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Experimental demonstration of the validity of the quantum heat-exchange
fluctuation relation in an NMR setup
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We experimentally explore the validity of the Jarzynski and Wójcik quantum heat-exchange fluctuation
relation by implementing an interferometric technique in liquid-state nuclear magnetic resonance setup and
study the heat-exchange statistics between two coupled spin-1/2 quantum systems. We experimentally emulate
two models—(i) the XY-coupling model, containing an energy conserving interaction between the qubits, and
(ii) the XX-coupling model—and analyze the regimes of validity and violation of the fluctuation symmetry
when the composite system is prepared in an uncorrelated initial state with individual spins prepared in local
Gibbs thermal states at different temperatures. We further extend our analysis for heat exchange by incorporating
correlation in the initial state. We support our experimental findings by providing exact analytical results. Our
experimental approach is general and can be systematically extended to study heat statistics for more complex
out-of-equilibrium many-body quantum systems.
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I. INTRODUCTION

Quantifying thermal and quantum fluctuations for meso-
scopic and nanoscale systems are important from both fun-
damental and practical perspectives [1]. In the past two
decades, considerable research has been devoted to devel-
oping a consistent theoretical framework to describe these
fluctuations, which have led to the discovery of what are
now collectively referred to as “fluctuation relations” [2–18].
For out-of-equilibrium systems, classical or quantum, various
thermodynamic observables such as work and heat are found
to follow these universal relations in transient [5–7] and/or
in steady-state regimes [16,17]. Apart from quantifying the
probability of observing the rare events related to negative
entropy production, fluctuation relations correctly describe
systems residing arbitrarily far from equilibrium and further
serve as an essential ingredient for establishing the rapidly
growing field of quantum thermodynamics [19–21].

Despite impressive theoretical progress, experimental ver-
ification of these fluctuation relations remained a challenge
in the quantum domain, primarily because of the requirement
of projective measurements to construct the probability distri-
bution function (PDF) for work and heat. Recently, several
experimental proposals have been put forward to construct
such PDFs [22–28]. Following a projective measurement
scheme, the first experimental success for the work fluctuation
relation was achieved in an ion-trap setup [29–32]. Later, this
difficult projective measurement scheme was circumvented
and an ancilla-based Ramsey interferometric approach was
proposed [23], following which the work fluctuation relation
was verified [24,25]. Further successful attempts were also
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made recently to study similar fluctuation relations for open
systems [32].

In this work, we attempt to explore the validity of the
quantum version of Jarzynski and Wójcik’s heat-exchange
fluctuation theorem (XFT) [7]. We employ here a similar
interferometric approach, as proposed for measuring work
statistics, in a liquid nuclear magnetic resonance (NMR) ar-
chitecture to extract the full statistics of heat, flowing between
two coherent quantum systems, by reading out the ancilla. We
test the XFT for an uncorrelated (product) initial state for an
arbitrary transient time for two setups: (i) the XY-coupling
model and (ii) the XX-coupling model. Interestingly, for the
first model the XFT is satisfied for arbitrary coupling strength,
whereas for the second model the XFT is satisfied only in the
weak-coupling limit, as originally proposed by Jarzynski and
Wójcik. We further investigate another possible regime for the
violation of XFT by incorporating a correlated initial state and
observe an apparent spontaneous heat flow from cold to hot.

The paper is organized as follows. In Sec. II, we briefly
sketch the proof of the heat-exchange fluctuation relation
following a two-point measurement scheme and highlight the
key approximations under which this relation is protected. In
Sec. III, we present our experimental setup along with the
NMR interferometric technique and discuss how to extract
the heat statistics. In Secs. IV and V, we present our results
for the XY and XX models. Finally, we conclude and discuss
the future directions in Sec. VI. Certain details about the
experimental techniques are provided in the Appendixes.

II. HEAT STATISTICS AND EXCHANGE FLUCTUATION
RELATION IN THE QUANTUM DOMAIN

Here we give a brief summary of the heat statistics for-
malism and the corresponding Jarzynski and Wójcik XFT.
We consider two quantum systems (system 1 and system
2) described by Hamiltonians H1 and H2 that are initially
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(t = 0−) decoupled and separately equilibrated at different
inverse temperatures, β1 and β2, respectively. The composite
system initially resides in an uncorrelated state ρ0 = ρ1 ⊗ ρ2,
with ρi = exp [−βiHi]/Zi, i = 1, 2, being the Gibbs thermal
state and Zi = Tr[ exp[−βiHi]] being the corresponding parti-
tion function. At t = 0, a constant coupling between the two
systems is suddenly switched on, which allows finite heat
exchange for a duration t = τ , after which the interaction is
suddenly turned off. This exchanged heat is a stochastic vari-
able due to the inherent nondeterministic nature of quantum
evolution and the randomness in the initial state preparation.
To quantify the associated PDF and to further connect with the
XFT, we follow a two-time projective measurement scheme
[12,13,33], one at the beginning and the other at the end of
the heat-exchange process. We first consider the joint PDF for
energy change (�Ei) for both systems, given as

