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Persistence of quantum violation of macrorealism for large spins
even under coarsening of measurement times
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We investigate quantum violation of macrorealism for multilevel spin systems under the condition of
coarsening of measurement times, i.e., when measurement times have experimental indeterminacy. This is
studied together with the effect of coarsening of measurement outcomes for which individual outcomes cannot
be unambiguously discriminated. In our treatment, along with different measurement outcomes being combined
into two groups in order to model the coarsening of measurement outcomes, importantly, varying degrees
of coarsening of measurement time intervals have also been considered. This then reveals that while, for a
given dimension, the magnitude of quantum violation of macrorealism decreases with the increasing degree of
coarsening of measurement times, interestingly, this effect of coarsening of measurement times can be annulled
by increasing the dimension of the spin system so that in the limit of large spin, the quantum violation of
macrorealism continues to persist. Thus, the result obtained demonstrates that classicality for large spins does
not emerge from quantum mechanics in spite of the coarsening of measurement times.

DOI: 10.1103/PhysRevA.100.042114

I. INTRODUCTION

The key features of quantum mechanics significantly differ
from that of the classical description of nature. Leggett and
Garg, in their seminal paper [1], codified the central concepts
underpinning the classical world view in terms of the notion
of “macrorealism” which is the conjunction of the following
two assumptions. Realism: At any instant, irrespective of any
measurement, a system is definitely in any one of the available
states such that all its observable properties have definite
values. Noninvasive measurability: It is possible, in principle,
to determine which of the states the system is in, without
affecting the state itself or the system’s subsequent evolution.
The conjunction of these two assumptions is in conflict with
quantum mechanics, which was initially demonstrated by
Leggett and Garg by deriving from these assumptions of
macrorealism an experimentally testable inequality involving
time-separated correlation functions corresponding to succes-
sive measurement outcomes pertaining to a system whose
state evolves in time. Such an inequality is known as the
Leggett-Garg inequality [1–3]. In recent years, investigations
related to the Leggett-Garg inequality have been acquiring
considerable significance, as evidenced by a wide range of
theoretical and experimental studies [4–33].

Apart from Leggett-Garg inequalities, two other necessary
conditions of macrorealism have been proposed. These are
Wigner’s form of the Leggett-Garg inequalities [34] and the

*mukherjeesumit93@gmail.com
†rudraanik13@gmail.com
‡dasdebarshi90@gmail.com
§shiladitya.27@gmail.com
‖quantumhome80@gmail.com

no-signaling in time conditions [35]. Wigner’s form of the
Leggett-Garg inequality is derived as a testable consequence
of the probabilistic form of macrorealism following the argu-
ments presented in deriving Wigner’s form of the local realist
inequalities [36–38]. On the other hand, the no-signaling in
time condition is formulated as a statistical version of “non-
invasive measurability” to be satisfied by any macrorealist
theory. The nonequivalence between these different necessary
conditions of macrorealism with respect to the robustness of
their quantum violations against unsharp measurement has
been established [34] and also illustrated in a different context
[39]. Quantum violations of these three necessary conditions
of macrorealism contingent upon using most general di-
chotomic measurements [40] as well as two-parameter multi-
outcome generalized measurements have also been studied in
detail [41]. Apart from ruling out a class of realist models,
quantum violations of any one of the necessary conditions of
macrorealism can be invoked to probe the nonclassicality of
the system under consideration. Hence, the quantum violation
of macrorealism can be used as a tool for demonstrating a
quantum-to-classical transition.

One of the key areas in the study of quantum foundations
is the investigation of how classicality emerges from quan-
tum mechanics. Among the various approaches suggested for
addressing this issue [42–54], there are the following three
strands of prevalent wisdom which are relevant to the present
study:

(i) One view is that classical physics emerges from the
predictions of quantum mechanics in the so-called macro-
scopic limit when either the system under consideration is of
high dimensionality, for example, a large spin system, or if a
low-dimensional system is of large mass, or if it involves a
large value of any other relevant parameter.
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(ii) The second approach considers that classicality arises
from quantum physics under the restriction of a coarse-
grained measurement (i.e., coarsening of measurement out-
comes) for which one can empirically resolve only those
outcomes of the relevant measurement that are sufficiently
well separated [55,56].

(iii) The recently suggested approach argues that for cases
where coarse-grained measurements do not lead to a quantum-
to-classical transition, coarse graining of what has been called
“measurement references” enables the emergence of classical-
ity [57].

As regards the first approach mentioned above, a number
of counterexamples have been pointed out. For instance, in
the case of spatial quantum correlations pertaining to spatially
separated particles, it has been demonstrated that quantum
features in the form of quantum violations of local realist
inequalities persist in the “macroscopic” limit, such as for
the large number of constituents of the entangled system or
for the large dimensions of the constituents of the entangled
system [58–65]. On the other hand, in the case of temporal
correlations, it has been shown that the quantum violation
of the Leggett-Garg inequality persists for an arbitrary large
value of spin of the system under consideration [66–68].

