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We theoretically analyze the observations reported in a four-path quantum interference experiment via
multiple-beam Ramsey interference [Phys. Rev. Lett. 86, 559 (2001)]. In this experiment, a selective scattering
of photons from just one interfering path causes decoherence. However, contrary to expectations, there is an
increase in the contrast of the interference pattern, demonstrating that path selective decoherence can not only
lead to a decrease but, under certain conditions, lead to an increase of the fringe contrast. Here we explain
this seemingly counterintuitive effect based on a model for a multipath interference, with four to six slits, in
the presence of decoherence. The effect of the environment is modeled via a coupling to a bath of harmonic
oscillators. When decoherence is introduced in one of the multiple paths, an enhancement in fringe contrast
is seen under certain conditions. A similar effect is shown to appear if instead of path-selective decoherence,
a selective path detector is introduced. Our analysis points to the fact that while traditional fringe visibility
captures the wave nature in the two-path case, it can fail in multipath situations. We explain the enhancement
of fringe visibility and also show that quantum coherence based on the l1 norm of coherence, in contrast to
traditional visibility, remains a good quantifier of wave nature, even in such situations. The enhancement of
fringe contrast in the presence of environmental decoherence underscores the limitations of traditional visibility
as a good measure for wave nature in quantifying complementarity and also makes it an unlikely candidate for
quantifying decoherence. Our analysis could lead to better insight in ways to quantify decoherence in multipath
interference and in studies that seek to exploit quantum superpositions and quantum coherence for quantum
information applications.
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I. INTRODUCTION

Quantum interference lies at the heart of quantum phe-
nomena and is a subject of continual and intense interest,
fascination, and study. Feynman et al. placed the double-slit
interference experiment at the very core of quantum mechan-
ics and famously declared that it contains “the only mystery”
of quantum mechanics [1]. While the double-slit experiment
for classical light is satisfactorily understood in terms of the
wave nature of light, interference experiments in quantum
systems continue to throw up conceptual challenges just as
advances in technology push frontiers to implement hith-
erto impossible interference experiments with progressively
larger quantum systems like cold atoms, large molecules, and
Bose-Einstein condensates [2–8]. Larger interfering quantum
objects are also vulnerable to decoherence, which is believed
to wash out quantum behavior and drive the transition from
quantum to classical systems [9–11]. Germane to the debate
surrounding the double-slit experiment in quantum mechanics
is Bohr’s Principle of Complementarity [12] and discussions
regarding the consequences of “which-way” detection on
the interference pattern. The observation of an interference
pattern is a signature of the wave nature of the quanton
while the acquisition of which-way information marks its
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particle nature, both of which are considered complementary
or mutually exclusive. In other words, the complete ignorance
of which-way information gives a fringe pattern with perfect
visibility while the presence of full which-way information
washes out the fringes. In an intermediate regime where
one obtains incomplete which-way information, interference
fringes persist with reduced visibility. This was established
in a pioneering result by Wootters and Zurek [13], follow-
ing which Greenberger and Yasin [14] and Englert [15,16]
established complementarity relationships between measures
which quantitatively estimate the which-path information, and
the visibility, which measures the fringe contrast. Subsequent
studies involved the inclusion of which-way detectors in the
interference experiment and the concept of the quantum eraser
[17–20] and complementarity relations in two-path interfer-
ence were also successfully validated by experiments [21–25].
Central to all investigations involving duality relations has
been the traditional notion of visibility as a measure of the
wave nature given by

V = Imax − Imin

Imax + Imin
, (1)

where Imax and Imin are the maximum and minimum of the
interference pattern (intensity distribution) on the screen.
Following the double-slit studies, it was natural to explore
analogous forms of interferometric duality when there is
a multipath interference by the quanton. Some significant
studies in this direction were made [26–37], particularly by
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Dürr [26], where the inequality relations characterizing wave
and particle properties in two-beam interferometers were gen-
eralized to multibeam interferometers. Many earlier studies
of multipath interference were based on predictability, i.e.,
predicting which path the particle might have followed based
on the asymmetry of the beam, rather than distinguishability,
which involves using a path-detecting device to probe which
path the particle followed. In an interesting study of multi-
path interference involving path detection, Jakob and Bergou
[28] represented distinguishability in terms of predictability
and a measure of the degree of entanglement between the
particle paths and the path-detecting device (concurrence),
introducing a new way of looking at duality, in terms of three
measures: predictability, concurrence, and visibility [29]. This
study involved a newly defined generalized visibility. For the
particular case of three-slit interference, Siddiqui and Qureshi
have recently derived a new duality relation which uses the
conventional fringe visibility (1) [30]. However, in spite of
these results, it is increasingly doubted whether the traditional
notion of visibility is really compatible with the intuitive idea
of complementarity, except in the case of two-slit interference
[38–41]. Our analysis of Mei and Weitz’s experiment [38,39]
in this paper will also highlight the inadequacy of visibility as
a satisfactory measure of wave nature, as understood conven-
tionally.

