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Consider the set S = {ρSE } of possible initial states of the system-environment, steered from a tripartite
reference state ωRSE . Buscemi [F. Buscemi, Phys. Rev. Lett. 113, 140502 (2014)] showed that the reduced
dynamics of the system, for each ρS ∈ TrES , is always completely positive if and only if ωRSE is a Markov
state. There, during the proof, it has been assumed that the dimensions of the system and the environment can
vary through the evolution. Here, we show that this assumption is necessary: we give an example for which,
though ωRSE is not a Markov state, the reduced dynamics of the system is completely positive, for any evolution
of the system-environment during which the dimensions of the system and the environment remain unchanged.
As our next result, we show that the result of Muller-Hermes and Reeb [A. Muller-Hermes and D. Reeb, Ann.
Henri Poincare 18, 1777 (2017)], of monotonicity of the quantum relative entropy under positive maps, cannot
be generalized to the Hermitian maps, even within their physical domains.
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I. INTRODUCTION

Consider a closed finite-dimensional quantum system
which evolves as

ρ → ρ ′ = AdU (ρ) ≡ UρU †, (1)

where ρ and ρ ′ are the initial and final states (density opera-
tors) of the system, respectively, and U is a unitary operator.
(UU † = U †U = I , where I is the identity operator.)

In general, the system is not closed and interacts with its
environment. We can consider the whole system-environment
as a closed quantum system which evolves as Eq. (1). So the
reduced state of the system after the evolution is given by

ρ ′
S = TrE ◦ AdU (ρSE ) = TrE (UρSEU †), (2)

where ρSE is the initial state of the combined system-
environment quantum system and U acts on the whole Hilbert
space of the system-environment.

There was a tendency to assume that the reduced dynamics
of the system can always be written as a completely positive
trace-preserving (CP) map; i.e., it can be written as

ρ ′
S =

∑
i

Ei ρS E†
i ,

∑
i

E†
i Ei = IS, (3)

where ρS = TrE (ρSE ) is the initial state of the system. In
addition, Ei are linear operators and IS is the identity operator
on the Hilbert space of the system HS [1].
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But, in general, this is not the case. In fact, the CP-ness
of the reduced dynamics has been proven only for some re-
stricted sets of initial states of the system-environment [2–8].

A remarkable result in this context is that given in [6].
Consider the set S of possible initial states of the system-
environment, steered from a tripartite state ωRSE . There, it has
been shown that, for all ρSE ∈ S , the reduced dynamics of the
system is CP, for arbitrary U , if and only if ωRSE is a so-called
Markov state.

The above result is important, not only because it includes
all its previous results [7], but also because it is, in fact, the
most general possible result [9], at least, within the framework
of [10]. In the next section, we will review this result.

During the proof of the above result in [6], it has been
assumed that the dimensions of the Hilbert spaces of the
system HS and the environment HE can vary during the
system-environment evolution U , in general. In [11], we have
questioned whether this assumption can be relaxed or not. In
Sec. III, we show that this assumption is necessary for the
result of [6]: we give an example, for which, though ωRSE

is not a Markov state, the reduced dynamics is CP, for any
evolution U , which does not change dS and dE , the dimensions
of HS and HE , respectively.

We give our next result, on monotonicity of quantum
relative entropy, in Sec. IV. The quantum relative entropy of
the state ρ to another state σ is defined as

S(ρ||σ ) = Tr(ρlog2ρ) − Tr(ρlog2σ ), (4)

if supp[ρ] ⊆ supp[σ ], otherwise it is defined to be +∞ [1]
(supp[η], the support of the state η, is the subspace spanned
by the eigenvectors of η with nonzero eigenvalues).
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It was known that the relative entropy is monotone under
CP maps � [1,12]:

S(ρ||σ ) � S(�(ρ)||�(σ )), (5)

for arbitrary states ρ and σ . Recently, the above result has
been generalized to the case of positive trace-preserving maps,
too [13]; i.e., in Eq. (5), � can be a positive trace-preserving
map. Positive maps are those which map any positive operator
to a positive operator. If we consider positive maps as the most
general physical time evolutions, then this result means that
the relative entropy is monotone under any physical evolution.

But, in [14], it has been shown that any Hermitian trace-
preserving map � is physical within its physical domain. By
a Hermitian map, we mean a map which maps any Hermitian
operator to a Hermitian operator. Therefore, � may map
a state to a nonpositive operator. So, in [14], the physical
domain of � is defined as the set of states which are mapped
by � to density operators.