As regards the second approach mentioned above, it has
been shown [55,56] that for a class of Hamiltonians governing
the time evolution of the system, if one goes into the limit of
sufficiently large spins, but can experimentally only resolve
outcomes which are well separated, then the measurement
statistics and time evolution appear to be consistent with those
obtained from classical laws. This suggests that classicality
emerges from quantum mechanics under coarse-grained mea-
surements, i.e., when the measurement outcomes are coars-
ened. However, there are a number of counterexamples; for
example, it has been shown that quantum effect in the sense of
violating local realism persists under extreme coarse-grained
measurements [69]. Modeling coarse-grained measurements
by combining different outcomes into two groups and con-
sidering the fuzziness of the measurements, it has also been
shown that quantum violations of macrorealism persist in the
large limit of spin [70].

Following the third approach mentioned above, it has been
demonstrated [57] that coarsening of measurement references
can lead to a quantum-to-classical transition when it is not en-
abled by coarsening of measurement outcomes. In particular,
it has been shown that while for a given dimension the quan-
tum violation of macrorealism decreases under coarsening of
measurement references, this quantum violation can be further
decreased by increasing the dimension of the system, thereby
reinforcing the emergence of classicality. Recently, the effects
of various types of coarsening of measurement references
on a quantum-classical transition have been investigated for
temporal correlations pertaining to two-level systems [71].
In this context, it has been shown that coarsening of mea-
surement references in terms of measurement times is the
most effective among the different types of measurement ref-
erences involved in probing a quantum-to-classical transition
[71].

Against the above backdrop, considering the quantum vi-
olation of macrorealism, we probe the effect of coarsening
of measurement outcomes, treated in conjunction with that of

measurement references. Focusing on multilevel spin systems,
we first consider projective spin measurements corresponding
to multi-outcomes and then model the coarsening of such
measurement outcomes by combining them into two groups
consisting of an equal or almost equal number of outcomes.
For modeling the coarsening of measurement references, we
consider Gaussian coarsening of measurement times. The
central result revealed by the present study is that for a given
dimension, the effect of coarsening of measurement times
in showing the emergence of classicality can be countered
by increasing the dimension of the quantum system, thereby
illustrating that for large spin systems, classicality does not
necessarily emerge from quantum mechanics under coarsen-
ing of measurement times. This is apparently incompatible
with the result obtained by Jeong et al. [57].

We organize this paper in the following way. In Sec. II, we
briefly discuss the three necessary conditions of macrorealism
that have been used in our treatment. In Sec. III, we explain
the measurement context by modeling the coarsening of mea-
surement outcomes as well as that of the measurement times.
The analysis of the emergence of classicality for multilevel
spin systems is presented in Sec. IV using the three necessary
conditions of macrorealism. Finally, in Sec. V, while summa-
rizing the key results obtained in this paper, we explain the
reason why the central result obtained in this paper differs
with that obtained by Jeong et al. [57].

II. THE THREE NECESSARY CONDITIONS
OF MACROREALISM

Based on the two assumptions of macrorealism proposed
by Leggett and Garg [1] mentioned earlier, three necessary
conditions of macrorealism have been proposed. These are as
follows:

Leggett-Garg inequality. It was derived by Leggett and
Garg [1] as an experimentally testable algebraic consequence
of the deterministic form of macrorealism. Let us consider
the time evolution of a system consisting of two states, say, 1
and 2. Let us define an observable quantity Q(t ) which, when
measured, can take values +1 and −1 depending on whether
the system is in state 1 or 2, respectively. Next, consider a
collection of sets of experimental runs starting from identical
initial states each time. In the first set of runs, Q is measured
at instances, say, t1 and t2; in the second set of runs, Q is
measured at t2 and t3; and in the third set of experimental
runs, Q is measured at t1 and t3, where t1 < t2 < t3. Based
on the assumptions of macrorealism, the following form of
Leggett-Garg inequality is obtained:

KLGI = C12 + C23 − C13 � 1, (1)

where Ci j = 〈QiQj〉 is the two-time correlation function of Q
measured at instances ti and t j . Note that the left-hand side of
inequality (1) can be evaluated experimentally. Inequality (1)
imposes macrorealist constraint on the temporal correlations
pertaining to any two-level system. The magnitude of quan-
tum violation of the Leggett-Garg inequality is denoted by the
positive values of (KLGI − 1).

Wigner’s form of Leggett-Garg inequality. Similar to the
Leggett-Garg inequality, here again consider temporal evo-
lution of a two-state system where the available states are,
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say, 1 and 2, and consider measurements of Q at instances
t1, t2, and t3 (t1 < t2 < t3). For deriving Wigner’s form of
the Leggett-Garg inequality [34], the notion of realism is
invoked, implying the existence of overall joint probabilities
ρ(Q1, Q2, Q3) pertaining to different combinations of defi-
nite values of outcomes for the relevant measurements. On
the other hand, the assumption of noninvasive measurability
implies that the observable marginal probabilities can be
noninvasively measured without affecting the overall joint
probabilities. Then, for example, the observable joint prob-
ability P(Q1−, Q2+) of obtaining the outcomes −1 and +1
for the sequential measurements of Q at the instants t1 and t2,
respectively, can be written as

P(Q1−, Q2+) =
∑

Q3=±1

ρ(−,+, Q3)

= ρ(−,+,+) + ρ(−,+,−). (2)

Similarly, one can write the other observable joint probabili-
ties P(Q2+, Q3+) and P(Q1+, Q3+) in terms of overall joint
probabilities ρ(Q1, Q2, Q3). Using such expressions, we get