pτ (�E1,�E2)=
∑
m,n

{
2∏

i=1

δ
[
�Ei − (

εi
m − εi

n

)]}
pτ

m|n p0
n,

(1)

where p0
n = ∏2

i=1 e−βiε
i
n/Zi is the probability of finding the

system in the common eigenstate |n〉 with energy eigen-
value εi

n after the first projective measurement. The sec-
ond projective measurement, at t = τ , collapses the system
into another common eigenstate |m〉 with probability pτ

m|n =
|〈m|U (τ, 0)|n〉|2, where U (t, 0) = e− i

h Ht represents the uni-
tary propagator evolving with the composite Hamiltonian H.
Now using the principle of microreversibility of quantum
dynamics for the autonomous system pτ

m|n = pτ
n|m and with

the given uncorrelated Gibbs initial condition, one obtains

pτ (�E1,�E2) = eβ1�E1+β2�E2 pτ (−�E1,−�E2). (2)

At the limit where the interaction energy between the two
systems is small in comparison to the internal energy of each
system, i.e., in the weak-coupling limit, �E1 and �E2 can be
interpreted as heat, and by defining �E1 ≈ −�E2 = Q, one
arrives at the Jarzynski and Wójcik XFT, given as [12,34]

pτ (Q) = exp[(β1 − β2)Q]pτ (−Q). (3)

Equation (3) also implies that 〈e−�βQ〉τ = 1, where 〈. . . 〉τ
represents the average performed over the distribution pτ (Q)
and �β = β1 − β2. In this work, our primary quantity of in-
terest is the corresponding characteristic function (CF), given
by the Fourier transformation of the heat PDF pτ (Q) [34],

χτ (u) =
∫

dQ e−iuQ pτ (Q),

= Tr[U†(τ, 0)(e−iuH1 ⊗ 12)U (τ, 0)(eiuH1 ⊗ 12)ρ0].
(4)

Here u is the parameter conjugate to Q. For the CF, the XFT in
Eq. (3) translates to χτ (u) = χτ ( − u − i(β1−β2)) [35–38].
In what follows, we implement experimentally the ancilla-
assisted interferometric scheme in liquid NMR architecture
to measure the above CF and extract the corresponding heat
PDF [26–28] to analyze the heat-exchange process and the
corresponding XFT. Interestingly, the ancilla-based technique
also offers analysis of the CF for arbitrary initial preparation,
which includes quantum correlations and quantum coherences

FIG. 1. (a) Structure of the molecule used in the experiments:
1,1,2-trifluoro-2-iodoethane. We identify F3 as the ancilla qubit and
the heat exchange takes place between F1 and F2. (b) Table listing the
parameters of the Hamiltonian in Eq. (5). Diagonal terms represent
the nuclear offset frequencies νi and off-diagonal terms represent the
scalar coupling Ji j .

of the the composite system (see Appendix A). The CF
obtained following the projective measurement scheme fails
to capture signatures that arise from such correlated initial
states.

III. EXPERIMENTAL SETUP AND
INTERFEROMETRIC TECHNIQUE

In our experiments, we use liquid-state NMR spectroscopy
of three 19F nuclei (F1, F2, and F3) in 1,1,2-trifluoro-2-
iodoethane (TFIE) (Fig. 1), dissolved in acetone. All our
experiments are performed in a 500-MHz Bruker NMR spec-
trometer at an ambient temperature. We identify F1 as qubit 1,
F2 as qubit 2, and F3 as the ancillary qubit. The molecules in
the sample are all identical and sufficiently isolated [39–41]
and all the dynamics and heat-exchange processes are com-
pleted on the time scale of milliseconds, such that any relevant
environmental effects can be neglected. Note that the longi-
tudinal and transverse relaxation time constants in our NMR
setup are in fact of the order of few seconds. The internal
Hamiltonian (Hint) of the three-spin system in the rotating
frame of radio-frequency (RF) pulses can be written as (see
Appendix C for details)

Hint =
3∑

i=1

hνi

2
σ z

i +
3∑

i< j=1

hJi j

4
σ z

i σ z
j , (5)

where νi is the offset frequency of the ith nucleus and Ji j is the
scalar coupling between the ith and the jth nuclei as explained
in Fig. 1. F1 and F2 exchange heat by interacting under a
constant-coupling Hamiltonian. Here we consider two models
to study the heat exchange and corresponding XFT. The first
composite Hamiltonian for F1 and F2 that we simulate in our
experiment is given as