In Sec. IV, using a theorem proven in [6], we show that
one can find physical evolutions, given by Hermitian trace-
preserving maps �, for which the relative entropy increases
after the evolution. So, the result of [13] cannot be generalized
to the Hermitian trace-preserving evolution, in general. In
addition, we illustrate this result, using the example given in
Sec. III.

In the example considered in Sec. IV, dS and dE vary
through the evolution. In Sec. V, we give another example
in which the Hermitian nonpositive evolution does not change
dS and dE , but the monotonicity of relative entropy is again
violated. This shows that the variation of dS and dE is not
necessary for the nonmonotonicity of relative entropy, under
Hermitian nonpositive evolution.

Finally, in Sec. VI, we end our paper, with a summary of
our results.

II. REDUCED DYNAMICS OF AN OPEN QUANTUM
SYSTEM

A. Reduced dynamics for a steered set

Consider the tripartite state ωRSE , on the Hilbert space
of the reference-system-environment HR ⊗ HS ⊗ HE , where
HR is an ancillary Hilbert space. The set of steered states from
performing measurements on the part R of ωRSE is [6]

S =
{
ρSE = TrR[(PR ⊗ ISE )ωRSE ]

Tr[(PR ⊗ ISE )ωRSE ]
, PR > 0

}
, (6)

where PR is arbitrary positive operator on HR such that
Tr[(PR ⊗ ISE )ωRSE ] > 0 and ISE is the identity operator on
HS ⊗ HE . Note that, up to a positive factor, PR can be con-
sidered as an element of a positive operator-valued measure.

In [6], it has been shown that the reduced dynamics of the
system, for all ρS ∈ SS ≡ TrES and arbitrary U , is CP if and
only if ωRSE is a Markov state, i.e., if it can be written as [15]

ωRSE = idR ⊗ �CP
S (ωRS ), (7)

where ωRS = TrE (ωRSE ), idR is the identity map on L(HR),
and �CP

S : L(HS ) → L(HS ⊗ HE ) is a CP map. [L(H) is the
space of linear operators on H.]

When ωRSE is a Markov state, then there exists a decompo-
sition of the Hilbert space of the system S as HS = ⊕

k Hsk =

⊕
k Hsl

k
⊗ Hsr

k
such that

ωRSE =
⊕

k

λk ωRsl
k
⊗ ωsr

kE , (8)

where {λk} is a probability distribution (λk � 0,
∑

k λk = 1),
ωRsl

k
is a state on HR ⊗ Hsl

k
, and ωsr

kE is a state on Hsr
k
⊗ HE

[15].
Let us summarize the result of this subsection, for later

reference [6].
Theorem 1. Assume that the set of possible initial states of

the system-environment is given by S , in Eq. (6), which is the
steered set from a tripartite state ωRSE . The reduced dynamics
of the system, in Eq. (2), is CP, for arbitrary U and any ρSE ∈
S , if and only if ωRSE is a Markov state, as Eq. (8).

The following point is also worth noting. In this paper,
when we say that the reduced dynamics is given by a CP
map �, we mean that there exists a CP extension of � to the
whole L(HS ), as Eq. (3), such that the reduced dynamics of
the system, for each ρS ∈ SS , is given by this CP map.

B. Reduced dynamics for an arbitrary set

A general framework for linear (Hermitian) reduced dy-
namics, when both the system and the environment are finite
dimensional, has been introduced in [10]. In this paper, we
will restrict ourselves to the case that there is a one to one
correspondence between the system initial states ρS and the
system-environment initial states ρSE . So, in this subsection,
we review the framework of [10] for this case.

Consider the set S = {ρSE } of possible initial states of the
system-environment. Since, both the system and the environ-
ment are finite dimensional, a finite number m of the members
of S , where the integer m is 0 < m � (dS )2(dE )2, are linearly
independent. Let us denote this linearly independent set as
S ′ = {ρ (1)

SE , ρ
(2)
SE , . . . , ρ

(m)
SE }. Therefore, any ρSE ∈ S can be

written as ρSE = ∑m
i=1 aiρ

(i)
SE , where ai are real coefficients.

We restrict ourselves to the case that all ρ
(i)
S = TrE (ρ (i)

SE ) ∈
S ′

S ≡ TrES ′, i = 1, . . . , m � (dS )2, are also linearly indepen-
dent. Therefore, there is a one to one correspondence between
the members of S and the members of SS = TrES . It is
worth noting that when S is a steered set, as Eq. (6), from a
Markov state ωRSE , as Eq. (7), then the above correspondence
holds [9].