The notion of coherence intimately captures the wave
aspect of both classical light and quantum systems. Recently, a
measure for quantum coherence was defined in the framework
of quantum information theory by Baumgratz et al. [42].
This was used in defining a normalized quantum coherence
measure by Bera et al. [31] to derive a wave-particle duality
relation for arbitrary multipath quantum interference phenom-
ena. Simply stated, the normalized coherence, also known
as the l1 norm of coherence, is defined as the sum of the
absolute values of the off-diagonal elements of the density
matrix describing the quantum system:

C = 1

n − 1

∑
i �= j

|〈i|ρ| j〉|, (2)

where n is the dimensionality of the Hilbert space and the
value of C always lies between 0 and 1. This measure is clearly
basis dependent and ρi j = 〈i|ρ| j〉 are the matrix elements of
the density operator of the system, in the basis formed by the
set of n orthogonal states, which correspond to the quanton
passing through the n different slits. Using the above measure,
Bera et al. [31] stated the Bohr complementarity principle for
multipath quantum interference as a duality relation between
quantum coherence (in contrast to conventional visibility) and
path distinguishability, whose measure was described in a par-
ticular fashion via unambiguous quantum state discrimination
(UQSD) [43,44]. Bagan et al. [32] took an alternate approach
to path distinguishability based on minimum error state dis-
crimination and derived a different duality relation using the
coherence given by (2) as a measure of wave nature. However,
it was subsequently pointed out that this duality relation was
not tight, and a similar looking, but tight, duality relation was
derived by Qureshi and Siddiqui [33]. In another approach,
the problem of wave-particle duality was formulated in terms
of “discrimination games” by Bagan et al. [34], and a tight

duality relation was obtained, again in terms of coherence.
The results of Bera et al. [31], Qureshi and Siddiqui [33], and
Bagan et al. [34] firmly established that quantum coherence
and path distinguishability are truly complementary in nature,
thus making quantum coherence superior to the notion of
traditional visibility in a satisfactory understanding of wave
particle duality. It is worthwhile to point out here that the
two-slit interference remains an exceptional situation where
the traditional visibility is the same as quantum coherence.
Following the work of Bera et al., Paul and Qureshi presented
a method of experimentally measuring quantum coherence
in a multislit interference experiment [45], putting it on a
firmer footing as a true experimentally measurable signature
of wave nature. Recently, Venugopalan et al. [46] analyzed the
multislit interference experiment with which-way detectors
in the presence of environmental coupling and obtained an
expression for quantum coherence as a function of the pa-
rameters of the environment, thus providing a way to quantify
decoherence through a measurement of quantum coherence.
While all these studies seem to undermine the role of tra-
ditional visibility vis-à-vis quantum coherence, there is no
denying the fact that traditional visibility remains an intuitive
and directly observable and measurable sign of the under-
lying wave phenomenon in a wide variety of experiments.
Indeed, for a two-slit interference, a decrease in the Michelson
contrast (traditional visibility) is a certain sign of which-path
information or the presence of decoherence. In view of this, it
does seem difficult to discard traditional visibility completely
in favor of coherence for situations involving more that two
paths.

In the following, we theoretically analyze the observations
reported in a four-path quantum interference experiment via
multiple-beam Ramsey interference [38,39]. In this experi-
ment, a selective scattering of photons from just one interfer-
ing path causes decoherence, revealing the which-path infor-
mation, demonstrating that path-selective decoherence can not
only lead to a decrease but, under certain conditions, lead to
an increase of the fringe contrast. We analyze the experiment
and explain this seemingly counterintuitive effect based on a
model for a multipath interference in the presence of decoher-
ence. We show that an enhancement of fringe visibility with
path-selective decoherence and π phase in one path can be
seen where the results are particularly interesting for three and
four paths. However, we find that with a further increase in the
number of interfering paths, the effect is not that significant.
Our analysis reaffirms the fact that while traditional fringe
visibility captures the intuitive idea of complementarity in the
two-path case (where an increase in which-path information
implies a decrease of fringe visibility for pure states), it can
fail in multipath situations and under the particular conditions
of Refs. [38,39], it can show unexpected and counterintuitive
behavior. We correlate the effect to the recently introduced
l1 norm of quantum coherence which can be experimentally
measured and show that coherence, as defined by the l1 norm,
in contrast to traditional visibility, captures complementarity
and remains a good quantifier of wave nature. Further, we
show that even in situations where visibility could increase
with increasing decoherence (or which-path information),
coherence always decreases and preserves its part in the
complementarity relations. Moreover, in such situations, the
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FIG. 1. Schematic diagram of an n-slit interference experiment,
with a quantum path detector. The interfering quanton is affected
by interaction with an environment only in one path which has an
additional phase of π .

amount of decoherence can be estimated only by a measure
of the residual coherence and cannot be inferred by changes
(increase or decrease) in fringe contrast.