P(Q1+, Q3+) + P(Q1−, Q2+) − P(Q2+, Q3+)

= ρ(+,−,+) + ρ(−,+,−). (3)

Then, invoking the non-negativity of the overall joint prob-
abilities occurring in the above equation, the following
three-term Wigner’s form of Leggett-Garg inequality can be
obtained:

KWLGI = P(Q2+, Q3+) − P(Q1−, Q2+)

− P(Q1+, Q3+) � 0. (4)

This is a specific expression of Wigner’s form of the Leggett-
Garg inequality, which we will be using throughout the paper.
Similarly, other expressions of Wigner’s form of the Leggett-
Garg inequality involving any number of two-time joint prob-
abilities can be derived by using various combinations of
the observable joint probabilities. The magnitude of quantum
mechanical violation of Wigner’s form of the Leggett-Garg
inequality is denoted by the positive values of KWLGI.

No-signaling in time condition. The no-signaling in time
condition is a set of conditions [35] introduced as a statistical
consequence of the noninvasive measurability condition. The
statement of the no-signaling in time condition is that the
measurement outcome statistics for any observable at any
instant is independent of whether any prior measurement
has been carried out. Let us consider a system whose time
evolution occurs between two possible states. The probability
of obtaining the outcome +1 contingent upon performing
the measurement of a dichotomic observable Q at an instant,
say, t3, without any earlier measurement being performed
is denoted by P(Q3+). The no-signaling in time condition
requires that P(Q3+) should remain unchanged even when
an earlier measurement is made at t2. Mathematically, the no-
signaling in time condition can be expressed as the following

equation:

KNSIT = |P(Q3+) − [P(Q2+, Q3+) + P(Q2−, Q3+)]| = 0.

(5)

The magnitude of the quantum nonsatisfaction of the no-
signaling in time condition is quantified by the nonzero values
of KNSIT.

Violation of any one of the necessary conditions of macro-
realism can be invoked for ruling out a class of realist models.
Further, quantum violation of any of the necessary conditions
of macrorealism can be used as a tool for revealing quantum-
ness in a context that may apparently seem to entail classical
behavior. The present paper will use this latter feature in order
to probe the quantum-to-classical transition for multilevel
large spin systems, subjected to coarsening of measurement
outcomes in conjunction with coarsening of measurement
times.

III. MULTILEVEL SPIN SYSTEM AND THE
MEASUREMENT CONTEXT

Consider a spin- j system placed in a uniform magnetic
field of magnitude B0 along the x direction. The relevant
Hamiltonian of the system in the units of h̄ is given by

H = �Jx, (6)

where Jx is the x component of the total spin angular mo-
mentum J and � is the angular frequency of precession
which is proportional to B0. Now consider the measurements
of the z-component spin, Jz, whose possible outcomes are
the eigenvalues of the Jz operator. The outcomes of the z
component of spin are denoted by m, which can take values
from − j to + j for any spin- j system.

In quantum mechanics, any two outcomes (say, m1 and m2)
of the measurement of the z component of spin are associated
with orthogonal eigenstates. Now, the notion of “neighboring
outcomes” [55,56] arises in the real configuration space where
the outcomes are detected by observing the postmeasurement
state of the pointer. For example, the two eigenvalues m and
m + 1 of the z component of the spin observable correspond to
neighboring outcomes in a real experimental scenario where
it is not always possible to distinguish such neighboring
outcomes registered in the detector. In the present study, we
consider that due to measurement interaction, although the
state is projected onto one of the eigenstates of the Jz operator,
owing to limited resolution of the detector the neighboring
outcomes cannot be distinguished. Thus, this type of coars-
ening of measurement outcomes actually encapsulates coars-
ening of outcomes at the level of detecting these outcomes.
Here we consider the case of a detector having extremely low
resolution so that the detector can only distinguish two groups
of outcomes.

In our model of coarsening of measurement outcomes,
we combine the possible outcomes into two groups in such
a way that the number of outcomes in these two groups is
equal or almost equal. For any spin- j system, the number of
outcomes of the Jz measurement is equal to 2 j + 1. When j
is a half integer, 2 j + 1 is even. On the other hand, 2 j + 1 is
odd for integer values of j. Hence, for systems having half-
integer spin values, it is possible to combine the measurement
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outcomes into two groups where the numbers of outcomes
in the two groups are exactly equal. However, in the case of
systems with integer values of spin, it is not possible to divide
the possible outcomes equally. In our measurement scheme,
we define the observable quantity Q in the following way: for
integer j, Q is defined in such a way that Q = −1 when m
takes any value from − j to 0, and Q = +1 when m takes any
value from +1 to + j. On the other hand, for half-integer j,
Q is defined in such a way that Q = −1 when m takes any
value from − j to − 1

2 , and Q = +1 when m takes any value
from + 1

2 to + j. In the above grouping scheme, the numbers of
measurement outcomes in the two groups defined by Q = +1
and Q = −1 differ by unity when j is an integer. When j is
a half integer, the numbers of measurement outcomes in the
two groups defined by Q = +1 and Q = −1 are equal.

