
PHYSICAL REVIEW A 100, 042113 (2019)

Symmetries and conservation laws in quantum trajectories: Dissipative freezing
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In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady
states belonging to different symmetry sectors. Here we show that when a system with a strong symmetry is
initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory
will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry
implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a
single sector from an initial superposition entails a breakdown of this conservation law at the level of individual
realizations. Given that such a superposition is impossible in a classical stochastic trajectory, this is a a purely
quantum effect with no classical analog. Our results show that a system with a closed Liouvillian gap may
exhibit, when monitored over a single run of an experiment, a behavior completely opposite to the usual notion
of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative
phase transition. We discuss our results on a coherently driven spin ensemble with a squeezed superradiant
decay, a simple model that presents a wealth of nonergodic dynamics.
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I. INTRODUCTION

Driven-dissipative systems are ubiquitous in many-body
physics and cavity QED [1–12]. These systems are typically
gapped and feature a unique nonequilibrium steady state. In
the regime of a dissipative phase transition (DPT), however,
this gap vanishes and the null space of the Liouvillian is
spanned by several compatible steady states [13–23]. Due
to their fundamental interest and practical applications, such
as enhanced metrological properties [24,25], DPTs have at-
tracted a significant amount of attention, with much work be-
ing devoted to studying the associated phenomena of bistabil-
ity [3–5,22,26–29], hysteresis [2,30], intermittency [6,27,30–
33], multimodality [26,32], metastability [34], and symmetry
breaking [35–37]. All these effects are understood as dif-
ferent manifestations of the coexistence of several nonequi-
librium phases. In particular, many experiments will look
for intermittency as the hallmark of such phase coexistence
[6,27,30–33]. Intermittency is a phenomenon defined by a
random switching between periods of high and low dynam-
ical activity (for instance, in the rate of photon emission).
This behavior, which is observed during a single run of the
experiment, is conveniently described using the formalism of
quantum jumps in which the system is characterized in terms
of a pure wave function that undergoes stochastic evolution
[38–40].

The timescale τ of this intermittency is given by the inverse
of the Liouvillian gap or asymptotic decay rate (ADR), i.e.,
the eigenvalue λ2 of the Liouvillian operator L with the
second largest real part [24,41,42]. Since a DPT is defined
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by a vanishing Liouvillian gap [13,14], it will necessarily
imply that τ diverges. In most typical situations, this closing is
reached in the thermodynamic limit of a many-body system.
Consequently, for any finite system, the long-time limit where
intermittency is observable will, at least formally, exist. There
are however situations in which the Liouvillian gap vanishes
exactly and such a long-time limit cannot be taken. This is the
case of systems featuring a strong symmetry [43]. Liouvillians
L with a strong symmetry have a degenerate steady state
(implying that λ2 = 0) and an associated conservation law
for the symmetry operator Ȧ = L†A = 0 [43,44]. Since the
Liouvillian gap is closed exactly for any system size, the
long-time limit of intermittency described before does not
exist and the dynamics is split into different, unconnected
ergodic symmetry sectors.

In this work we study the quantum trajectories of open
quantum systems with a strong symmetry. We show that when
initialized in a superposition involving different symmetry
sectors, the system will evolve towards a single one of them
in each individual trajectory, remaining there for the rest of
the realization. This nonergodic phenomenon, which we term
dissipative freezing, is in stark contrast with the typically
sought phenomenology of intermittency in a DPT and predicts
a completely different dynamical behavior at the level of
individual realizations of the experiment. Related effects have
already been discussed in different contexts: In Ref. [45]
exponential stability of subspaces for quantum trajectories
was demonstrated, in Ref. [46] it was shown that a quantum
stochastic master equation describing nondemolition mea-
surements converges to a pure state, and in Ref. [47] a similar
effect was discussed for quantum Markov chains. An impor-
tant result of our work is to relate this phenomenon to the sym-
metries of the master equation. Notably, this implies that the
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conservation law for the strong-symmetry operator is broken
at the level of trajectories and can only be recovered under
ensemble averaging. This is a purely quantum phenomenon,
since it requires an initial superposition of different symmetry
sectors that cannot be implemented classically, i.e., a single
classical trajectory is always fully realistic and located in only
one of this sectors. Understanding this phenomenon is impor-
tant for the dynamical characterization of dissipative systems
with a closed Liouvillian gap. This limit has been proven
relevant in quantum metrology, since it yields a Heisenberg
scaling (quadratic in time) of the quantum Fisher inform-
ation [24].