The rest of the paper is organized as follows: In Sec. II, we
describe a simple model that captures a multipath interference
set up with which-way detectors with the introduction of a π

phase and the possibility of which-path information in one of
the paths (see Fig. 1), to mimic the experiment of Mei and
Weitz [38,39]. We look at the intensity distribution for n paths
and analyze the cases for three and four paths. We explain
the enhancement of visibility with which-path detection (and
π phase) in one path and compare it with the l1 norm of
quantum coherence. In the three-path case, we show that
there is initially a decrease in visibility as path information
increases followed by an increase. We find that complete
path information in one path does not lead to an overall
enhancement of visibility compared to the case when all paths
are indistinguishable. However, partial path information can
lead to visibility enhancement as will be clear in the following.
In the four-path case, we see that there is initially a decrease
in visibility as path information increases, following which
there is a significant increase in the visibility with increasing
path information, in tune with the observations seen in the
four-path experiment of Mei and Weitz. Similar trends are
seen in the case of five and six slits. In Sec. III, we incorporate
the effect of a real environment modeled by a bath of harmonic
oscillators. This environmental coupling mimics the effect of
photon scattering in a single path and we add a π phase to
create the conditions of Mei and Weitz’s experiment [38,39].
Once again, our analysis shows results predicted in Sec. I.
We correlate our results for visibility with quantum coherence
and decoherence and discuss its implications in Sec. IV before
concluding in Sec. V.

II. MULTISLIT INTERFERENCE WITH WHICH-WAY
PATH DETECTORS

A. Visibility

Let us consider a quanton passing through n paths (slits)
such that the quantum state corresponding to the nth path is
|ψn〉. Then the state of the quanton can be written as

|�〉 = c1|ψ1〉 + c2|ψ2〉 + c3|ψ3〉 + · · · + cn|ψn〉, (3)

where
∑n

i |ci|2 = 1 and the states |ψn〉 are orthonormal to
each other. Let this quanton be entangled with an ancilla

system which can be considered as an effective environment
or any other path-detecting device. The states of the ancilla
|χn〉 are assumed to be normalized but are not necessarily
orthogonal to each other. The density operator corresponding
to the combined state of the quanton and the ancilla after their
interaction is the entangled state:

ρ =
n∑

j=1

n∑
k=1

c jc
∗
k |ψ j〉〈ψk|ei(θ j−θk ) ⊗ |χ j〉〈χk|, (4)

where θ j represents the phase by which the beam coming out
of the jth path is shifted. Since we are only interested in
the dynamics of the quanton, we will trace over the ancilla
states to obtain the density operator of the reduced state of the
quanton as

ρred =
n∑

j=1

n∑
k=1

c jc
∗
k |ψ j〉〈ψk|ei(θ j−θk ) ⊗ 〈χk|χ j〉. (5)

Let us assume that after emerging from the n slits, the beams
are combined and split into new channels, whose states may
be represented by |φi〉. For simplicity, we assume that all the
original beams have equal overlap with a particular output
channel and that this overlap is given by α. The probability,
I , of finding the quanton in the ith channel is then

I = 〈φi|ρred|φi〉

= |α|2
⎡
⎣1 +

∑
j �=k

|c j ||c j |〈χk|χ j〉 cos(θ j − θk )

⎤
⎦. (6)

Further, it is also assumed that the phases in the beams
can be independently varied. We now look to incorporate the
conditions of the experiment of Mei and Weitz [38,39], i.e.,
introduce the possibility of which-path information and a π

phase in only one path. Let this be the nth path. This means
that the rest of the n − 1 detector states are identical with
each other (i.e., their overlaps 〈χk|χ j〉 = 1) but these n − 1
detector states all have an overlap with the nth detector states
given by 〈χ j |χn〉 = β, where j = 1, 2, 3, . . . , n − 1, and the
value of β lies between 0 and 1. We can represent the path
information of the nth path by a quantity one-path knowledge
which can be parametrized by 1 − β. If β = 0, it would imply
complete one-path knowledge, with value 1. On the other
hand, if β = 1, it implies zero one-path knowledge and all
paths are indistinguishable. To mimic the conditions of the
experiment, we add a π phase to the nth detector. Further,
for simplicity we assume that the phases associated with the
n paths are such that they can be written as θk = kθ and
θn = nθ + π . The density operator for this reduced state of
the quanton can then be represented as the n×n matrix

ρred = 1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . −β

1 1 1 1 . . −β

1 1 1 1 . . −β

1 1 1 1 . . −β

. . . . . . −β

. . . . . . −β

−β −β −β −β −β −β 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)
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FIG. 2. Variation in visibility with respect to one-path knowledge
(1 − β) for (a) three-path, (b) four-path, (c) five-path, and (d) six-path
interference.

and the intensity (6) of the quanton in the ith channel can be
shown to be

I = |α|2
⎧⎨
⎩1 +

n∑
j=3

(n + 1 − j) cos[( j − 2)θ ]

− 2β

n
cos[(n − 1)θ ] − 2β

n

cos
[ (n−1)θ

2

]
sin
[ (n−2)θ

2

]
sin
(

θ
2

)
⎫⎬
⎭.