This observable quantity Q is measured at instances t1,
t2, and t3 (t1 < t2 < t3). Note that this type of grouping
scheme has been used earlier in the treatments of the quantum
violation of macrorealism [41,67,70]. Note that the above
measurement scheme has been critically reexamined in the
context of the Leggett-Garg inequality by Kumari et al. [72].

To summarize the above discussion, we are considering
a measurement scenario in which one cannot distinguish
between individual outcomes of the Jz measurement, but
can determine which of the two groups, defined above, the
obtained outcome belongs to.

Considering the above grouping scheme, any typical
joint probability distribution P(Qi+, Qj−) can be written as
follows:

P(Qi+, Qj−)

=
⎧⎨
⎩

∑+ j
mi=+1

∑0
mj=− j P(mi, mj ) if j is integer

∑+ j
mi=+ 1

2

∑− 1
2

mj=− j P(mi, mj ) if j is half integer,

(7)

where P(mi, mj ) denotes the joint probability of obtaining the
outcomes mi and mj when measurements corresponding to
the operator Jz are performed at instances ti and t j (ti < t j),
respectively.

When coarsening of the measurement times is not con-
sidered, the joint probability P(mi, mj ) can be evaluated as
follows:

P(mi, mj ) = Tr{�miU [�(ti − t0)]ρiU
†[�(ti − t0)]}

× Tr{�mjU [�(t j − ti )]�miU
†[�(t j − ti )]},

(8)

where ρi is the initial state of the system at t = t0. �mi

and �mj are the projectors onto the eigenstates of the Jz

operators associated with eigenvalues mi and mj , respec-
tively. U [�(ti − t0)] = exp[−i�(ti − t0)Jx] and U [�(t j −
ti )] = exp[−i�(t j − ti )Jx] are the unitary time evolution op-
erators from t = t0 to t = ti and from t = ti to t = t j ,
respectively.

Now, in order to take into account the effect of coarsening
of the measurement times, we consider that the measurement
time intervals (ti − t j ) (ti < t j) are not fixed. We rather con-
sider Gaussian distributions of the measurement time intervals
(ti − t j ) around some fixed values (ti − t j ). In this case, the

joint probability P(mi, mj ) can be evaluated as follows:

P(mi, mj )

= Tr

{
�mi

∫ ∞

−∞
dθ1P�[θ1 − �(ti − t0)]U (θ1)ρiU

†(θ1)

}

× Tr

{
�mj

∫ ∞

−∞
dθ2P�[θ2−�(t j −ti )]U (θ2)�miU

†(θ2)

}
,

(9)

where P�[θ1 − �(ti − t0)] = 1
�

√
2π

exp [− [θ1−�(ti−t0 )]2

2�2 ] is the

Gaussian kernel centered around �(ti − t0) with standard
deviation �, P�[θ2 − �(t j − ti )] is another Gaussian kernel
centered around �(t j − ti ) with standard deviation �, and
U (θk ) = exp[−iθkJx] with k ∈ {1, 2}. Note that � quantifies
the degree of coarsening of measurement times.

Now, to develop our treatment, we consider initialization
of our system in each experimental run to be in the state
| − j; j〉 at t = t0, where |m; j〉 denotes the eigenstate of the
Jz operator corresponding to the eigenvalue m. Let us choose
�(t1 − t0) = π , �(t2 − t1) = π

2 , �(t3 − t2) = π
2 (in radian).

For an arbitrary j, this choice may not give the maximum
quantum violation of the Leggett-Garg inequality, Wigner’s
form of the Leggett-Garg inequality, or the no-signaling in
time condition in the context of our measurement scheme.
However, this choice suffices to give a representative indi-
cation of the nature of quantum violation of macrorealism
for large j under coarsening of measurement outcomes in
conjunction with that of measurement times.

IV. ANALYSES USING DIFFERENT NECESSARY
CONDITIONS OF MACROREALISM

In this section, we discuss the quantum violations of differ-
ent necessary conditions of macrorealism in the context of our
measurement scenario and the choice of �(t j − ti ) mentioned
earlier.

Using Eqs. (8) and (9), one can obtain the following form
of any typical joint probability P(mi, mj ) when coarsening of
the measurement time intervals is not considered:

P(mi, mj ) =∣∣d j
mi,− j[�(ti − t0)]

∣∣2∣∣d j
mj ,mi

[�(t j − ti )]
∣∣2

, (10)

where d j
mj ,mi (φ) is the Wigner’s d matrix.

Similarly, using Eq. (9), one can obtain the following form
of the joint probability P(mi, mj ) when coarsening of the
measurement time intervals is considered:

P(mi, mj )

=
{∫ ∞

−∞
dθ1P�[θ1 − �(ti − t0)]

∣∣d j
mi,mj

(θ1)
∣∣2

}

×
{∫ ∞

−∞
dθ2P�[θ2 − �(t j − ti )]

∣∣d j
mj ,mi

(θ2)
∣∣2

}
. (11)

From Eq. (10) or (11), along with Eq. (7), one can calculate
any joint probability distribution P(Qi±, Qj±) appearing on
the left-hand side of Wigner’s form of the Leggett-Garg in-
equality (4) and the no-signaling in time condition (5). Using
the joint probability distributions, one can then evaluate the
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correlations Ci j = ∑
x=±

∑
y=± P(Qi = x, Qj = y) appearing

on the left-hand side of the Leggett-Garg inequality (1).
Note that in the case of half-integer spin systems, our

grouping scheme divides the measurement outcomes equally.
But in the case of integer spin systems, the number of mea-
surement outcomes in the two groups differs by unity. That is
why we subsequently present the analyses for half-integer and
integer spin systems separately.