H = H1 + H2 + hJ

4

(
σ x

1 ⊗ σ
y
2 − σ

y
1 ⊗ σ x

2

)
, (6)

which we refer to here as the XY model. The other model,
referred to as the XX model, is given by

H = H1 + H2 + hJ

4
σ x

1 ⊗ σ x
2 , (7)

042119-2



EXPERIMENTAL DEMONSTRATION OF THE VALIDITY OF … PHYSICAL REVIEW A 100, 042119 (2019)

FIG. 2. Circuit diagram for the interferometric technique to
measure the characteristic function of heat, χτ (u). Here, H is the
Hadamard gate applied on the ancillary qubit, initially prepared
in the pseudo pure state |0〉〈0|, followed by a control gate V =
exp [−iuH1] ⊗ 12 on the qubit F1. Here U = exp [ − i

h̄Hτ ] is the uni-
tary propagator where H represents the Hamiltonian of the composite
system involving the qubits F1 and F2. In our study, H corresponds
to either the XY-model Eq. (6) or the XX-model Eq. (7). ρ1, ρ2

are the initial states of F1 and F2, respectively. The readout of the
combination 〈σx〉 + i〈σy〉 of the ancilla hands over the characteristic
function χτ (u).

where H1 = −hν0
2 σ z

1 ⊗ 12, and H2 = 11 ⊗ −hν0
2 σ z

2 . σ i(i =
x, y, z) is the ith component of the Pauli spin-1/2 operator.
Recall that we are interested in extracting the statistics of heat
flowing between qubit F1 and qubit F2 by measuring the CF,
χτ (u) as given in Eq. (4). For the first set of experiments
for both these models we consider an uncorrelated (product)
initial state for the qubits. By taking advantage of the spatial
averaging technique [42] (see Appendix B), we prepare the
ancillary qubit (F3) in a pseudopure state |0〉〈0| and the other
two qubits of 19F nuclei (F1 and F2) in a pseudoequilibrium
state ρ1 ⊗ ρ2, where ρi = exp [−βiHi]/Zi is the Gibbs ther-
mal state with inverse pseudospin temperatures βi. In our
experiments, we realize different pseudospin temperatures
by applying RF pulses from 0 to π/2 that redistribute the
population between the qubit states, followed by a pulsed field
gradient (PFG) which destroys the coherences and produces
the desired thermal initial state. Note that the pseudospin
temperature is different from the actual sample temperature,
which is always maintained at an ambient temperature.

Following the above initialization procedure, we
incorporate an interferometric protocol [24,25], shown in
Fig. 2, which maps the χτ (u) onto the ancillary qubit F3.
Various gates used for this protocol such as the Hadamard
gate H , the controlled gate V = exp [−i u H1] ⊗ 12, and the
unitary operator U = exp [ − i

hHτ ], responsible for heat
exchange between the qubits, are prepared by utilizing the
internal Hamiltonian Hint [Eq. (5)] and the RF pulses. The
corresponding experimental pulse sequences are presented
in Appendix B. At the end of this entire protocol, the
desired CF χτ (u) is obtained by reading out the 〈σx〉 and
〈σy〉 components of the ancilla (see Appendix A) and the
inverse Fourier transform of the combination 〈σx〉 + i〈σy〉
then provides the desired PDF pτ (Q).

IV. RESULTS AND DISCUSSION

A. XY-coupling model

We first present experimental results for the XY model. For
this particular model, we set the frequency for qubits F1 and

FIG. 3. Results for the XY model. (a, b) Plots of the real [χ ′
τ (u)]

and imaginary [χ ′′
τ (u)] components of the CF χτ (u) for ν0 = 1 kHz

and J = 1 Hz at (β1h)−1 = 1403 Hz and (β2h)−1 = ∞. The duration
of heat exchange is τ = π/J . Solid blue lines and dots correspond to
theoretical and experimental results, respectively. Red dots represent
the set of experimental data taken in one complete period (u =
2π

hν0
) and orange dots represent extrapolated data points. (c, d) PDF

of heat exchange pτ (Q) for (β1h)−1 = 1403 Hz and (β1h)−1 = 0 ,
respectively.

F2 as ν0 = 1 kHz and the coupling J is chosen as 1 Hz, which
ensures weak coupling (J � ν0) between the qubits. For the
initial state preparation, we initialize F2 at infinite pseudospin
temperature, (β2h)−1 = ∞ [43]. This is achieved by applying
a π/2 pulse on F2 followed by a PFG. For F1, we prepare
the qubit at different pseudospin temperatures by applying RF
pulses from 0 to π/2, followed by a PFG. We then measure
χτ (u) by allowing heat exchange between F1 and F2 for a time
duration τ = π/J , corresponding to the maximum average
heat exchange between the two qubits.