To introduce and discuss the phenomenon of dissipative
freezing, we analyze a model that can be solved numerically
yet displays a rich variety of nonergodic dynamics. This
model consists of a coherently driven spin ensemble with
squeezed collective spin decay, which can be implemented
by adiabatic elimination of a cavity mode coupled to a mul-
ticomponent atomic condensate via cavity-assisted Raman
transitions [48–52]. Squeezed decay refers to a quantum-jump
operator that includes both lowering and raising collective
spin operators S±, with relative weights parametrized by a
squeezing angle θ . The amplitude � of the driving field and
the squeezing angle θ are the main tunable parameters, which
allow one to define a nonequilibrium phase diagram in the
(�, θ ) plane.

While this model is simple enough to be treated numeri-
cally, it displays a variety of dissipative phases with a gapless
Liouvillian. The characterization of these types of models is
highly relevant, since one of the problems that hinder our
understanding of nonequilibrium systems and DPTs is the
enormous computational difficulty typically found when deal-
ing with large quantum open systems. It is thus desirable to
work with exactly solvable systems or at least computationally
tractable models that yield insight into the physics in the
thermodynamic limit.

The nonequilibrium gapless phases of this model are as-
sociated with different nonergodic behaviors that depart from
the usual pictures of phase coexistence. Beyond the case of
dissipative freezing, which is the main focus of this work,
the second nonergodic phenomenon observed in this model
is the appearance of oscillatory nonstationary dynamics in
the long-time limit. This effect is related to the existence
of a spectrum of purely imaginary eigenvalues of L, which
needs to be equally spaced in order to prevent eigenstate
thermalization. This phenomenon has recently attracted atten-
tion in similar systems [53–55] and has been linked to the
existence of a dynamical symmetry in the system [53,56], e.g.,
a ladder operator of the Hamiltonian that commutes with all
the quantum-jump operators of the Liouvillian.

The paper is organized as follows. In Sec. II we introduce
the model of squeezed superradiance, describing the phase
diagram and steady state of the system. In Sec. III we analyze
the Liouvillian spectrum of this model and characterize sym-
metries and regimes of nonergodicity. In Sec. IV we describe
the phenomenon of dissipative freezing and discuss it in the
context of thermodynamics of quantum trajectories and phase
transitions. In Sec. V we analyze the signatures of critical
dissipative dynamics in observables of the light emitted by
the system. We summarize in Sec. VI.

II. MODEL AND PHASE DIAGRAM

A. Squeezed superradiance: Derivation of the
spin master equation

The model of squeezed superradiance that we consider in
this work is given by the master equation for the reduced
density matrix of an ensemble of N spins (h̄ = 1)

ρ̇ = −i�[Sx, ρ] + �

2J
LDθ

[ρ], (1)

where LO[ρ] ≡ 2OρO† − {O†O, ρ} is the usual Lindblad
superoperator and the operator Dθ describes the quantum
jumps undergone by the system

Dθ ≡ cos(θ )S− + sin(θ )S+. (2)

In these equations, {S±, Sz} are collective spin operators
obeying angular momentum commutation relations, � is the
driving amplitude, � is the quantum-jump rate, and J = N/2
is the total angular momentum which is conserved in the
dynamics. Notably, Dθ includes both raising and lowering
operators, with a weight that we parametrize by the angle θ .