A. Analysis for half-integer spin systems

First, we study the use of the Leggett-Garg inequality in
our study. We find that while the Leggett-Garg inequality
is not violated for arbitrary half-integer spin systems under
coarsening of measurement times, even in the absence of
coarsening of measurement times, the Leggett-Garg inequal-
ity is not violated. Note that these results are for the particular
choice of �(t j − ti ) and the particular grouping scheme of the
measurement outcomes mentioned earlier. Since the Leggett-
Garg inequality is a necessary condition of macrorealism, but
not a sufficient one, no conclusion can be drawn when the
Leggett-Garg inequality is not violated.

As we will discuss later, when coarsening of measurement
times is not considered, Wigner’s form of the Leggett-Garg
inequality is violated and the no-signaling in time condition is
not satisfied by quantum systems having arbitrary half-integer
values of spin for the aforementioned choice of �(t j − ti ).
These quantum effects persist even under the coarsening of
measurement times. Hence, the particular choice of �(t j − ti )
mentioned earlier suffices to illustrate the main result of this
work, namely, the persistence of quantum violation of macro-
realism for large spin systems even under the coarsening of
measurement times, evidenced through quantum violations
of the Wigner’s form of the Leggett-Garg inequality and the
quantum nonsatisfaction of the no-signaling in time condition.

Next, we study the quantum violations of Wigner’s form
of the Leggett-Garg inequality (4). In this case, when the
coarsening of measurement times is not taken into account,
the quantum violation of Wigner’s form of the Leggett-Garg
inequality remains constant with respect to different values of
the half-integer spin j. This result is summarized in Table I.

Now, consider that the coarsening of measurement times
is taken into account. The result obtained for Wigner’s form
of the Leggett-Garg inequality in this case is summarized in
Table II. From this table, it is clear that for any fixed value
of half-integer spin, the magnitude of the quantum violation
of Wigner’s form of the Leggett-Garg inequality decreases
with the increasing values of �. In other words, for a given
spin, the magnitude of the quantum violation of Wigner’s form
of the Leggett-Garg inequality decreases with the increasing
degree of coarsening of the measurement time intervals. On
the other hand, interestingly, for any fixed value of �, the
magnitude of quantum violation of Wigner’s form of the
Leggett-Garg inequality increases with the increasing values
of j. These results are illustrated in Fig. 1. Hence, the effect
of coarsening of measurement times in reducing the quantum
violation of macrorealism in any given dimension can be
countered by increasing the dimension of the system, thereby
showing the persistence of quantum violation of macrorealism
for large spin systems even under coarsening of measurement

TABLE I. The magnitudes of quantum violations of the Wigner’s
form of the Leggett-Garg inequality and the magnitudes of quantum
nonsatisfactions of the no-signaling in time condition for half-integer
spin ( j) systems for our grouping scheme of measurement outcomes
and the choice of �(ti − t j ) mentioned in the text. This table shows
that the magnitudes of quantum violation of the Wigner’s form of
the Leggett-Garg inequality and the magnitudes of quantum nonsat-
isfactions of the no-signaling in time condition remain constant with
respect to different half-integer values of spin ( j) when coarsening
of measurement times is not taken into account.

j
3

2

15

2

35

2

55

2

97

2

147

2

199

2

Magnitude of
quantum violation
of Wigner’s form 0.250 0.250 0.250 0.250 0.250 0.250 0.250
of Leggett-Garg
inequality (KWLGI)

Magnitude of
quantum
nonsatisfaction of 0.500 0.500 0.500 0.500 0.500 0.500 0.500
no-signaling in
time condition

times for the grouping scheme of the measurement outcomes
considered.

Next, we investigate whether the no-signaling in time con-
dition (5) is satisfied for systems with half-integer values of
spin. In this case also, when coarsening of measurement times

TABLE II. The magnitudes of the quantum violations of the
Wigner’s form of the Leggett-Garg inequality and the magnitudes of
the quantum nonsatisfactions of the no-signaling in time condition
for different half-integer values of spin j and different degrees (� in
radian) of coarsening of measurement times for our grouping scheme
of measurement outcomes and the choice of �(ti − t j ) mentioned in
the text. This table shows that for any fixed value of half-integer
spin ( j), the magnitude of the quantum violation of the Wigner’s
form of the Leggett-Garg inequality or the magnitude of the quantum
nonsatisfaction of the no-signaling in time condition decreases with
the increasing values of �. However, importantly, for any fixed value
of �, the magnitude of the quantum violation of the Wigner’s form
of the Leggett-Garg inequality or the magnitude of the quantum
nonsatisfaction of the no-signaling in time condition increases with
the increasing values of j.