The subspace V is defined as the subspace spanned by
ρ

(i)
SE ∈ S ′ [10]. Therefore, each X ∈ V can be expanded as

X = ∑m
i=1 ciρ

(i)
SE , with complex coefficients ci. In addition, for

each x = TrE (X ) ∈ VS ≡ TrEV , we have x = ∑m
i=1 ciρ

(i)
S .

Let us denote the set of density operators in L(HS ⊗ HE )
and L(HS ) by DSE and DS , respectively. Note that S ⊆ V ∩
DSE and SS ⊆ VS ∩ DS . So, that which we show for the whole
V and VS is also valid for their subsets S and SS , respectively.

Since all ρ
(i)
S ∈ S ′

S are linearly independent, as all ρ
(i)
SE ∈

S ′, for each x ∈ VS , there is only one X ∈ V such that
TrE (X ) = x. This allows us to define the linear assignment
map �S as below. We define �S (ρ (i)

S ) = ρ
(i)
SE , i = 1, . . . , m.

So, for any x = ∑m
i=1 ciρ

(i)
S ∈ VS , we have

�S (x) =
m∑

i=1

ci�S
(
ρ

(i)
S

) =
m∑

i=1

ciρ
(i)
SE = X. (9)
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�S is a Hermitian map, by construction. It is defined on the
whole VS , and even if m < (dS )2 it can be simply extended to
the whole L(HS ) [16].

Although the assignment map �S , in Eq. (9), is only a
mathematical tool which acts as the reverse of TrE , it has an
important physical consequence. It allows us to assign to each
ρS ∈ TrE (DSE ∩ V ) a ρSE ∈ DSE ∩ V such that TrE (ρSE ) =
ρS . So, for any ρS ∈ TrE (DSE ∩ V ), and any unitary evolution
U of the whole system-environment, the reduced dynamics of
the system, using Eqs. (2) and (9), is given by

ρ ′
S = TrE ◦ AdU ◦ �S (ρS ) ≡ �S (ρS ). (10)

The unitary evolution U and the partial trace TrE are CP maps
[1]. We have seen that the assignment map �S is, in general,
Hermitian. Therefore, the dynamical map �S is, in general, a
Hermitian map.

It is worth noting that for [the extension to the whole
L(HS ) of] each linear trace-preserving Hermitian map, as �S ,
there exists an operator sum representation such that

ρ ′
S =

∑
i

ei Ẽi ρS Ẽi
†
,

∑
i

ei Ẽi
†
Ẽi = IS, (11)

where Ẽi are linear operators on HS and ei are real coefficients
[10,17,18]. Only for the special case that all of the coefficients
ei in Eq. (11) are positive, then we can define Ei = √

ei Ẽi and
so the reduced dynamics of the system is CP, as Eq. (3). [Also,
for the Hermitian map �S , there exists a similar operator sum
representation, as Eq. (11), with linear operators Ẽi : HS →
HS ⊗ HE .]

C. Reference state

In [9], introducing the reference states ωRSE and ωRS =
TrE (ωRSE ), we have connected the results of [6,10], re-
viewed in the two previous subsections. ωRS is defined
as [9]

ωRS =
m∑

l=1

1

m
|lR〉〈lR| ⊗ ρ

(l )
S , (12)

where ρ
(l )
S ∈ S ′

S and {|lR〉} is an orthonormal basis for the
reference Hilbert space HR. In addition, the reference state
ωRSE is defined as [9]

ωRSE = idR ⊗ �S (ωRS ) =
m∑

l=1

1

m
|lR〉〈lR| ⊗ ρ

(l )
SE , (13)

where ρ
(l )
SE ∈ S ′ is such that TrE (ρ (l )

SE ) = ρ
(l )
S .

We can construct subspaces VS and V as the generalized
steered sets, from ωRS and ωRSE , respectively. We have [9]

VS = {TrR[(AR ⊗ IS )ωRS]}, (14)

and

V = {TrR[(AR ⊗ ISE )ωRSE ]}, (15)

where AR are arbitrary linear operators in L(HR).
When ωRSE , in Eq. (13), is a Markov state, as Eq. (7), i.e.,

when there exists a CP assignment map, then, using Eq. (10),
the reduced dynamics �S is, consequently, CP.