The dynamics in Eq. (1) emerge as the strongly dissipative
limit of the Hamiltonian

H = �Sx + g√
N

{S+[cos(θ )a + sin(θ )a†] + H.c.}. (3)

This Hamiltonian describes a driven spin ensemble coupled
to a single cavity mode in the rotating frame of the driving,
with a the bosonic annihilation operator of the cavity and g the
spin-cavity coupling rate. Since the total angular momentum
J is conserved, the spin ensemble can be described as a single
big spin; this can be implemented, for instance, with multi-
component atomic condensates [48,49]. The tunable coupling
terms in Eq. (3) can be achieved via cavity-assisted Raman
transitions; this approach has been proposed as a way to im-
plement effective Dicke models [50] and used successfully to
observe alternative forms of the superradiant phase transition
[57–60] in atomic condensates [7,8,61,62] and thermal atoms
[63,64]. The great control and versatility provided by these
schemes has motivated research on generalized nonequilib-
rium Dicke models [65,66].

In this work we are focusing on strongly dissipative ver-
sions of these systems (where the fast cavity decay yields
an effective collective spin dissipation), which have attracted
interest for their applications to the dissipative generation of
spin squeezing and entanglement in the steady state [51,52].
By taking into account that the cavity experiences dissipation
at a rate γ , the evolution of the system is described by the mas-
ter equation [67] ρ̇ = −i[H, ρ] + γ /2La[ρ]. In the limit γ →
∞, the bosonic field tends to a stationary vacuum state, and
its adiabatic elimination [52] yields the effective dynamics for
the spins of Eq. (1), with � = 2g2/γ . It is easy to deduce that
the dark state of Dθ is a spin squeezed state [51], which leads
us to refer to the dissipative part of Eq. (1) as a squeezed
decay. Note that, when θ = 0, the model corresponds to the
standard case of collective resonance fluorescence [52,68,69].

B. Phase diagram

The nonequilibrium phases of the system in the (�, θ )
plane are summarized in Fig. 1(a) and the corresponding
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FIG. 1. Phase diagram and steady state. (a) The phase diagram can be divided into a ferromagnetic (F) and a thermal (T) phase, separated
by the critical line �c(θ ) given by Eq. (5) (white dashed lines). There is a spin-up and a spin-down version of each of these phases, separated
by the strong-symmetry line θ = π/4. (b) Spin Wigner functions of the exact steady states of the master equation (1) for a finite system
with N = 50 at different points (�, θ ), corresponding to (i) (0,0), (ii) (0.5�, 0), (iii) (0.88�, 0), (iv) (1.2�, 0), (v) (0, π/8), (vi) (0.6�, π/8),
(vii) (0, 0.95π/4), and (viii) (1.2�, 0.95π/4). Together we plot the vector field of the derivatives described by the mean-field equations (A3).

steady-state observables computed exactly for a finite system
(N = 50) are depicted in Fig. 2. Figure 1(b) depicts the steady
state of a finite system (N = 50) at several points of the phase
diagram using the spin Wigner function [70,71]. Additionally,
we plot the vector field of derivatives obtained through a
mean-field approach (see Appendix A). We can divide the
phase diagram into two types of phases.

(i) The ferromagnetic phase is characterized by a well-
defined magnetization [cf. Fig. 2(a)], a diverging spin squeez-
ing as we approach the phase transition [Fig. 2(b)], small
fluctuations in the counting distributions of quantum jumps
(described here by the zero-delay second-order correla-

tion function of the output field g(2) ≡ 〈D†
θ

2
Dθ

2〉/〈D†
θDθ 〉2)

[Fig. 2(d)], high purity (not shown), and ergodic dynamics.
Any initial state eventually relaxes into a stationary, highly
pure Gaussian steady state. In the thermodynamic limit, this
phase is well described within a Holstein-Primakoff approxi-
mation.

(ii) In the thermal phase the steady state is highly mixed,
and close to the infinite-temperature state ρ ∝ 1. This phase
is characterized by a mean zero magnetization [Fig. 2(a)],
small purity (not shown), large spin fluctuations, high rate of
quantum jumps (activity) [Fig. 2(c)], and large fluctuations
in the output field [Fig. 2(d)]. As we discuss further below,
this phase displays a vanishing ADR that leads, in the ther-
modynamic limit N → ∞, to a closed gap and nonergodic
dynamics, which manifests itself through closed orbits in the
mean-field approach [cf. point (iv) in Fig. 1(b)].