Magnitude of Magnitude of
quantum violation quantum nonsatisfaction
of Wigner’s form of no-signaling
of Leggett-Garg in time condition

inequality (KWLGI) for (KNSIT) for

j � = 0.25 � = 0.55 � = 0.85 � = 0.55 � = 0.70 � = 0.85

3

2
0.245 0.181 0.063 0.467 0.433 0.389

9

2
0.249 0.206 0.082 0.486 0.457 0.416

15

2
0.250 0.212 0.088 0.490 0.465 0.423
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FIG. 1. Magnitude of quantum violation of the Wigner’s form of
the Leggett-Garg inequality for systems with half-integer values of
spin ( j) under coarsening of measurement times, with the degree
of coarsening being denoted by � (in radian). From this figure,
it is evident that for any fixed value of half-integer spin ( j), the
magnitude of the quantum violation of the Wigner’s form of Leggett-
Garg inequality decreases with the increasing values of �. On the
other hand, importantly, for any fixed value of �, the magnitude
of the quantum violation of the Wigner’s form of the Leggett-Garg
inequality increases with the increasing values of j.

is not considered, the no-signaling in time condition is not
satisfied and the magnitude of quantum nonsatisfaction of the
no-signaling in time condition (KNSIT) remains constant with
respect to different values of the half-integer spin j. This result
is summarized in Table I. Note that the constant magnitude of
quantum nonsatisfaction of the no-signaling in time condition
in this case is greater than the magnitude of quantum violation
of Wigner’s form of the Leggett-Garg inequality mentioned in
Table I. Hence, for experimental purposes, the no-signaling
in time condition is more effective than Wigner’s form of the
Leggett-Garg inequality for showing nonclassicality through
the quantum violations of macrorealism.

We now consider that the coarsening of measurement times
is taken into account. The result obtained for the no-signaling
in time condition given by Eq. (5) in this case is summarized
in Table II. From this table, it is clear that for any fixed value
of half-integer spin, the magnitude of quantum nonsatisfac-
tion of the no-signaling in time condition decreases with the
increasing degree of coarsening of the measurement times. On
the other hand, for any fixed value of �, the magnitude of
quantum nonsatisfaction of the no-signaling in time condition
increases with the increasing values of j. These results are
illustrated in Fig. 2. Hence, similar to the case of the quantum
violation of Wigner’s form of the Leggett-Garg inequality,
the effect of coarsening of measurement times in decreasing
the magnitude of quantum nonsatisfaction of the no-signaling
in time condition in any given dimension can be countered
by increasing the dimension of the system. Here it is also
important to note that for empirical demonstration of these
features, the no-signaling in time condition is more effective
than Wigner’s form of the Leggett-Garg inequality since the
magnitude of quantum nonsatisfaction of the no-signaling in
time condition (KNSIT) is much larger than the magnitude
of quantum violation of Wigner’s form of the Leggett-Garg

FIG. 2. Magnitude of quantum nonsatisfaction of the no-
signaling in time condition for systems with half-integer values of
spin ( j) under coarsening of measurement times with the degree of
coarsening being denoted by � (in radian). From this figure, it is
evident that for any fixed value of half-integer spin ( j), the magnitude
of quantum nonsatisfaction of the no-signaling in time condition
decreases with the increasing values of �. On the other hand,
importantly, for any fixed value of �, the magnitude of quantum
nonsatisfaction of the no-signaling in time condition increases with
the increasing values of j.

inequality (KWLGI) for any j and �, as evidenced by compar-
ing Figs. 1 and 2.

B. Analysis for integer spin systems

In this section, we consider systems with integer values of
spin. In this case also we find that the Leggett-Garg inequality
is not violated for arbitrary integer spin systems even when
coarsening of measurement times is not taken into account.
Therefore, as expected, no quantum violation of the Leggett-
Garg inequality is observed when coarsening of measurement
times is considered. Note that as mentioned earlier, this result
is valid for the particular choices of �(t j − ti ) and particular
grouping scheme of the measurement outcomes. Similar to the
case of half-integer spins, in this case also, quantum violation
of macrorealism for large spin systems under coarsening of
measurement times is manifested through the Wigner’s form
of the Leggett-Garg inequality (4) or through the no-signaling
in time condition (5). This is because Wigner’s form of the
Leggett-Garg inequality (4) is violated and the no-signaling
in time condition (5) is not satisfied by systems with arbitrary
integer spins under the aforementioned choices of �(t j − ti )
and the particular grouping scheme of the measurement out-
comes when coarsening of measurement times is considered.
In the following, we will elaborate these features.

Now, we present the quantum violation of Wigner’s form of
the Leggett-Garg inequality (4) for the grouping scheme of the
measurement outcomes mentioned earlier. In this case, when
coarsening of measurement times is not taken into account,
the magnitude of the quantum violation of Wigner’s form
of the Leggett-Garg inequality increases with the increasing
values of spin j. This result is summarized in Table III. Note
that the magnitude of quantum violation of Wigner’s form of
the Leggett-Garg inequality is not fixed in this case, contrary
to the case of half-integer spin systems.
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TABLE III. The magnitudes of quantum violations of the
Wigner’s form of the Leggett-Garg inequality and the magnitudes
of quantum nonsatisfactions of the no-signaling in time condition for
integer spin ( j) systems for our grouping scheme of measurement
outcomes and the choice of �(ti − t j ) mentioned in the text. This
table shows that the magnitudes of quantum violation of the Wigner’s
form of the Leggett-Garg inequality and the magnitudes of quantum
nonsatisfactions of the no-signaling in time condition increase with
increasing integer values of spin ( j) when coarsening of measure-
ment times is not taken into account.

