B. Contributing trajectories

Each term in the sum of Eq. (34) involves four trajectories.
All of them have the form presented above (43), one differing
from each other exclusively through their boundary condi-
tions. Initial boundary conditions of Eq. (31) simply imply
that u′

1r = u′
3r = z0r and v′

2r = v′
4r = z∗

0r . Final constraints, on
the other hand, are more evolved. In the present application,
in terms of the dimensionless time τ they can be written as

e−iay (y1−y4 )τ = x4, e−iax (x1−x2 )τ = y2,

e+iay (y2−y3 )τ = x3, e+iax (x2−x1 )τ = y1,

e−iay (y3−y2 )τ = x2, e−iax (x3−x4 )τ = y4,

e+iay (y4−y1 )τ = x1, e+iax (x4−x3 )τ = y3,

(47)

where ax = 2π |z0x|2, ay = 2π |z0y|2, and

v′
1x = x1z∗

0x, u′
2x = x2z0x, v′

3x = x3z∗
0x, u′

4x = x4z0x,

v′
1y = y1z∗

0y, u′
2y = y2z0y, v′

3y = y3z∗
0y, u′

4y = y4z0y.

(48)

Manipulating Eq. (47) allows us to write the following tran-
scendental equation for x2,

x2 = e+iayτ [e
+iax (x2− 1

x2
)τ −e

−iax (x2− 1
x2

)τ
]. (49)

Once we have found solutions for x2, other variables can be
solved as

y2 = e+iax (x2− 1
x2

)τ
, x3 = x2, y1 = y2,

x1 = x4 = 1
x2

, y3 = y4 = 1
y2

,
(50)

completing [see Eq. (48)] all the information needed to define
the set of contributing trajectories. For practical reasons, to
deal with this problem we define the function

f (x2) = x2 − e+iayτ [e
+iax (x2− 1

x2
)τ −e

−iax (x2− 1
x2

)τ
], (51)

so that finding solutions of Eq. (49) is equivalent to finding
roots of f (x2).

At this point, notice that the crucial point of our application
is the search for solutions of points where f (x2) = 0. We will
show that, except for τ = 0, where only one solution exists
there are infinitely many values of x2 satisfying this equation.
As already explained, each solution produces a set of four
trajectories which, in principle, contribute to the value of
Slin.

When τ = 0, the only root of f (x2) is straightforwardly
found: x2 = 1, which clearly gives origin to the set of real
trajectories starting at u′

j = z0 and v′
j = z∗

0, for j = 1, 2, 3 ,

and 4 [see Eq. (48)]. Besides, notice that the point x2 = 1 is
a root, whatever the value of τ . Keeping only this set of con-
tributing trajectories is therefore equivalent to the approach
of Ref. [24]. In Fig. 1(b) we show (black dashed line) this
specific contribution to our numerical example. Notice that,
as expected, it gives accurate results only for short values of
time. When time runs, oscillations seen in the quantum curve
are not reproduced by the real trajectory.

Another important consideration should be done. A simple
inspection in Eq. (51) reveals that if x2 = w is a complex
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FIG. 2. Searching roots of f (x2 ) in the x2 complex plane. For all plots, curves where Im[ f (x2)] = 0 (Re[ f (x2 )] = 0) are shown by dashed
(dotted) lines, and the unitary circle is represented by the solid line. Intersections of dashed and dotted curves are the roots of f (x2). From
panels (a)–(e), values of the dimensionless time τ assume 0, 0.035, 0.045, 0.065, and 0.333, respectively. Panels (f)–(l) are magnified regions of
panel (e), showing details of its seven structures around the real axis. Green, blue, and red circles present at panels (i)–(l) identify the relevant
roots for the evaluation of Slin. Other numerical parameters are E0r = ω0r = λ = 1, h̄ = π/5, and z0r = √

E0r/(h̄ωr ).

root, then w∗, 1/w, and 1/w∗ are also roots of f (x2). As a
consequence, we will look for roots lying only at the unitary
circle of the x2 complex plane, or outside it, and restricted to
Im[x2] � 0, simplifying this root search problem. Obviously,
roots lying exactly over the unitary circle (or the real axis) do
not follow exactly that rule; if |w| = 1 (or Im[w] = 0), then
only w and w∗ (or 1/w) are roots.

Finally, in Fig. 2 we graphically look for the roots of f (x2)
in the x2 complex plane. For all plots, black solid lines delimit
the unitary circle. For the reason mentioned above, no new
information can be found inside this circle and then nothing is
shown there. Exceptions are Figs. 2(h) and 2(i), where contour
lines inside the circle are plotted for a better understanding of
their structure. In addition, dashed lines refer to the curves
where Im[ f (x2)] = 0, while the dotted ones indicate those
where Re[ f (x2)] = 0. The roots of f (x2) are evidently given
by intersections of dashed and dotted lines.