In Figs. 3(a) and 3(b) we display both experimental and
theoretical results for the real and imaginary components of
the CF χτ (u) when F1 is at a particular pseudospin temper-
ature (β1h)−1 = 1403 Hz. We take a set of measurements in
one complete period of u ∈ [0, 2π

hν0
] [red dots in Figs. 3(a)

and 3(b)] and further take advantage of the periodicity of
the CF, χτ (u) = χτ (u + 2π

hν0
), to extrapolate [orange dots in

Figs. 3(a) and 3(b)] the obtained data for subsequent periods.
We phenomenologically add a small constant damping factor
to χτ (u) with a decay constant of 10 Hz in both theoretical
and experimental data. The inverse Fourier transform of the
obtained CF produces the desired PDF pτ (Q), which shows
three distinct peaks, at Q/h = ±1 kHz and Q/h = 0 Hz, and
with finite widths proportional to the decay constant. The
corresponding peak amplitudes reflect the probability of heat
flowing from one qubit to another. The location of the peaks
can be understood from the energy eigenvalues of the compos-
ite Hamiltonian H [Eq. (6)]. The ±1 kHz peaks correspond to
the transition between the zero-energy states and the highest-
or lowest-energy states. The corresponding probabilities are
proportional to 1

2 sin2 ( Jτ
2 ) × 1/(exp(∓β1hν0) + 1). The peak

at Q = 0 represents no heat-exchange process between the
qubits, and in this particular scenario, its peak amplitude is
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FIG. 4. (a–c) PDF of heat exchange for the XY model for dif-
ferent spin temperatures of F1: (a) (β1h)−1 = 494 Hz, (b) (β1h)−1 =
655 Hz, and (c) (β1h)−1 = ∞. (β2h)−1 = ∞. Solid blue lines and
red dots correspond to theoretical and experimental results, respec-
tively. (d) Verification of Jarzynski and Wójcik heat XFT plots for
ln [pτ (Q)/pτ (−Q)] as a function of Q/h for four F1 temperatures.
Shaded regions indicate the simulated 5% pulse errors in the ex-
periment. (e) Table listing theoretical and experimentally obtained
values for the slope �β = β1 − β2, βi = 1/kBTi from (d). All other
parameters are the same as in Fig. 3.

independent of the pseudospin temperatures and is propor-
tional to 1

2 (1 + cos2 ( Jτ
2 )). Note that, as per our convention, a

positive value of Q corresponds to heat flowing from F2 to F1,
and vice versa. Figure 3(c) therefore confirms that on average
heat flows from hot qubit F2 to cold qubit F1 and thereby
validates the second law of thermodynamics at the level of the
ensemble average. However, in the microscopic realm, a finite
probability corresponding to heat flowing from cold to hot
exists which contributes to negative entropy production. With
a reduction in the pseudospin temperature (β1h)−1 the peak
value at Q/h = −1 kHz decreases and, finally, disappears
completely for (β1h)−1 = 0 [Fig. 3(d)].

In contrast, as the temperature of F1 increases [Figs. 4(a)–
4(c)] the probability of backflow of heat from F1 to F2

increases, and the peak value at Q/h = −1 kHz increases,
becoming exactly equal to the peak value at Q/h = 1 kHz
at (β1h)−1 = ∞ and thus ensuring zero net heat exchange at
equilibrium. We next plot the ratio ln[pτ (Q)/pτ (−Q] against
Q for four sets of pseudospin temperatures to confirm the
Jarzynski and Wójcik XFT. Note that, as the coupling Hamil-
tonian in Eq. (6) is a constant one, pτ (−Q) is obtained
simply by flipping the forward PDF pτ (Q). Figure 4(d) shows
excellent agreement between the theoretical and the experi-
mentally obtained results, with the expected slope equal to
�β = β1 − β2. The shaded regions indicate simulated results
that involve 5% random errors in all the RF pulses used in

the interferometric technique as well as in the initial state
preparation. In Fig. 4(e) we tabulate both theoretical and
experimentally extracted values of these slopes.

It is experimentally possible to further tune the coupling
J to explore the heat statistics and the corresponding XFT
from the moderate- to the strong-coupling regime. However,
interestingly for this particular model, the XFT is satisfied
for arbitrary coupling strength J . This is due to the energy-
preserving interaction term in the Hamiltonian [Eq. (6)] H12 =
hJ
4 (σ x

1 ⊗ σ
y
2 −σ

y
1 ⊗ σ x

2 ), which commutes with the total bare
Hamiltonian of the two qubits H1 + H2. This symmetry im-
plies for the energy change of the qubits, �E1 = −�E2 for
any J value, as there is no energy cost involved in turning on or
off the interaction between the two qubits. As a consequence,
the XFT for heat exchange is supposed to be valid for any
J value. We now present the proof by providing the exact
analytical expression for the CF and the corresponding PDF
pτ (Q).