(8)

One can see from (8) that the intensity for the two-path
case (n = 2) is |α|2(1 − β cos θ ). As expected, the visibility,
(1), V = β for the two-path case. Clearly, for full one-path
knowledge (β = 0), the visibility is 0 while for zero one-
path knowledge (β = 1) visibility is 1. As mentioned before,
the two-path case is straightforward and in tune with all
conventional notions of visibility and complementarity. Let us
now look at the scenario where there are more than two paths
(n � 3). For n = 3, one can see that intensity (8) is given by

I = |α|2
[

1 + 2(1 − β )

3
cos(θ ) − 2β

3
cos(2θ )

]
. (9)

Note that (9) incorporates the possibility of path information
in the third path (via β), and this path also has an additional
π phase. From (9), the visibility as a function of the detector
overlap β (which quantifies the one-path knowledge) is shown
in Fig. 2(a). One can see that for both the case of complete
path information (β = 0) and no path information (β = 1),
the visibility, (1), for the n = 3 case is 2

3 . Thus, in contrast
to the observation of enhancement in visibility seen in the
four-path experiment of Mei and Weitz [38,39], it appears
as though the three-path case shows no such enhancement in
visibility when one compares the case of complete path indis-
tinguishability (β = 1) and that of complete path information
(β = 0) with the π phase in the third path. However, note from
Fig. 2(a) that if we look at an intermediate range of values for
β (say, between 0.2 and 0.5), which corresponds to partial
path information, the n = 3 case shows a regime in which

the visibility enhances with increasing path information
[see Fig. 2(a)].

In an earlier work, Bimonte and Musto constructed a three-
beam example to demonstrate that one could have a peculiar
situation where increasing path information could lead to
an increase in fringe visibility [27]. However, their analysis
fell short of demonstrating that [47]. The preceding analysis
completes the task left unfinished in the analysis of Bimonte
and Musto. Clearly, this effect is counterintuitive to the no-
tion of complementarity as understood in duality relations
between conventional visibility and path information. Unlike
in the two-path case, in the three-path case, it is clear that
under conditions described above, the traditional visibility
does not capture the intuitive idea of wave-particle duality.
Since the preceding analysis shows that even in a three-beam
interference experiment visibility can increase with increasing
path information, it also implies that the duality relation for
three-slit interference, formulated by Siddiqui and Qureshi
[30], will not hold in such special scenarios.

Let us now analyze the observations reported in the four-
path quantum interference experiment of Mei and Wietz
[38,39]. In this experiment, a selective scattering of photons
from just one interfering path can lead to an increase in the
fringe contrast if an additional phase of π is included in the
path. Although it is not possible to extract path information
in this experiment, it is obvious that the scattered photons do
carry path information about the particle. Our ancilla states
can effectively mimic the role of photons. From (8), it can be
shown that the intensity of the quanton for n = 4 is

I = |α|2
[

1 + 2 − β

2
cos(θ ) + 1 − β

2
cos(2θ ) − β

2
cos(3θ )

]
.

(10)

From (10), the visibility as a function of the detector overlap β

(which quantifies the path information) is shown in Fig. 2(b).
Note that in the n = 4 case, when there is complete path
information (β = 0) of the fourth path, the visibility is more
than that of the case when all four paths are indistinguishable
(β = 1). This is in agreement with the experimental obser-
vations of Mei and Weitz. Also note that in the regime with
partial path information, one can see regions where there
is a definite enhancement of visibility with increasing path
information. This trend is more dramatic in the n = 4 case
compared to the n = 3 case. It is worth pointing out here that
the inclusion of the π phase is very crucial to this effect since
what would have been a perfect destructive interference of the
fourth path with the other three is now being replaced by a
more incoherent contribution of this path to the interference
pattern. It is easy to verify from (6) that the inclusion of
a π phase for n = 2, i.e., the two-path case, will have no
such effect. Figures 2(c) and 2(d) show similar plots for the
cases n = 5 and n = 6, respectively, and one can see that an
increase in the knowledge of path information is accompa-
nied by increase in the visibility of the interference fringes.
Upon further increasing the number of paths, we see that the
variation in the fringe visibility with β (the degree of path
information of the nth path) reduces and saturates to a value
close to 1 as n becomes very large. This is akin to a diffraction
grating where larger number of slits leads to a sharper fringe
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FIG. 3. Variation in coherence with respect to one-path knowl-
edge (1 − β) for (a) three-path, (b) four-path, (c) five-path, and
(d) six-path interference.

pattern or higher visibility. Clearly, as n becomes very large,
the path information of just one path has a negligible effect on
the visibility as more paths coherently contribute to it. Thus,
one can conclude that the counterintuitive effect seen in the
experiment of Mei and Weitz is significant only for a small
number of interfering paths and is most appreciable in the n =
4 case (chosen for their experiment) and becomes negligible
as we increase n beyond six paths. Even so, the enhancement
in fringe contrast with increasing path information for n =
3, 4, 5, 6 is in conflict with the spirit of Bohr’s complementary
and points to the limitations of traditional visibility, (1).