In Fig. 2(a), plotted for τ = 0, we see that there is only
one root at x2 = 1. According to Figs. 2(b)–2(e), when τ in-
creases, some structures coming from distant regions rapidly
approach the origin, bringing a large number of new roots
with them. Actually, the intersection points are barely seen in
Figs. 2(d) and 2(e) because they are much closer to each other.
However, they are there as demonstrated by Figs. 2(f)–2(l),
where magnified regions of Fig. 2(e) are plotted, showing
details in the vicinity of the real axis.

Figure 2(e) shows the scenario for τ = 0.333, one-third of
the recoherence time Tr , where the quantity of roots seems
to be intractable. Among so many solutions, it is practically
mandatory to get a criteria to select the relevant points.
Considering that the set of real trajectories, represented by
x2 = 1, is enough to reproduce the quantum linear entropy
for sufficiently short values of time and given that other
unimportant roots lie in remote regions in this case, it seems
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reasonable to neglect, at a first attempt, intersection points
which are not close to the real axis. This is the motivation to
plot, in Figs. 2(f)–2(l), magnified regions of Fig. 2(e) around
the real axis. Actually, they show details of its three structures
positioned at the left of the origin [Figs. 2(f)–2(h)] and four
others located at the right of this point [Figs. 2(i)–2(l)]. These
seven structures are named St1, St2, ..., St7 for convenience,
as shown in each plot. From them we effectively start the
selection of the contributing sets of complex trajectories, as
explained in the following.

C. Semiclassical results

We first emphasize that, for the whole process of finding
sets of trajectories effectively contributing to Slin, we only
inspected the plots of Figs. 2(f)–2(l). Even for different values
of τ , there is no need to find new roots of f (x2) graphically.
From a single root found for τ = 0.333, for instance, we have
iteratively got a family of roots associated to this solution for
the whole range 0 < τ � 1 by means of a proper numerical
procedure based on the Newton-Raphson method.

Numerically, we verified that most of the families associ-
ated with the roots seen in Figs. 2(f)–2(l) give origin to contri-
butions to Slin which are negligible for any value of τ . Then,
they are simply disregarded. Actually, those intersections,
identified by colored circles in Figs. 2(i)–2(l), are the roots
responding for relevant contributions, i.e., only the analysis
of structures St4 to St7 produced useful results. In Fig. 3(a),
for instance, we show the effects of including families of the
three marked roots of Fig. 2(i). As already discussed, the point
identified by the green circle is that associated with the set of
real trajectories; its contribution is given by the green solid
line. If we include in this result the family associated with the
root inside the blue circle of Fig. 2(i), we get the blue dashed
curve of Fig. 3(a). Still, adding the root marked by the red
circle, the red dotted curve is obtained. Clearly, the inclusion
of new sets of complex trajectories improves Slin based only
on real trajectories. However, oscillations presented in the
fully quantum linear entropy (black solid curves of Fig. 3) are
still not reproduced.

Only when the highlighted roots of Fig. 2(j) are considered
does the oscillatory behavior of Slin start to be mimetized
by the semiclassical approach. In Fig. 3(b), we first add
the family of the root marked by the green circle of St5,
getting the green solid line, which does not show oscillations
but improves the approximation. Then we include the root
inside the blue circle and arrive at the blue dashed curve,
which shows a very good semiclassical result, oscillating in
accordance to the quantum result until τ ≈ 0.5. At last, we
show that including the family of the root marked by the red
circle produces improvement only in the second half of the
recoherence time (red dotted line).

Following the same procedure, we show in Figs. 3(c) and
3(d) the improvement gained by including roots highlighted in
structures St6 and St7 [Figs. 2(k) and 2(l)], respectively. Now,
Slin remains practically unchanged for τ < 0.5. On the other
hand, for τ > 0.5, the semiclassical approximation becomes
progressively better. When structure St7 is considered, it can
be seen that Slin is practically improved only for τ > 0.9. In
order to analyze our final result, we return to Fig. 1(b), where

FIG. 3. Black solid lines represent the quantum linear entropy
of the reduced state (39) as a function of the dimensionless time τ .
Numerical parameters are chosen to be the same as those of Fig. 1(b).
In panel (a), the solid green line refers to Slin, calculated using
exclusively the set of real trajectories associated with the root inside
the green circle of Fig. 2(i); including trajectories associated with the
root marked by the blue circle of Fig. 2(i) produces the blue dashed
curve; and, including contributions related to the root marked by the
red circle of Fig. 2(i) generates the red dotted curve. Colored lines of
panels (b), (c), and (d) are built analogously to panel (a) by adding
contributions to the semiclassical approach presented in Figs. 2(j),
2(k), and 2(l), respectively. Black dashed lines in panels (b), (c), and
(d) are the most complete curve of the preceding panel, i.e., the red
dotted curve of panels (a), (b), and (c), respectively.

the exact Slin is plotted (black solid line) together with the
semiclassical Slin in two cases: when only real trajectories are
included (black dashed line) and when complex trajectories
associated to marked intersections of Figs. 2(i)–2(l) enter in
the calculation (red dotted line). Surprisingly, the inclusion
of only a few sets of complex trajectories is enough to
reproduce the fully quantum result during almost the whole
period Tr .