Following Eq. (4) and the Hamiltonian in Eq. (6), we
perform simple algebraic manipulations of the Pauli matrices
to receive an exact expression for χτ (u) as

χτ (u) =
[

1 + sin2

(
Jτ

2

)
{ f1(ν0) (1 − f2(ν0))(eihuν0 − 1)

+ f2(ν0)(1 − f1(ν0))(e−ihuν0 − 1)}
]
, (8)

where the function fi(ν0) = 1/(exp(βihν0) + 1), i = 1, 2, is
evaluated at the inverse temperature βi and qubit frequency
ν0. Note that the CF has the periodicity χτ (u) = χτ (u + 2π

hν0
).

Furthermore, as pointed out before, the above χτ (u) follows
the fluctuation symmetry χτ (u) = χτ (−u + i�β ) for arbi-
trary coupling strength J as well as for arbitrary values of β1,
β2, and ν0.

The corresponding probability distribution function of heat
pτ (Q) can be simply extracted by performing the inverse
Fourier transformation of χτ (u),

pτ (Q) =
∫ ∞

−∞
du eiuQ χτ (u)

= p0,τ δ(Q)+p+,τ δ(Q−hν0) + p−,τ δ(Q+hν0). (9)

This expression clearly shows three distinct peaks for pτ (Q)
at Q/h = 0,±ν0, reflecting different heat-exchange processes
between the qubits. These results excellently corroborate with
our experimental plots as displayed in Figs. 3 and 4. In Eq. (9),
p+,τ and p−,τ correspond to the probability of heat absorbed
and heat released by qubit F1, respectively, and are obtained
from χτ (u) as

p+,τ = sin2

(
Jτ

2

)
f2(ν0)(1 − f1(ν0)),

p−,τ = sin2

(
Jτ

2

)
f1(ν0)(1 − f2(ν0)), (10)

and p0,τ = 1 − p+,τ − p−,τ = 1 − sin2( Jτ
2 )( f1(ν0) + f2(ν0)

− 2 f1(ν0) f2(ν0)) corresponds to the probability of no heat
exchange between the qubits. It is easy to check that p+,τ

and p−,τ are related via the fluctuation symmetry p+,τ =
e(β1−β2 )hν0 p−,τ . To further connect these analytical results to
our experimental findings, in the limit where (β2h)−1 = ∞
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FIG. 5. (a–c) PDF of heat exchange for the XX model for ν0 =
10 Hz and for three values of coupling strength, J . The tempera-
tures are fixed at (β1h)−1 = 1403 Hz and (β2h)−1 = 288 Hz. (a) J =
0.1 Hz (weak coupling), (b) J = 15 Hz (moderate coupling), and
(c) J = 20 Hz (strong coupling). Solid blue lines and dots corre-
spond to theoretical and experimental results, respectively. (d) Plots
of ln [pτ (Q)/pτ (−Q)] as a function of Q for different coupling
strengths. Shaded regions indicate simulated 5% pulse errors in the
experiments.

and (β1h)−1 = 0, one finds following Eq. (10) that p−,τ van-
ishes, which indicates no backflow of heat from F1 to F2. This
outcome is confirmed in Fig. 3(d) as the absence of the peak
at Q/h = −ν0. With increasing (β1h)−1, the probability of
backflow increases, and finally, at equilibrium (β1 = β2) the
forward and backward flows become identical (p−,τ = p+,τ ),
confirming zero net heat exchange between the qubits. These
predictions are also reflected in Figs. 4(a)–4(c).

In what follows, we experimentally emulate the XX model,
which lacks the energy preserving symmetry between the
qubits and investigate its consequence on heat statistics and
the corresponding XFT.

B. XX-coupling model

We first display the experimental results for the XX model
in Fig. 5. As before, we follow a similar experimental ap-
proach and set the frequency of the qubits to ν0 = 10 Hz but
now tune J from 0.1 Hz up to 20 Hz to simulate pτ (Q) from
the weak- to the strong-coupling regime. We fix the temper-
atures for the qubits at (β1h)−1 = 1403 Hz and (β2h)−1 =
288 Hz and obtain the pτ (Q) corresponding to a fixed time
duration τ = π/J . The PDFs pτ (Q) for different values of J
are shown in Figs. 5(a)–5(c). The trend for the distribution
is similar to the earlier case, with three distinct peaks, at
Q = 0, and Q/h = ±ν0. However, the corresponding plot for
the ratio ln[pτ (Q)/pτ (−Q)] versus Q in Fig. 5(d) shows a
clear violation of the XFT, except for the value of J = 0.1 Hz.
For J = 0.1 Hz � ν0 = 10 Hz (weak coupling) the obtained
slope from the experimental data (black dots) matches very
closely to the expected �β value (solid line). However, for
moderate (J = 15 Hz) to strong coupling (J = 20 Hz), the ex-
perimental results (black dots) deviate significantly from the
theoretical �β value (solid line), which is a clear indication of

the breakdown of the standard XFT. This breakdown can be
attributed to the energy nonconserving coupling term in the
XX model, as we show below.