j 3 9 12 25 40 80

Magnitude of
quantum violation
of Wigner’s form 0.147 0.195 0.205 0.218 0.226 0.233
of Leggett-Garg
inequality (KWLGI)

Magnitude of
quantum
nonsatisfaction of 0.451 0.482 0.486 0.493 0.496 0.498
no-signaling in
time condition

Next, we take into account the effect of coarsening of
measurement times considering the aforementioned grouping
scheme of the measurement outcomes. The result obtained for
Wigner’s form of the Leggett-Garg inequality in this case is
summarized in Table IV. Similar to the case of half-integer
spin systems, in this case also the magnitude of quantum
violation of Wigner’s form of the Leggett-Garg inequality

TABLE IV. The magnitudes of quantum violations of the
Wigner’s form of the Leggett-Garg inequality and magnitudes of
quantum nonsatisfactions of the no-signaling in time condition for
different integer values of spin j and different degrees (� in radian)
of coarsening of measurement times for our grouping scheme of
measurement outcomes and the choice of �(ti − t j ) mentioned in the
text. This table shows that for any fixed value of integer spin ( j), the
magnitude of quantum violation of the Wigner’s form of the Leggett-
Garg inequality or the magnitude of quantum nonsatisfaction of
the no-signaling in time condition decreases with the increasing
values of �. However, importantly, for any fixed value of �, the
magnitude of quantum violation of the Wigner’s form of the Leggett-
Garg inequality or the magnitude of quantum nonsatisfaction of the
no-signaling in time condition increases with the increasing values
of j.

Magnitude of Magnitude of
quantum violation quantum non-satisfaction
of Wigner’s form of no-signalling
of Leggett-Garg in time condition

inequality (KWLGI) for (KNSIT) for

j � = 0.25 � = 0.55 � = 0.85 � = 0.55 � = 0.70 � = 0.85

3 0.161 0.140 0.053 0.421 0.398 0.365
6 0.196 0.176 0.073 0.456 0.433 0.396
9 0.210 0.190 0.081 0.468 0.446 0.408
12 0.218 0.198 0.085 0.475 0.453 0.415

FIG. 3. The magnitude of quantum violation of the Wigner’s
form of the Leggett-Garg inequality for systems with integer values
of spin ( j) under coarsening of measurement times with the degree
of coarsening being denoted by � (in radian). From this figure, it is
evident that for any fixed value of integer spin ( j), the magnitude
of quantum violation of the Wigner’s form of the Leggett-Garg
inequality decreases with the increasing values of �. On the other
hand, importantly, for any fixed value of �, the magnitude of quan-
tum violation of the Wigner’s form of the Leggett-Garg inequality
increases with the increasing values of j.

(KWLGI) decreases with the increasing degree of coarsening of
the measurement time intervals for any fixed value of integer
spin. However, the effect of coarsening of measurement times
in decreasing the quantum effect in the form of quantum
violation of Wigner’s form of the Leggett-Garg inequality in
any given dimension is countered by increasing the spin of the
system. These results are illustrated in Fig. 3.

Now, we study the no-signaling in time condition given by
Eq. (5) for integer spin systems for the grouping scheme of the
measurement outcomes we have used. When the coarsening of
measurement times is not considered, the no-signaling in time
condition (5) is not satisfied by any integer spin systems and
the magnitude of quantum nonsatisfaction of the no-signaling
in time condition increases with the increasing values of spin
j. This result is summarized in Table III.

Next, we consider that the effect of coarsening of measure-
ment times is taken into account. The results obtained for the
no-signaling in time condition given by Eq. (5) in this case
are summarized in Table IV. From this table, it is evident that
the magnitude of quantum nonsatisfaction of the no-signaling
in time condition decreases with the increasing degree of
coarsening of the measurement time intervals for any fixed
integer value of spin. On the other hand, for any fixed value
of �, the magnitude of quantum nonsatisfaction of the no-
signaling in time condition increases with the increasing
values of j. These results are illustrated in Fig. 4. For integer
spin systems, too, the no-signaling in time condition is more
effective than Wigner’s form of the Leggett-Garg inequality in
experimentally demonstrating all the above features since the
magnitude of quantum nonsatisfaction of the no-signaling in
time condition is much larger than the magnitude of quantum
violation of Wigner’s form of the Leggett-Garg inequality
(KWLGI) for any j and �, as evident by comparing the Figs. 3
and 4.
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FIG. 4. The magnitude of quantum nonsatisfaction of the no-
signaling in time condition in time (KNSIT) for systems with integer
values of spin ( j) under coarsening of measurement times with the
degree of coarsening being denoted by � (in radian). From this
figure, it is evident that for any fixed value of integer spin ( j),
the magnitude of quantum nonsatisfaction of the no-signaling in
time condition decreases with the increasing values of �. On the
other hand, importantly, for any fixed value of �, the magnitude
of quantum nonsatisfaction of the no-signaling in time condition
increases with the increasing values of j.