Comparing Eqs. (6) and (15) shows that, for the steered
set S from the reference state ωRSE in Eq. (13), we have
S ⊆ DSE ∩ V . So, when the reduced dynamics, for all ρSE ∈
DSE ∩ V , is CP, then, from Theorem 1, we conclude that ωRSE

is a Markov state, as Eq. (8).
In summary, we have [9].
Theorem 2. Consider the subspace V ⊆ L(HS ⊗ HE ), in

Eq. (15). The reduced dynamics of the system, in Eq. (10), is
CP, for arbitrary U and any ρSE ∈ DSE ∩ V , if and only if the
reference state ωRSE in Eq. (13) is a Markov state, as Eq. (8).

III. MARKOVIANITY OF THE REFERENCE STATE AND
COMPLETE POSITIVITY OF THE REDUCED DYNAMICS

Theorem 2 is based on Theorem 1. In [6], during the proof
of Theorem 1, it has been assumed that, in general, the unitary
time evolution U : HS ⊗ HE → H′

S ⊗ H′
E is such that the

final Hilbert spaces of the system H′
S and the environment H′

E
may differ from their initial ones, HS and HE , respectively.

In [11], we have questioned whether the above assumption
can be relaxed or not. In other words, if the reduced dynamics,
in Eq. (10), is CP, for arbitrary U : HS ⊗ HE → HS ⊗ HE

and any ρSE ∈ DSE ∩ V , then whether we can conclude that
the reference state ωRSE in Eq. (13) is a Markov state, as Eq.
(8), or not.

In this section, we consider an example, which is, in fact,
example 4 of [10], for which we see that, though the reference
state is not a Markov state, the reduced dynamics is CP, for
arbitrary U : HS ⊗ HE → HS ⊗ HE and any ρSE ∈ DSE ∩ V .
Therefore, the assumption of variability of Hilbert spaces
of the system and the environment, during the time evolu-
tion U : HS ⊗ HE → H′

S ⊗ H′
E , is necessary, for validity of

Theorems 1 and 2.
Assume that the set S ′ is given by S ′ = {ρ, σ }, where ρ =

1
dSdE

ISE and σ = |1S〉〈1S| ⊗ |1E 〉〈1E |, |1S〉 ∈ HS , and |1E 〉 ∈
HE . V is the subspace spanned by S ′, and VS is spanned by
S ′

S = {ρ̃ = 1
dS

IS, σ̃ = |1S〉〈1S|}. S ′
S is a linearly independent

set, as S ′. So, there is a one to one correspondence between the
members of V and VS . Therefore, from Sec. II B, the reduced
dynamics �S , in Eq. (10), is given by a Hermitian map, as
Eq. (11), for arbitrary U and any ρSE ∈ DSE ∩ V .

It can be shown simply that the assignment map �S , in
Eq. (9), is nonpositive on VS [10]: for a � 0 and − a

dS
� b <

− a
dSdE

, x = aρ̃ + bσ̃ � 0, but �S (x) = aρ + bσ � 0. So, any
extension of �S , to the whole L(HS ), is also nonpositive,
at least, on VS . Therefore, we expect that the reference state
ωRSE , in Eq. (13), is not a Markov state, as Eq. (8). In the
following, we show this, explicitly. We have

ωRSE = 1

2
(|1R1S1E 〉〈1R1S1E | + 1

dSdE
|2R〉〈2R| ⊗ ISE ). (16)

Note that 〈1R1E |ωRSE |1R1E 〉 = 1
2 |1S〉〈1S|. If ωRSE is a Markov

state, then, from Eq. (8), we have

〈1R1E |ωRSE |1R1E 〉 =
⊕

k

λk ηsl
k
⊗ ηsr

k
= 1

2
|1S〉〈1S|, (17)

where ηsl
k

and ηsr
k

are positive operators on Hsl
k

and Hsr
k
,

respectively. Therefore

|1S〉 = ∣∣1sl
k0

〉∣∣1sr
k0

〉
, (18)
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where |1sl
k0
〉 ∈ Hsl

k0
and |1sr

k0
〉 ∈ Hsr

k0
, for some k0, and other

ηsl
k

and ηsr
k
, for k �= k0, are zero. Now, Eqs. (8) and (18)

result that 〈1S|ωRSE |1S〉 must be as ηR ⊗ ηE , where ηR and
ηE are positive operators on HR and HE , respectively. But,
from Eq. (16), it can be shown easily that 〈1S|ωRSE |1S〉 cannot
be written in a product form ηR ⊗ ηE . Therefore, ωRSE , in
Eq. (16), is not a Markov state.