To verify the XFT for this model, one can follow an ap-
proach similar to that for the XY model to obtain an analytical
expression for the CF χτ (u) However, instead of the CF, we
provide here an expression for the deviation term of the XFT,
i.e., 〈e−�βQ〉τ − 1, which captures the essential details about
the violation. We obtain

〈e−�βQ〉τ − 1 = − J2

J2 + 16 ν2
0

sin2

(
τ

4

√
J2 + 16 ν2

0

)

× h(β1, β2, ν0), (11)

where the function h(β1, β2, ν0) is defined as

h(β1, β2, ν0) = 1 + eβ1hν0 − eβ2hν0 − e(β1−β2 )hν0

(eβ1hν0 + 1)
. (12)

Note that the standard version of the XFT implies 〈e−�βQ〉τ =
1. The additional contribution in Eq. (11) therefore reflects
the deviation from the XFT. This term yields a negligible
contribution only in the weak-coupling limit J � ν0, which
then reproduces the XFT for arbitrary τ . However, from
moderate (J ≈ ν0) to strong (J � ν0) coupling this term
dominates, leading to the breakdown of the XFT as also
observed experimentally. Note that this deviation term is in
fact related to the total change in energy of the two qubits and,
thereby, linked to the energy nonconserving coupling term
H12 = hJ

4 σ x
1 ⊗ σ x

2 . We obtain

〈�E1〉τ +〈�E2〉τ = i

h

∫ τ

0
dt 〈[H12, H1+H2]〉

= hν0
J2

J2 + 16 ν2
0

sin2

(
τ

4

√
J2+16 ν2

0

)
× g(β1, β2, ν0), (13)

where 〈�Ei〉τ is the net energy change of the ith qubit in the
time duration τ and the function g(β1, β2, ν0) is given as

g(β1, β2, ν0) = 2 (e(β1+β2 )hν0 − 1)

(eβ1hν0 + 1) (eβ2hν0 + 1)
. (14)

Comparison of Eq. (11) and Eq. (13) clearly shows the link
between the energy nonconserving interaction and the devia-
tion of the XFT.

V. EFFECT OF THE INITIALLY CORRELATED STATE

We next direct our attention to exploring heat statistics for
the correlated initial state. As mentioned earlier, the ancilla-
based technique captures the effect of the arbitrary initial
correlation present in the composite system (see Appendix A).
Note that in the presence of such initial correlations the
inverse FT of χτ (u) may not correspond to the actual PDF
of heat [44,45]. However, it produces the correct definition for
the first cumulant, the average heat [46] 〈Q〉 = Tr1[H1(ρ1(t )−
ρ1(0))], where ρ1(τ ) is the reduced density matrix of F1 at
time τ . In our experiment, we simulate the XY model, choose
a particular uncorrelated initial state, introduce a finite amount
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FIG. 6. Absolute values for the density matrix elements for the
composite system F1 and F2 for the XY model for (a) uncorrelated
(ρ0 = ρ1 ⊗ ρ2) and (b) correlated (ρ0 �= ρ1 ⊗ ρ2) initial states. (c, d)
Comparison between the corresponding heat-exchange PDFs pτ (Q).
Solid blue lines and dots represent theoretical and experimental
results, respectively. Here the pseudospin temperatures for F1 and F2

are (β1h)−1 = −3359.9 Hz and (β2h)−1 = 4125.3 Hz, respectively.

of correlation, affecting only the off-diagonal elements of the
composite density matrix as shown in Figs. 6(a) and 6(b),
and measure χτ (u) to extract the corresponding pτ (Q). In
Figs. 6(c) and 6(d) we compare the distributions obtained
for the correlated case versus the corresponding uncorrelated
one. As shown, the presence of a finite correlation leads to
a crucial change in the statistics and provides evidence of
reversal of heat flow. This further implies the breakdown
of the standard Jarzynski-Wójcik XFT. A similar effect for
average heat flow has recently been studied experimentally
for a two-qubit system by measuring the qubit states following
quantum state tomography [46].