B. Quantum coherence

Quantum entanglement and quantum coherence both inti-
mately capture the intrinsic and uniquely quantum nature of
systems. A measure for quantum coherence, called the l1 norm
recently defined in the framework of quantum information
theory by Baumgratz et al. [42] has evoked a lot of interest
and it has been argued that this l1 norm is a better quantifier
of wave nature than traditional visibility. The l1 norm was
generalized to a normalized quantum coherence measure by
Bera et al. [31] to derive a wave-particle duality relation for
arbitrary multipath quantum interference phenomena. It can
be seen that the coherence, (2), for the state of the quanton,
(7), is

C(ρred ) = 2β

n
+ n − 2

n
. (11)

We can see that for n = 2, C(ρred ) = β, and for n = 3 and n =
4, it is 2β

3 + 1
3 and β+1

2 , respectively. Note that the quantum
coherence via l1 norm is the same as the traditional visibility
for the two-path case. In Fig. 3, we show the variation of
coherence with the degree of one-path knowledge (1 − β) for
the cases of three, four, five, and six paths. Clearly, unlike the
visibility, the coherence measured by the l1 norm decreases
monotonically with increase in the path information, in the
spirit of Bohr’s complementarity. Note also that unlike visi-
bility, the measure of coherence is unaffected by the presence

or absence of the π phase in one path. Consequently, all
the duality relations based on coherence [31,33,34] will be
respected, irrespective of their definition of distinguishability.
Equation (11) also shows that when the number of paths is
large (n → ∞), the degree of which path information, β, is
of little significance and coherence approaches its maximum
value of 1.

For illustration of the preceding sections, we used a very
simple model to incorporate the effect of the n detectors by
assuming that the overlaps of n − 1 detectors is such that
〈χk|χ j〉 = 1 and that these n − 1 detectors states all have an
overlap with the nth detector state (which will provide the
which-path information) given by 〈χ j |χn〉 = β, where j =
1, 2, 3, . . . , n − 1. In Mei and Weitz’s experiment [38,39],
done via multiple-beam Ramsey interference with cesium
atoms, while there are no explicit detector states entangled
with the quanton’s state of four interfering paths, the degree of
which-path information is presumably revealed by a scattering
of photons from the fourth path. In the experiment, the four
interfering paths are represented by the magnetic sublevels
of the F = 3 hyperfine component of the cesium electronic
ground state. Upon irradiating the atoms with resonant optical
beams, a coherent superposition of four magnetic ground-
state sublevels is created which simulates the four-path in-
terference. The coherent superposition is probed via atom
interferometry techniques to obtain the fringe pattern. Be-
tween the Ramsey pulses, one selected path is coupled to the
environment by a sequence of microwave pulses resulting in
path-selective decoherence due to scattering of photons which
can reveal the which-path information. The initial motivation
for Mei and Weitz’s experiment was to study decoherence
in the multipath interference scenario and they suggest from
their counterintuitive observations that in the case of multiple-
beam interference the Michelson fringe contrast (visibility) is
not sufficient to quantify decoherence.

In the next section, we look at the multipath interference
of Mei and Weitz with path selective decoherence and π

phase by incorporating the effect of a realistic environment
and analyze its effect on visibility and quantum coherence.

III. MULTISLIT INTERFERENCE WITH DECOHERENCE

Let us now assume that as the particle (quanton) comes
out of the n slits and travels to the screen, it is affected by
weak interaction with some kind of environment. We describe
this environment as a reservoir of noninteracting quantum
oscillators, each of which interacts with the particle. The
Hamiltonian governing the particle can then be represented
as

H = p2

2m
+
∑

j

P2
j

2Mj
+ 1

2
Mjω

2
j

(
Xj − g jx

Mjω
2
j

)2

, (12)

where x, p are the position and momentum operators of the
particle (quanton), m is its mass, Xj, Pj are position and
momentum operators, Mj is the mass of the jth harmonic
oscillator of frequency ω j comprising the environment, and
g j are the respective coupling strengths. Such a system has
been studied in great detail [48–53] and the solution for this
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Hamiltonian is governed by the master equation given by

∂ρ(x, x′, t )

∂t
=
{−h̄

2im

(
∂2

∂x2
− ∂2

∂x′2

)

− γ (x − x′)
(

∂

∂x
− ∂

∂x′

)
− D

4h̄2 (x − x′)2

}
,

(13)

where ρ(x, x′, t ) is the reduced density matrix of the quanton
after tracing out the environmental degrees of freedom, γ

is the Langevin friction coefficient, D = 2mγ kBT can be
interpreted as a diffusion coefficient, and T is the temperature
of the harmonic oscillator heat-bath [48–50].

Let us assume that the state |ψk〉 which emerges from the
kth slit is a Gaussian wave packet localized at the location of
the kth slit, with a width equal to the width of the slit:

〈x|ψk〉 = 1

(π/2)1/4
√

ε
e−(x−k�)2/ε2

, (14)

where � is the distance between the centers of two neighboring
slits and ε is their approximate width. Assuming that which-
path detectors present at each slit interact with the particle
(quanton), the combined wave function of the particle and the
detectors, as it emerges from the n slits, is given by

〈x|�〉 = 1

(π/2)1/4
√

ε

n∑
k=1

cke−(x−k�)2/ε2 |χk〉, (15)

The density matrix corresponding to this can be written as

ρ0(x, x′) = 1√
π/2ε

∑
j,k

c jc
∗
k e

−(x− j�)2

ε2 e
−(x′−k�)2

ε2 |χ j〉〈χk|. (16)

If one were to look only at the particle, it amounts to tracing
over the states of the path detectors, giving us the reduced
density matrix for the quanton

ρ(x, x′, 0) = 1√
π/2ε

∑
j,k

c jc
∗
k e

−(x− j�)2

ε2 e
−(x′−k�)2

ε2 〈χk|χ j〉. (17)