Though ωRSE is not a Markov state, it can be shown that the
reduced dynamics, for arbitrary U : HS ⊗ HE → HS ⊗ HE ,
is CP. Note that, if we do not extend �S to the whole L(HS ),
the dynamical map �S , in Eq. (10), is a map on VS . Now, by
CP-ness of �S , we mean that there exists an extension of �S to
the whole L(HS ), as �̃S , such that �̃S is a completely positive
trace-preserving map, as Eq. (3).

A simple way of extending �S is what is called zero
extension [10]. First, we define the orthonormal projection P :
L(HS ) → VS (according to the Hilbert-Schmidt inner product

[1]), as below. For any A ∈ L(HS ), we have

P (A) =
2∑

i=1

Tr(PiA)Pi, (19)

where P1 = |1S〉〈1S| and P2 = 1√
dS−1

∑dS
j=2 | jS〉〈 jS|. {| jS〉} is

an orthonormal basis for HS , including |1S〉. P is CP, as
Eq. (3), and, for each x ∈ VS , we have P (x) = x. Now, the
zero extension of �S to the whole L(HS ) is

�̃S = TrE ◦ AdU ◦ �S ◦ P . (20)

From Eqs. (10) and (19), it is obvious that, for each x ∈ VS ,
we have �̃S (x) = �S (x).

In [10], by constructing the Choi matrix (operator) [19], it
has been shown that �̃S is CP, for any U : HS ⊗ HE → HS ⊗
HE . Consider the ket |ξ 〉 = ∑dS

i=1 |iR〉|iS〉 ∈ HR ⊗ HS , which
is, up to a normalization factor, the maximally entangled state.
The Choi matrix, for the map �̃S , is [10]

idR ⊗ �̃S (|ξ 〉〈ξ |) = |1R〉〈1R| ⊗ TrE (UσU †) + (IR − |1R〉〈1R|) ⊗ dSTrE (UρU †) − TrE (UσU †)

dS − 1
. (21)

When the final Hilbert spaces of the system and the en-
vironment are the same as their initial ones, i.e., for all
U : HS ⊗ HE → HS ⊗ HE , then dSTrE (UρU †) = IS . So, the
Choi matrix is positive, since it is the summation of two
positive operators. Therefore, �̃S is CP.

According to Theorem 2, we expect, from the non-
Markovianity of the reference state in Eq. (16), that there
exists, at least, one unitary evolution U : HS ⊗ HE → H′

S ⊗
H′

E for which the reduced dynamics is non-CP. Assume
U0 is such that H′

S = HS ⊗ HE , and H′
E is a trivial one-

dimensional Hilbert space. (In fact, this U0 is what has been
used in [6], during the proofs of Theorem 3, below, and,
consequently, Theorem 1.) Then, the reduced dynamics of the
system, for any ρS ∈ TrE (DSE ∩ V ), is given by

ρ ′
S′ = �S (ρS ) = TrE ′ ◦ AdU0 ◦ �S (ρS ) = �S (ρS ), (22)

which is nonpositive, since (any extension of) �S is nonposi-
tive.

Also, note that we have dSTrE ′ (U0ρU †
0 ) = 1

dE
ISE , and

TrE ′ (U0σU †
0 ) = σ = |1S〉〈1S| ⊗ |1E 〉〈1E |. So, the second

term, on the right-hand side of Eq. (21), is nonpositive.
Therefore, the zero extension �̃S , for U0, is non-CP, too.

Using this fact that when there exists a positive assignment
map �S then the reference state ωRSE , in Eq. (13), is a Markov
state [16], we can summarize the results of this section as
below.

Proposition 1. Consider the subspace V ⊆ L(HS ⊗ HE ),
in Eq. (15). The reduced dynamics of the system, in Eq. (10),
is Hermitian, for arbitrary U and any ρS ∈ TrE (DSE ∩ V ). If
the reference state ωRSE in Eq. (13), is not a Markov state,
as Eq. (8), then there exists, at least, one U0 : HS ⊗ HE →
H′

S ⊗ H′
E for which the reduced dynamics is nonpositive. But,

the non-Markovianity of ωRSE does not guarantee the non-CP-
ness of the reduced dynamics, when the unitary evolution U
is such that H′

S = HS and H′
E = HE .

Note that Proposition 1 includes a generalization of The-
orems 1 and 2. Theorems 1 and 2 state that when ωRSE is
not a Markov state then there exists, at least, one U0 such
that the reduced dynamics is non-CP. But, Proposition 1 states
that the non-Markovianity of ωRSE leads to the nonpositivity
of the reduced dynamics, for, at least, one U0, as Eq. (22),
since the non-Markovianity of ωRSE results in the nonpositiv-
ity of the assignment map �S [16].