VI. SUMMARY

In summary, we experimentally explore the validity of the
quantum version of the transient heat XFT by implementing
an interferometric approach in a three-qubit liquid NMR
architecture. We experimentally simulate two heat-exchange
models. The experimental results show perfect agreement
with the fluctuation symmetry when the composite system
is weakly coupled and is prepared in the uncorrelated Gibbs
thermal states with different temperatures. Interestingly, the
XY model satisfies the XFT for arbitrary coupling strength,
whereas for the XX model we observe the breakdown of the
XFT in the strong-coupling regime. Furthermore, inclusion of
any finite amount of correlation in the initial state also leads
to a breakdown of the fluctuation symmetry and, interestingly,
reverses the direction of the heat flow against the temperature
bias, thereby providing an additional knob for controlling heat
flow. We provide analytical results for these models and find
excellent agreement with experiments. Future work will be
directed towards implementing a quantum state tomography
technique to monitor the qubit states to further analyze and
test the relation between the heat exchange and Rényi diver-
gences [47].

FIG. 7. Circuit diagram for the interferometric technique to mea-
sure the CF of heat χτ (u). ρi (i = A, B,C, D, E ) represents the inter-
mediate states of the global system (F1, F2, F3) after gate operations.
|0〉〈0| is the pseudopure state of the ancilla and ρin is an arbitrary
initial state (correlated or uncorrelated) for the two qubits.
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APPENDIX A: INTERFEROMETRIC TECHNIQUE TO
OBTAIN THE CHARACTERISTIC FUNCTION FOR HEAT

In this section, we summarize the interferometric technique
[23–25] to obtain the CF for heat as given in Eq. (4) in the text.
We follow the circuit in Fig. 7. We begin with the initial state
of the three-qubit system |0〉〈0| ⊗ ρin, where ρin is an arbitrary
initial state for the two qubits (F1, F2) that exchange heat and
|0〉〈0| is the state for the ancillary qubit. Therefore, the global
density operator in the ancillary basis is given as

ρA =
[
ρin 0
0 0

]
.

In the next step we apply the Hadamard gate, H , on the
ancillary qubit. As a result, the density matrix is modified to

ρB = HρAH† = 1

2

[
ρin ρin

ρin ρin

]
.

This operation is followed by application of a controlled gate
V = exp [−i u H1] ⊗ 12 on the qubit F1. The corresponding
change in the density matrix is given as

ρC = 1

2

[
ρin ρinV †

V ρin V ρinV †

]
.

The next step includes the unitary propagator U corresponding
to the composite Hamiltonian H [Eq. (6)], along with a σx

rotation on the ancillary qubit. The modified density matrix is
given as

ρD = 1

2

[
UV ρinV †U† UV ρinU†

UρinV †U† UρinU†

]
.
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FIG. 8. Pulse sequence for the interferometric circuit in Fig. 7.

In the final step, the controlled gate V1 is applied once again
on qubit F1. The final global density matrix is given by

ρE = 1

2

[
UV ρinV †U† UV ρinU†V †

VUρinV †U† VUρinU†V †

]
.

Now, tracing out qubits F1 and F2, we receive the reduced
density matrix for the ancilla F3 as

ρ = Tr1,2[ρE ] = 1

2

[
1 Tr[U V ρinU†V †]

Tr[VUρinV †U†] 1

]
.

The off-diagonal components of this density matrix are simply
related to the expectation values of the σx and σy components
for the ancilla. We can therefore write

〈σx〉ρ + i〈σy〉ρ = Tr[VUρinV †U†],

= Tr[V †U†VUρin]

= Tr[(ei u H1 ⊗ 12)U† (e−i u H1 ⊗ 12)U ρin]

= Tr[U† (e−i u H1 ⊗ 12)U ρin(ei u H1 ⊗ 12)].
(A1)

Note that the above final expression, Eq. (A1), is not
yet the CF of heat as obtained in Eq. (4), following the
two-time measurement protocol. It is only when the ini-
tial state ρin for F1 and F2 is given by an uncorrelated
(product) Gibbs state, i.e., ρin = ρ0 = exp[−β1H1]/Z1 ⊗
exp[−β2H2]/Z2, which implies [ρ0, H1 ⊗ 12] = 0, that the
above expression reduces to

〈σx〉ρ + i〈σy〉ρ = Tr[U†(e−i u H1 ⊗ 12)U (ei u H1 ⊗ 12)ρ0],
(A2)

which is exactly the CF χτ (u) in Eq. (4).
It is important to note that for an arbitrary initial condition

Eq. (A1) may not deliver the correct PDF of heat, as it
is not guaranteed to be always positive definite. However,
interestingly, the CF at least produces the correct definition
for the first moment, i.e., the average heat, given by 〈Q〉 =
Tr1[H1(ρ1(t ) − ρ1(0))].