This is the density operator of the particle at time t = 0 as
it emerges from the n slit. Its decoherent dynamics will be
governed by Eq. (13). Under the assumption that the effect
of the environment is so weak that dissipative time scales
are much longer than the time the particle takes to reach the
screen (t) after traveling a distance L, the diagonal component
of the density operator ρ(x, x′, t ) representing the probability
density of the particle hitting the screen at a point x can be
given by

ρ(x, x, t ) = 1√
πα/2

⎡
⎣ n∑

j=1

|c j |2e−2ε2(x− jl )2/(λL/π )2

+
∑
j �=k

|c j ||ck||〈χk|χ j〉|e
−ε2{(x− j�)2+(x−k�)2}

(λL/π )2 e
−D( j−k)2�2t

12h̄2

× cos

{
2π�(k − j)

(
x − �

k+ j
2

)
λL

+ θk − θ j

}⎤
⎦,

(18)

where α = ε2 + h̄2(1−e−2γ t )2

ε2m2γ 2 + D[4γ t+4e−2γ t −e−4γ t −3]
8m2γ 3 . Staying

within the Fraunhoffer limits, the width of the slits (ε) is much
much small in comparison to the fringe width (λL/l), so the
narrow width of the Gaussians in (17) will become very large
in (18). So for all the practical purposes, the values of all the
Gaussians, at any point x on the screen, is almost the same,
and thus independent of j, k, and the expression for ρ(x, x, t )
can be approximated as

ρ(x, x, t ) ≈ e−2ε2x2/(λL/π )2

√
πα/2

⎧⎨
⎩1+

∑
j �=k

|c j ||ck||〈χk|χ j〉|e
−D( j−k)2�2t

12h̄2 cos

[
2π�(k − j)x

λL
+ θk − θ j

]⎫⎬
⎭. (19)

Equation (19) is a recently reported result by Venugopalan
et al. [46] for an n-slit interference in the presence of envi-
ronmentally induced decoherence. Note that in the limit of
coupling with the environment going to zero, which is the
regime when decoherence is completely absent, i.e., when
γ → 0, D → 0, (19) reduces to Eq. (16) of Ref. [45], which
is the known result for a multipath interference. Equation (19)
shows that the decohering n-slit interference pattern is also
built up from all possible two-slit inteference terms which
is also the case when there is no coupling to the environ-
ment [45]. The environmental coupling has had the effect
of modifying these pairwise contributions and this effect of
decoherence is neatly condensed into the exponential factor
e−D( j−k)2�2t/12h̄2

in Eq. (19), which multiplies the cosine term
giving rise to the interference. Notice that the exponential
decay term in (19) whose argument is −D( j − k)2�2t/12h̄2

cannot be pulled out of the summation, as it depends on j, k.

It may also be noted that for each pair of slits, there will be
a characteristic decoherence time, τ

( jk)
d = 12h̄2/D( j − k)2�2,

and for n slits there will be a total of n(n − 1)/2 timescales
which will collectively contribute in the summation, leading
to the degradation of the n-slit pattern. For the simplest case
of two slits, there will be only one timescale, τd = 12h̄2/D�2.

Now let us see how we can apply the general result (19)
to the situation explored in the experiment of Mei and Weitz.
As discussed in detail in the previous sections, in the n-path
interference, there is an additional π phase added to the nth
path and there is also the possibility of which-path information
from decoherence via scattering of photons for this path. In the
present model, decoherence will be instrumental in revealing
the which-path information, and we assume that the effect
of the environment applies only to the nth path. Note that
this means we set all detector overlaps to 1, making them
irrelevant for now. With these conditions taken into account,
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the probability density of the particle hitting the screen at a
point x can be written as

ρ(x, x, t ) ≈ e−2ε2x2/(λL/π )2

√
πα/2

⎧⎨
⎩1 +

n−1∑
j �=k

|c j ||ck|

× cos

[
2π�(k − j)x

λL
+ θk − θ j

]

− 2
n−1∑

j

|c j ||cn| e
−D(n− j)2�2t

12h̄2

× cos

[
2π�(n − j)x

λL
+ θn − θ j

]⎫⎬
⎭. (20)

Equation (20) captures the multipath interference pattern as
the position probability distribution on the screen when the
nth path is impacted by environmental influence and has an
additional π phase. Clearly, with the passage of time, one can
see progressive decoherence happening from the contribution
of the last term, which eventually kills the interference be-
tween the nth path and all the others, increasingly revealing
which-path information. When t → ∞, there is complete path
information of the nth path. With n = 4, one can explore (20)
to explain the results of Mei and Weitz, which we will do in
the next section.