IV. NON-MARKOVIANITY OF THE REFERENCE STATE
AND MONOTONICITY OF THE RELATIVE ENTROPY

In [13], it has been shown that the relative entropy, Eq. (4),
is monotone under positive trace-preserving maps, as Eq. (5).
As we have seen in Sec. II B, the dynamical map �S , in
Eq. (10), is, in general, a Hermitian trace-preserving map.
Therefore, the question arises as to whether the relative en-
tropy is monotone under Hermitian maps, too, or not.

In this section, we show that the result of [13] cannot
be generalized to the Hermitian trace-preserving maps, in
general. In other words, there exist physically admissible
processes for which the relative entropy is not monotone.

First, note that, when the system and the environment
undergo the unitary time evolution U , jointly, the reference
state ωRSE , in Eq. (13), evolves as

ω′
RSE = idR ⊗ AdU (ωRSE ). (23)

This can be considered as an actual time evolution, for a tripar-
tite closed quantum system of reference-system-environment,
during which the reference remains unchanged.

From Eqs. (13) and (23), we have

ω′
RSE =

m∑
l=1

1

m
|lR〉〈lR| ⊗ ρ

′(l )
SE , (24)
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where ρ
′(l )
SE = AdU (ρ (l )

SE ). Therefore, the evolution of ωRS , in
Eq. (12), is given by

ω′
RS = TrE (ω′

RSE ) =
m∑

l=1

1

m
|lR〉〈lR| ⊗ ρ

′(l )
S

= idR ⊗ �S (ωRS ) ≡ �RS (ωRS ), (25)

where ρ
′(l )
S = TrE (ρ ′(l )

SE ), and �S is given in Eq. (10). Note that
�S is a Hermitian map, in general, and so is �RS .

In addition, from Eq. (25), we have ω′
R = idR(ωR) = ωR

and ω′
S = �S (ωS ), where ωR = TrS (ωRS ), ω′

R = TrS (ω′
RS ),

ωS = TrR(ωRS ), and ω′
S = TrR(ω′

RS ). So, the evolution of
the state σRS = ωR ⊗ ωS is also given by �RS; i.e., σ ′

RS =
�RS (σRS ). Equivalently, we can consider the tripartite state
σRSE = ωR ⊗ ωSE , where ωSE = TrR(ωRSE ), which evolves as
Eq. (23): σ ′

RSE = idR ⊗ AdU (σRSE ). Now, it can be shown
easily that σ ′

RS = TrE (σ ′
RSE ) = �RS (σRS ).

Next, using Eq. (4), it can be shown that

S(ωRS||σRS ) = S(ωRS||ωR ⊗ ωS ) = S(ωR) + S(ωS ) − S(ωRS )

= I (R : S)ω, (26)

where S(ρ) = −Tr(ρlog2ρ) is the von Neumann entropy, and
I (R : S)ω is the mutual information, for the bipartite state ωRS

[1]. Similarly, we have S(ω′
RS||σ ′

RS ) = I (R : S)ω′ .
We want to verify whether the monotonicity relation,

Eq. (5), is also valid for the Hermitian map �RS , within its
physical domain, or not. We examine the monotonicity for the
two states ωRS and σRS . So, using Eq. (26), we want to verify
whether

I (R : S)ω � I (R : S)ω′ . (27)

The following theorem, proven in [6], will be helpful.
Theorem 3. Consider the tripartite state ωRSE , which

evolves as Eq. (23). The inequality (27), for the bipartite state
ωRS , holds, for arbitrary U : HS ⊗ HE → H′

S ⊗ H′
E , if and

only if ωRSE is a Markov state, as Eq. (8).
Theorem 3 states that when ωRSE is not a Markov state,

e.g., Eq. (16), then there exists, at least, one U , for which the
inequality (27) is violated. In other words, there exists, at least,
one Hermitian map �RS , for which we have

S(�RS (ωRS )||�RS (σRS )) = I (R : S)ω′

> I (R : S)ω = S(ωRS||σRS ). (28)

Therefore, the relative entropy is not monotone, under Hermi-
tian maps, in general.