APPENDIX B: PULSE SEQUENCE FOR THE
INTERFEROMETRIC CIRCUIT FOR

THE XY AND XX MODELS

The various gates used in the interferometric circuit, as
shown in Fig. 7 (Fig. 2 in the text) are obtained by imple-
menting the pulse sequence, shown in Fig. 8. In what follows,
we explain Fig. 8: Each bordered box consists of three qubit

FIG. 9. NMR pulse sequence to prepare the initial state |0〉〈0| ⊗
ρ1 ⊗ ρ2. Filled black bars, dashed black bars, and open bars represent
( π

4 )−y, ( π

4 )x , and (π )x pulses, respectively. Green and purple bars
represent ( π

3 )x and (0.42π )x pulses. Blue and red bars control the
temperature of F1 and F2, respectively. The PFG line shows the times
at which gradients are applied to destroy the coherence.

pulses obtained using the GRAPE optimization technique
[48]. The three-qubit liquid NMR system is found in the
thermal equilibrium state at room temperature, the deviation
density matrix of which can be written as (σ z

1 + σ z
2 + σ z

3 )/2.
To prepare the uncorrelated initial state of |0〉〈0| ⊗ ρ1 ⊗ ρ2,
where ρi = exp [−βiHi]/Zi, with Zi being the respective par-
tition function, we follow a pulse sequence similar to that
shown in Fig. 9 [49]. After initialization, the Hadamard gate
is implemented using GRAPE with a duration of 600 μs and
fidelity of 99.9%. The control operation V can be split into z
and x rotations and a free evolution under the σ z

i σ z
j coupling,

written as

V = exp[−i u H1] ⊗ 12 = U 12
z Uzz Ux Uzz Ux, (B1)

where U 12
z = exp [i φ

4 (σ z
1 + σ z

2 )], Uzz = exp [−i φ

8 (σ z
1σ z

2 )], and
Ux = exp [−i π

2 (σ x
1 + σ x

2 )]. φ is the angle of rotation and is
expressed as hν0u. U 12

z and Ux are realized by using GRAPE,
with the total maximum duration being 720 and 660 μs,
respectively, with all fidelities being above 99.9%. Uzz, on the
other hand, can be implemented by free evolution under the
internal Hamiltonian of the molecule Eq. (5). The interaction
operator U for the XY and XX models was again prepared
using GRAPE, with a total time of 7.5 ms and a fidelity well
over 99%.

APPENDIX C: INTERNAL HAMILTONIAN OF THE
LIQUID NMR SYSTEM

In this section, we explain the internal Hamiltonian of
the liquid NMR system given in Eq. (5) in the text. The
NMR sample consists of 1015 molecules of 1,1,2-trifluoro-2-
iodoethane (TFIE) dissolved in suitable solvents, acetone in
our case, and placed in an external magnetic field directed
along z, B = B0ẑ. This results in a Zeeman splitting term
γiB · σ i

2 , where γi is the gyromagnetic ratio of the ith nucleus.

Another Zaaman-like term, γi
∑

μ,ν Bμdi
μν

σν
i
2 , arises because

of the modifications of the electronic cloud surrounding the
nucleus, where di

μν is called the chemical shift tensor. The
spins in the molecule can interact via a scalar J coupling,
mediated by the electronic cloud through bonds and dipolar-
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dipolar interaction, through space. As mentioned earlier, our
liquid sample is diluted enough that intermolecular interac-
tions can be neglected. Thus the Hamiltonian of the system
takes the form

H =
∑

i

γiB0

(
σ z

i

2
+

∑
ν

di
zν

σ ν
i

2

)

+
∑

i< j,μ,ν

σ
μ
i

2
Jμν

i j

σ ν
j

2
+ Hdipole. (C1)

Being prepared in the liquid state, the molecules in the
sample undergo rapid rotations. The rotational motion av-
erages out the dipole-dipole interaction and the electron-
mediated spin-spin scalar coupling is averaged to its isotropic

value. The Hamiltonian thus reduces to

H =
N∑

μ,i=1

γiB0
(
δzμ + d̄ i

zμ

)σ
μ
i

2
+

N∑
i< j=1

Ji j
σ i

2
.
σ j

2
, (C2)

where J is the trace of the Jμν tensor and d̄ is a motionally
averaged value of the chemical shift d tensor. N refers to
the number of nuclei in a molecule. We recognize that ωi =
γiB0(1 + d̄ i

zz ) as the Larmor frequency of the ith nucleus
in the system corresponds to the large external magnetic
field B0. For fluorine (γi ∼ 2.5 × 108 s−1 T−1) this is of the
order of 470 MHz at B0 = 11.74 T. Further using secular
approximation [50], the Hamiltonian simplifies to

H =
N∑

i=1

hνi

2
σ z

i +
N∑

i< j=1

hJi j

4
σ z

i σ z
j . (C3)
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