Next, we ask if it is possible to extract the amount of
quantum coherence as defined in (2) from the interference
(20) and have a way of measuring it in a real experiment. It
has been shown by Paul and Qureshi [45] that it is possible
to measure quantum coherence in a real experiment for a
multislit interference with which-way detectors whose path
distinguishability is tunable [45] between two modes: (a) one
that makes all paths completely indistinguishable and (b) one
that makes all paths fully distinguishable. If the two cases,
(a) and (b), are denoted by ‖ and ⊥, respectively, Paul and
Qureshi provide the following protocol: First, the intensity
at a primary maximum I‖

max is measured when the n paths
are indistinguishable, i.e., |χi〉s are all identical and parallel.
Next, the path detector is switched to the mode (b) where all
the n paths are fully distinguishable, and the intensity I⊥

max
is measured at the same location on the screen as before.
Coherence of the incoming quanton can then be measured as
[45]

Cexpt = 1

n − 1

I‖
max − I⊥

max

I⊥
max

. (21)

While this protocol works for most cases of n-path inter-
ference, in an experiment like that of Mei and Weitz, notice
that there is a deliberate arrangement of the π phase in one

particular path such that the knowledge of path information
for this path, instead of degrading the interference pattern
(as normally expected), leads to a sharper contrast, as has
been elaborated in the previous sections. In such situations,
the protocol of Paul and Qureshi fails to provide an experi-
mental measure of coherence. However, we have seen from
discussions in the previous sections that coherence (2) does
indeed decrease with increasing path information, even while
the interference pattern becomes sharper. How then, can we
measure the coherence? The way around this is a recent
result by Qureshi [54] where a modified and unconventional
protocol is proposed which allows for the measurement of
quantum coherence in situations such as the experiment of
Mei and Weitz where there could be constraints on phases.
Coherence can be measured in such cases by opening only one
pair of paths at a time (while blocking the rest), measuring
conventional visibility for each pair at a time, and finally
taking an average over all n(n − 1)/2 pairs of paths. Essen-
tially, this casts quantum coherence as a sum of visibilities
of interference from individual pairs of path. We can show
that coherence (2) of the pattern (20) can then be measured in
terms of pairwise visibility using this protocol [54] as

C(ρ(x, x, t )) = 2

n(n − 1)

n−1∑
j �=k

2|c j ||ck|
|c j |2 + |ck|2

+ 2

n(n − 1)

n−1∑
j

2|c j ||cn|
|c j |2 + |cn|2 e

−D(n− j)2�2t
12h̄2 . (22)

We recall, once again, that the two-path scenario remains
the exceptional case where quantum coherence is the same
as traditional visibility. In the next section, we discuss and
analyze the results (20) and (22).

IV. RESULTS AND DISCUSSION

In the previous sections, we have analyzed the multislit
interference set up with which-way detectors for situations
where there is a possibility of which-way path detection for
one particular path either through the detector or by means
of path-selective decoherence. Additionally, in tune with the
experiment of Mei and Weitz, the selected path has an extra
phase of π . In the preceding section, incorporating a model
for the environment, we have obtained an expression for the
intensity distribution of the quanton (20) and the quantum
coherence (22) in terms of the parameters of the environment.
Let us now try to analyze how the visibility and coherence of
the system evolves with time for the case of an initial max-
imally coherent state, (7), i.e., when ci = 1√

n
. The intensity

distribution on the screen of the quanton is then

ρ(x, x, t ) ≈ e−2ε2x2/(λL/π )2

√
πα/2

⎧⎨
⎩1 + 1

n

n−1∑
j �=k

cos

[
2π�(k − j)x

λL
+ θk − θ j

]
− 2

n

n−1∑
j

e
−D(n− j)2�2t

12h̄2 cos

[
2π�(n − j)x

λL
+ θn − θ j

]⎫⎬
⎭,

(23)
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FIG. 4. Plots of ρ(x, x, t )/ρ(0, 0, 0) at the screen, for four-
path interference, showing how decoherence progressively af-
fects interference. The following parameters used are adapted
from the interference experiment on ultracold neon atoms
[2]: m = 3.349×10−26 Kg, T = 2.5 mK, λ = 0.018 μm, � = 6 μm,

L = 37 mm. The dashed blue plots are t/τd = 0 while the red
plots are for (a) t/τd = 1/12, (b) t/τd = 1/4, (c) t/τd = 1/2, and
(d) t/τd = 2 where τd = 12h̄2/D�2. We can observe that with in-
crease in time the there is an enhancement of the visibility.

and the quantum coherence is

C(ρ(x, x, t )) = n − 2

n
+ 2

n(n − 1)

n−1∑
j

e
−D(n− j)2�2t

12h̄2 . (24)

In Fig. 4, we plot the intensity pattern of the quanton with
the passage of time, for the n = 4 case. Clearly, the pattern
shows an enhancement of fringe contrast with increasing
decoherence, as observed in the experiment of Mei and
Weitz. The variation of visibility and coherence with time for
n = 3, 4, 5, and 6 are plotted in Fig. 5.

FIG. 5. Variation of visibility (in red filled circles) and coherence
(in blue empty circles) with respect to scaled time t/τd for (a) three-
path, (b) four-path, (c) five-path, and (d) six-path interference.