V. FINAL REMARKS

The present paper essentially revisits the theory presented
in Ref. [24] and substantially improves its accuracy. In the
adopted approach, we start from an integral expression for
the linear entropy Slin of the reduced density matrix of a pure
bipartite system, initially prepared in a product of coherent
states [Eqs. (1)–(4)], developing it by means of semiclassical
approximations based on the steepest descent method. Ac-
cording to this treatment, a semiclassical formula for Slin is
written in terms of sets of four correlated trajectories of an un-
derlying classical system (34). With respect to Ref. [24], our
novelty is to consider complex trajectories in the approach.
We should comment that the present contribution involves a
prescription, rigorously deduced from the theory, in order to
identify such trajectories.

While the contribution of real trajectories to Slin is able to
reproduce the short-time behavior of its quantum counterpart
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Slin, we have verified for a particular system that only a few
sets of complex trajectories are enough to produce accurate
results even for very long values of time [these results are
summarized in Fig. 1(b)]. We emphasize that a contributing
set of trajectories is characterized by the entangled boundary
conditions (31). It is worth pointing out that our approach
is completely different from the entangled trajectory molec-
ular dynamics method [16,42]. Differently from our formal-
ism where trajectories are entangled by means of final-time
boundary conditions, in Refs. [16,42] classical dynamics is
entangled due to the inclusion of a nonlocal term in its
equations of motion, a procedure similar to that used on
Bohmian quantum mechanics. Problems of interest attacked
by the entangled trajectory molecular dynamics method are
typical of the chemical physics field, in which the inclusion
of quantum-correlation phenomena has attracted considerable
attention [43]. We expected that the theory presented here can
also contribute to this area; however, this theme is beyond the
scope of the present paper.

Still referring to the set of contributing trajectories, we
note that there are important works in literature based on the
semiclassical time evolution of the Wigner function (and its
Fourier conjugate) [44–46], whose approaches also identify
sets of connected trajectories entering in the calculation. The
difference, in these cases, is that they deal with pairs of
trajectories instead of four, and their boundary conditions do
not explicitly involve constraints among different parts (x and
y, in our case) of the system, as shown in Eq. (31). Writing the
linear entropy in terms of the Wigner function is possible [16];
however, further integrations should be done. Possibly, this
procedure would connect two pairs of trajectories, resulting in
boundary conditions comparable to ours.

It is quite interesting to speculate about the conceptual role
of the extended phase space, which shelters the contributing
trajectories. By recognizing that there are other works in
different contexts clearly confirming that genuinely quan-
tum behaviors are reproduced by semiclassical approaches
only when complex trajectories are included [47–49], one
wonders if the complex-extension procedure is a determi-
nant factor to distinguish classical and quantum correlations.
To develop this idea, supported by Refs. [11,20], we first
point out that the short-time entanglement can be described
by classical mechanisms based on the Liouvillian theory.
For greater values of time, on the other hand, no real
classical strategy seems to be able to mimic entanglement,

corroborating its quantum nature. The expedient used here to
overcome this evident semiclassical difficulty is to extend the
real phase space to a complex one. This, therefore, suggests
that classical correlations in an extended phase space [50], a
valid interpretation of boundary conditions (31), are closely
related to genuinely quantum correlations. Notice that, in
this case, in principle, sets of trajectories defined here could
be used to describe entanglement in other possibly classi-
cal approaches. However, their complex nature seems to be
unavoidable.

This work defines specific properties of a classical sys-
tem, given by Eq. (31), which somehow carry information
about quantum entanglement. Contrarily to other works which
sum contributions over an ensemble of trajectories (e.g.,
Refs [14,16]), our approach allowed us to identify only a few
classical trajectories relevant to mimic, to a certain extent,
the quantum behavior. We also understand that the announced
entangled boundary conditions may encapsulate useful infor-
mation to better explain the connection between the classical
dynamical properties and the growth of entanglement, or, in
other words, to investigate classical mechanisms associated
to entanglement. By the way, some authors have recently
questioned the well-accepted conclusions pointing to a direct
relation between chaos and rapid growth of entanglement
[9,13,17,18]. We consider that our work may shed some light
over this discussion, but it is an issue that we intend to develop
in a future work where we will also extend the formalism to
spin degrees of freedom.

At last, we would like to apply the present approach to
the scenario of Bell-type inequalities in the same spirit as
Ref. [52]. Since we have produced an excellent reproduction
of the quantum entanglement behavior by means of classical
elements, we wonder if it could violate those inequalities. In
the positive case, to be consistent with Bell’s work, an amount
of nonlocality should be identified in the formalism.
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