Remark. In the present study, we have assumed
that �(t1 − t0) = π , �(t2 − t1) = �(t3 − t2) = π

2 . This fixed
choice of mean value of the Gaussian distribution of mea-
surement time intervals does not always give the optimal
violations of different necessary conditions of macroreal-
ism for arbitrary values of spin j. But this choice en-
ables one to reach the main conclusion of this paper,
namely, the persistence of the quantum violation of macro-
realism for large spin under coarsening of measurement
times. With the above choice of �(t j − ti ), this conclusion
is reached through the Wigner’s form of the Leggett-Garg
inequality and the no-signaling in time condition. In or-
der to strengthen our result, we have also studied quan-
tum violations of macrorealism in the context mentioned in
Sec. III with {�(t1 − t0) = π , �(t2 − t1) = π , �(t3 − t2) =
π}; {�(t1 − t0) = π/2, �(t2 − t1) = π/2, �(t3 − t2) = π};
{�(t1 − t0) = π , �(t2 − t1) = π/4, �(t3 − t2) = π/4}; and

{�(t1 − t0) = π , �(t2 − t1) = 3π/4, �(t3 − t2) = 3π/4}. In
these cases, we study the effect of coarsening of measurement
times on the quantum violation of any necessary condition of
macrorealism whenever that necessary condition is violated
without considering coarsening of measurement times. With
the above choices of �(ti − t j ), we observe that the nature of
the quantum violation of macrorealism remains unchanged,
i.e., the effect of coarsening of measurement times in de-
creasing quantum violation of macrorealism in any given
dimension is countered by increasing the spin of the system.
However, for different choices of �(t j − ti ), the above feature
is manifested with different necessary conditions of macrore-
alism. Optimizing quantum violations of different necessary
conditions of macrorealism over arbitrary values of �(t j − ti )
merits further investigation which will strengthen the results
obtained in this paper.

V. CONCLUDING DISCUSSION

In the present work, we have considered multilevel spin
systems and multi-outcome spin measurements. The coarsen-
ing of measurement outcomes has been modeled by combin-
ing different measurement outcomes into two groups consist-
ing of an equal or almost equal number of outcomes. We have
also considered varying degrees of Gaussian coarsening of
measurement time intervals. The interesting result obtained in
the present study is that along with coarsening of the measure-
ment outcomes, the effect of coarsening of measurement times
in reducing the magnitude of quantum violation of macrore-
alism can be compensated by increasing the dimension of the
quantum system. Thus, classicality does not always emerge
from quantum mechanics under coarsening of measurement
times for a large spin system, contrary to the result obtained
in [57]. For our specific choice of mean measurement time
intervals and grouping scheme of measurement outcomes, this
feature has been illustrated through the quantum violations
of Wigner’s form of the Leggett-Garg inequality and the no-
signaling in time condition.

As discussed earlier, our adopted model of coarsening of
measurement outcomes corresponds to coarsening at the level
of detecting the outcomes. While the measuring apparatus
can project the state of the system under consideration onto
any one of the eigenstates of the spin-component observable,
the detector accuracy is limited in distinguishing individual
outcomes. This has been modeled in our treatment for the
case of a detector having very low resolution. In this model,
a limitation is that the demarcation between the two groups
defined by Q = +1 and Q = −1 is taken to be precise. In
a more realistic coarsening of measurement outcomes, im-
precision involved in this demarcation should also be taken
into account. Incorporating this effect in the context of our
model of coarsening of measurement outcomes should be
worth studying in the future.

In order to pinpoint the reason for the apparent incompati-
bility of our results with that of Ref. [57], we note that Jeong
et al. considered an N-level system and the measurements
considered by them project the state onto one of the two
possible subspaces and then they considered coarsening of
the measurement times. To be precise, the measurements
considered in [57] correspond to Luder’s rule for dichotomic
measurements [73]. On the other hand, the treatment pre-
sented in this paper consists of three stages: (a) For a N
(=2 j + 1)-level system, we consider the measurements that
project the state of the system onto one of the N subspaces. In
other words, we consider the case of a complete degeneracy-
breaking measurement [67], as initially proposed by von
Neumann [74,75]. (b) Subsequently, for our analysis, in order
to take into account the coarsening of individual measure-
ment outcomes, we combine the different outcomes into two
groups. (c) Then, in the context of such grouping scheme
of measurement outcomes, we consider coarsening of mea-
surement time intervals. Hence, to summarize, the measuring
apparatus associated with the projective measurements used
by Jeong et al. [57], unlike that considered in the present
work, do not project the state onto any one of the (2 j + 1)
eigenstates of the spin- j component observable. Hence, the
information gain due to the projective measurements used in
the present work is more with respect to that used in Ref. [57].
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Due to this key difference between the measurement scheme
used in this paper and that adopted by Jeong et al. [57],
the central result of this paper differs from that obtained in
[57].

Finally, we remark that while it is of general fundamental
significance to study how classicality emerges from quantum
mechanics under coarsening of measurement times using the
quantum violation of macrorealism as a tool, the present paper
can also be useful in the context of implementing quantum
information theoretic tasks based on temporal correlations.
This is because the nonclassicality of temporal correlations
has been employed in information theoretic tasks such as

quantum computation [76], randomness generation [77], and
secure key distribution [78]. It is thus important to study how
such nonclassicality of temporal correlations persists in the
real experimental scenario by taking into account the various
types of coarsening of measurements.
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