Let us now examine the initial visibility and quantum
coherence of the quanton before decoherence starts in the nth
path. Note that since all the which-way detectors are assumed
to be identical, and the quanton is initially in a pure state,
at t = 0 the initial quantum coherence of the quanton for all
cases has the maximum value of 1. However, the visibility at
t = 0 does not have its maximum value of 1. This is because
the presence of an additional π phase in one of the paths
affects the visibility and keeps it at a value that is less than
1 at t = 0. Thus, unlike coherence, even all identical which
way detectors and a pure maximally coherent state does not
ensure maximum visibility. Coherence is unaffected by the
presence of the π phase. With the passage of time, there is
path-selective decoherence in one of the paths and this affects
the overall interference pattern and is also the mechanism for
progressively revealing the path information. At t = 0 there
is no decoherence and at t � 12h̄2

Dl2 , i.e., t � τd , we have a
situation where there is full decoherence. For the n-path case,
the coherence (24) of the quanton decays and saturates to the
value of n−2

n for large times when the decoherence has played
its role to the fullest. Note that this was also seen in (11).

Let us now look at the specific case of the three-path
interference [see Fig. 5(a)]. We can see that with the passage
of time, while the coherence of the quanton decays from a
maximum value of 1 to minimum value of 1/3, the visibility
shows a rather unusual variation. For short times, the plot
shows a decrease in visibility but as time progresses there is an
increase in the visibility. Thus, even though there is progres-
sive decoherence over time, and hence increasing path infor-
mation, there is a definite observable increase in the visibility
which clearly goes against the spirit of what is understood
conventionally as Bohr’s complementary principle. Note that
this was also seen in our analysis in Sec. II [see Fig. 2(a)].
Similarly, for four paths, one can see from Fig. 5(b) that with
the passage of time while the coherence of the quanton decays
from a maximum value of 1 to a minimum value of 1/2, the
visibility of the interference fringes increases, as seen in the
experiment of Mei and Weitz. Also, for this case, it is clear
from our analysis that the visibility for full path information
(large t) is greater than in the case of no path information
(t = 0). A similar trend for visibility and coherence can be
seen for five- and six-path cases [see Figs. 5(c) and 5(d)],
though they are less dramatic as compared to the n = 4 case.
Note that with the increase in the number of paths, the effect
of decoherence in one of the paths on the visibility and
coherence decreases and both saturate to a value practically
close to the maximum value 1. This can be understood from
the fact that with large number of available paths the effect
of decoherence in just one of the paths will have a negligible
impact on the overall interference pattern, and a large number
of interfering paths contribute to the enhancement of visibility
and coherence.

V. CONCLUSIONS

To summarize, we have analyzed multipath quantum in-
terference where which-path information for one particular
path is revealed by which-way detectors with an additional
π phase in the selected path. We have also analyzed multipath
quantum interference where a path-selective decoherence plus
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an additional π phase in the selected path, is introduced, as
in the experiment of Mei and Weitz. Through this analysis,
we explain the observations of an experiment by Mei and
Weitz where path-selective decoherence can lead to not only
a decrease but an increase of the fringe contrast. The effect
of the environment is modeled via a coupling to a bath of
harmonic oscillators. When the effect of the environment
(decoherence) is introduced in one of the four paths, an
enhancement in fringe contrast is seen under the conditions
of Refs. [38,39]. We show that a similar effect can be seen in
the general case of multipath interference with path-selective
decoherence and illustrate it additionally for three, five, and
six slits. Our results suggest that traditional fringe visibility,
while capturing well the intuitive idea of complementarity in
the two-path case, fails in multipath situations such as those
seen in the experiment of Mei and Weitz, raising serious
doubts on its role as an indicator of coherence and wave
nature. We also probe the effect seen in Refs. [38,39] using the
recently introduced l1 norm of quantum coherence which can
be experimentally measured by a recently reported protocol
[54]. We explain the enhancement of fringe visibility and
show that even in situations where visibility could increase
with increasing decoherence, or increasing which-path infor-
mation, coherence always decreases and preserves its role as a
quantifier of wave nature. The observation of increased fringe
contrast in Mei and Weitz’s experiments is for a four-path
interference. A similar effect can be seen in certain regimes
for three-path interference, and also for five and six paths.
In Refs. [38,39], it is suggested that the four-path experiment
could be extended toward an increased number of interfering
paths or quantum systems of larger size. Our observation here

is that the visibility enhancement effect is interesting only
for the cases of a few paths and increasing the number of
paths beyond these numbers tones down this dramatic effect.
However, interference with few paths with larger quantum
systems would certainly be interesting. In Refs. [38,39], it
is suggested that traditional visibility fails as a signature for
quantifying decoherence. Indeed, the enhancement of fringe
contrast in the presence of environmental decoherence high-
lights the limitations of traditional visibility as a good measure
for wave nature in complementarity and makes it an unlikely
candidate for quantifying decoherence. Our results affirm the
fact that the amount of decoherence can only be estimated by
a measure of the residual coherence and cannot be inferred
by changes in fringe contrast. This normalized l1 norm of
coherence can now be considered as a true and legitimate
measure of the wave aspect of the quanton in a multipath
experiment. Further, this quantum coherence can be measured
experimentally in an n-path interference experiment by taking
the average of traditional visibility for all available pairs of
two-path interference by blocking the rest of the n − 2 paths
[54]. Our results and analysis could lead to better insight and
understanding of wave-particle duality and complementarity
as well as visibility and quantum coherence in multipath in-
terference, and they will be of significance in studies that seek
to exploit quantum superpositions and quantum coherence for
quantum information applications.
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