Let us illustrate Eq. (28), using the example considered in
the previous section. Assuming that the system-environment
evolution is given by U0, using Eqs. (12), (13), and (22), we
can easily show that

�RS (ωRS ) = ωRSE ,

�RS (σRS ) = σRSE = ωR ⊗ ωSE . (29)

So, as Eq. (26),

S(�RS (ωRS )||�RS (σRS )) = S(ωRSE ||ωR ⊗ ωSE )

= S(ωR) + S(ωSE ) − S(ωRSE ). (30)

Now, from Eqs. (26) and (30), we have

S(�RS (ωRS )||�RS (σRS )) − S(ωRS||σRS )

= S(ωRS ) + S(ωSE ) − S(ωRSE ) − S(ωS ). (31)

The right-hand side is always non-negative, using the strong
subadditivity relation [1]. In fact, only when ωRSE is a Markov
state, as Eq. (8), the right-hand side is zero; otherwise, it is
greater that zero [15]. So, e.g., for ωRSE in Eq. (16), the in-
equality (28) is satisfied, when the evolution of the reference-
system-environment is given by idR ⊗ AdU0 . For this ωRSE ,
the right-hand side of Eq. (31) is 0.2375, when dS = dE = 2.

V. NONMONOTONICITY OF THE RELATIVE ENTROPY
FOR A HERMITIAN EVOLUTION WHICH DOES NOT

CHANGE INITIAL HILBERT SPACES

In the previous section, we have seen that the result of
[13], of monotonicity of relative entropy under positive maps,
cannot be generalized to Hermitian maps, in general. The
example, which we gave, illustrating this result, was for the
case that the final Hilbert spaces H′

S and H′
E differ from their

initial ones HS and HE , respectively. In this section, we give
another example, for which inequality (28) is satisfied, while
H′

S = HS and H′
E = HE , during the evolution.

We consider the example given in [20], in which both the
system and the environment are qubits. An arbitrary state of
the system can be written as

ρS = 1
2 (IS + �α.�σS ), (32)

where �σS = (σ (1)
S , σ

(2)
S , σ

(3)
S ), σ

(i)
S are the Pauli operators,

and the Bloch vector �α = (α(1), α(2), α(3) ) is a real three-
dimensional vector such that |�α| � 1 [1].

Consider the following (linear trace-preserving) Hermitian
assignment map �S:

�S
(
σ

(i)
S

) = 1
2σ

(i)
S ⊗ IE (i = 1, 2, 3),

�S (IS ) = 1

2

(
ISE + a

3∑
i=1

σ
(i)
S ⊗ σ

(i)
E

)
, (33)

where a is a fixed real constant. So,

τSE ≡ �S (ρS )

= 1

4

(
ISE +

3∑
i=1

α(i)σ
(i)
S ⊗ IE + a

3∑
i=1

σ
(i)
S ⊗ σ

(i)
E

)
. (34)

When a � 0, τSE is positive for |�α| � √
(1 + a)(1 − 3a),

and, when a � 0, τSE is positive for |�α| � (1 + a) [10,20].
Therefore, for a �= 0, �S is a nonpositive map.

The reference state ωRSE , for this example, is constructed
in [9]:

ωRSE =
3∑

l=1

1

16
|lR〉〈lR|

⊗
(

ISE + α(l )σ
(l )
S ⊗ IE + a

3∑
i=1

σ
(i)
S ⊗ σ

(i)
E

)

+ 1

16
|4R〉〈4R| ⊗

(
ISE + a

3∑
i=1

σ
(i)
S ⊗ σ

(i)
E

)
, (35)
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FIG. 1. (a) Mutual information I (R : S)ω(θ ), as a function of θ , for
a = −0.8, α(1) = 0.15b, α(2) = 0.25b, and α(3) = −0.6b, where b =
1 + a, in Eq. (35). (b) Three of the eigenvalues of the Choi matrix,
which are negative, for some values of θ , for a = −0.8.

where α(l ) are arbitrary real constants such that, for a � 0,
0 < |α(l )| � √

(1 + a)(1 − 3a) and, for a � 0, 0 < |α(l )| �
(1 + a). From the nonpositivity of the assignment map �S ,
in Eq. (33), we expect that the reference state ωRSE is non-
Markovian. In [9], it has been shown that ωRSE , in Eq. (35), is
not a Markov state, as Eq. (8).

According to Theorem 2, the non-Markovianity of ωRSE

results in existence of, at least, one U , for which the reduced
dynamics �S , in Eq. (10), is non-CP. In [20], a class of unitary
evolutions of the system-environment, as

U (θ ) =

⎛
⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 −sin θ cos θ 0
0 0 0 1

⎞
⎟⎠, (36)

has been introduced, where, for some values of θ , the reduced
dynamics of the system �S (θ ) = TrE ◦ AdU (θ ) ◦ �S is non-
CP [10,20]. The non-CP-ness of �S (θ ) can be detected by
calculating the eigenvalues of the Choi matrix of it. For this
example, the Choi matrix is given explicitly in [10]. When,
at least, one of the eigenvalues of the Choi matrix is negative,
then �S (θ ) is non-CP. For this example, the eigenvalues of the
Choi matrix can be calculated analytically. In Fig. 1(b), three
of the eigenvalues of the Choi matrix, which are negative, for
some values of θ , are plotted, for a = −0.8. (The fourth one
is always positive.)

Non-CP-ness of �S (θ ) results in nonpositivity of
�RS (θ ) = idR ⊗ �S (θ ), since dR = 4 > 2 = dS . From
Eq. (25), we have ωRS (θ ) = �RS (θ )[ωRS], where ωRS =
TrE (ωRSE ), and ωRSE is given in Eq. (35). Fortunately, for this
example, the eigenvalues of ωRS (θ ) and ωS (θ ) = TrR[ωRS (θ )]
can be calculated analytically. Therefore, from Eq. (26),
I (R : S)ω(θ ), where ω(θ ) = ωRS (θ ) can, also, be calculated
analytically. In Fig. 1(a), the mutual information I (R : S)ω(θ )

is plotted as the function of θ . Figure 1(a) shows that
I (R : S)ω(θ ) exceeds its initial value, for some values of θ . So,
for these values of θ , the inequality (28) is satisfied. Note that
the unitary evolution U (θ ), in Eq. (36), does not change HS

and HE .

Let us summarize the result of the two last sections.
Proposition 2. The result of [13], of monotonicity of the

relative entropy under positive trace-preserving maps, cannot
be generalized to the Hermitian trace-preserving nonpositive
maps, within their physical domains, in general. Inequality
(28) can be satisfied, both when HS and HE vary, during the
nonpositive evolution �RS = idR ⊗ �S , and when they do not
vary.

To achieve the above result, first, we have considered the
time evolution of reference-system-environment as Eq. (23),
which allows us to use Theorem 3. Second, we have con-
sidered the two appropriate states ωRS and σRS , for which
we can write Eq. (26), both before and after the evolution
�RS = idR ⊗ �S . Therefore, we could write the monotonicity
relation, Eq. (5), as the inequality (27), which, from Theorem
3, we know is violated for a non-Markovian ωRSE , for, at least,
one U .

Note that σS = TrR(σRS ) = ωS and, so, σ ′
S = �S (σS ) =

ω′
S . Therefore, for the two equal states ωS and σS (and the

evolution �S) the monotonicity relation, Eq. (5), is, trivially,
satisfied. But, as we have seen, the evolution �RS = idR ⊗ �S

can lead to the violation of the inequality (5), for the two states
ωRS and σRS .

VI. SUMMARY

In [9], we have introduced the reference states ωRSE ,
Eq. (13), and ωRS , Eq. (12). There, we have used them to
connect the results of [6,10], as reviewed in Sec. II. In this
paper, we have given two other results, using these reference
states.

First, in Sec. III, giving an explicit example, we have shown
that, even when ωRSE is not a Markov state, as Eq. (8), the
reduced dynamics of the system can be CP, for arbitrary
system-environment unitary evolution U , which does not
change dS and dE .

This shows that the assumption of variability of Hilbert
spaces of the system and the environment, during the time
evolution U : HS ⊗ HE → H′

S ⊗ H′
E , is necessary, for valid-

ity of Theorems 1 and 2.
Second, in Sec. IV, considering the time evolution of the

reference states ωRSE and ωRS , and using Theorem 3, proven
in [6], we have shown that, when ωRSE is not a Markov state,
then there exists, at least, one Hermitian nonpositive map
�RS = idR ⊗ �S , for which the inequality (28) is satisfied.
Note that ωRS and σRS , in Eq. (28), are in the physical domain
of �RS . Therefore, the relative entropy is not monotone,
under Hermitian nonpositive maps, even within their physical
domains, in general.

When ωRSE is not a Markov state, any possible assign-
ment map �S is nonpositive [16]. So, choosing �S = �S ,
as Eq. (22), results in a nonpositive �RS . In Sec. IV, we
have seen that, at least, for this �RS , inequality (28) is
satisfied.

In addition to the above example, which includes changes
in dS and dE after the evolution, in Sec. V, we have
given another example, for which inequality (28) is sat-
isfied, while HS and HE remain unchanged, during the
evolution.
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