Both phases have a spin-down (↓) and spin-up (↑) version
at each side of the line θ = π/4, each of them being a spin-
flipped version of the other. Therefore, defining

�− ≡ � cos2 θ, (4a)

�+ ≡ � sin2 θ, (4b)

all the results and equations obtained for θ � π/4 are di-
rectly applicable in a spin-flipped basis for θ � π/4 just
by exchanging �− ↔ �+. Hereafter, the analytical results

that we provide refer to the spin-down phases (θ � π/4). In
Appendix A we show that, using a mean-field approach, the
transition from the ferromagnetic to the thermal phase occurs
at the critical driving

�c(θ ) = �− − �+ = �(cos2 θ − sin2 θ ). (5)

C. Spin observables

We consider now the expectation values of the normalized
spin operators si ≡ Si/J , i ∈ {x, y, z}, in the steady state. In
the ferromagnetic phase, these can be obtained by a displaced
Holstein-Primakoff (HP) expansion (see Appendix B); the
results are the same as the mean-field predictions, with cor-
rections to order 1/J ,

〈sz〉 = M + O(1/J ), (6a)

〈sx〉 = 0 + O(1/J ), (6b)

〈sy〉 =
√

1 − M2 + O(1/J ), (6c)

where M is the steady-state magnetization that reads

M = −
√

1 −
(

�

�− − �+

)2

. (7)

The 1/J corrections are given by the solution of non-
quadratic master equations and therefore analytical expres-
sions are difficult to obtain. It is however possible to get
expressions for the spin fluctuations 
s2

z/± to order 1/J; this
is one of the main advantages of using a HP expansion,
since it allows one to describe the metrological properties
of the spin ensemble [72]. In particular, reduced fluctuations
along one of the spin directions provides enhanced phase
sensitivity in atomic interferometers [73,74] and greater sta-
bility in atomic clocks [75]. States displaying such reduced
fluctuations are said to be spin squeezed [72,76,77]; the degree
of spin squeezing ξ⊥ along any axis u⊥ perpendicular to the
mean spin direction is a popular figure of merit, useful as a
witness of entanglement [78] and as a direct measure of the
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FIG. 2. (a)–(d) Steady-state observables for a finite system size
N = 50. Dashed lines indicate the critical line [Eq. (5)]. Also shown
is the (e) magnetization and (f) degree of spin squeezing across the
phase transition. The black dashed line is the analytical value in the
thermodynamic limit [Eqs. (7) and (9)]. Solid lines are numerical
calculations for finite systems of different sizes. Calculations were
made at θ = π/8.

phase sensitivity achievable in interferometry protocols. This
quantity can be defined as [76]

ξ 2
⊥ = N (
S⊥)2

〈S〉2
. (8)

According to this definition, a state is spin squeezed if a
direction u⊥ exists such that ξ 2

⊥ < 1. In our model, the optimal
squeezing direction is always the ux axis (see Appendix B 4).
Using the HP approximation, we find the following expression
for the spin squeezing in the ferromagnetic phase:

ξ 2
⊥ = N (
Sx )2

〈S〉2
= (1 − M )

(
1

2
+ �+ − √

�−�+
�− − �+

)
. (9)

Linear scale Logarithmic scale
0.02

0

0.01

(a)

(b)

FIG. 3. (a) Liouvillian gap for N = 100 and � = 0.4�. In the
thermodynamic limit, the gap closes at the critical line �c(θ ) (white
dashed line). In logarithmic scale, we observe a closing of the
gap for finite J at the point θ = π/4 due to the strong symmetry.
(b) Liouvillian eigenvalues for a system size J = 10 and � = 200�.

The analytical results in Eqs. (6) and (9) are shown in
Figs. 2(e) and 2(f), compared with numerical calculations
for finite system size. Equation (9) shows that, in the ther-
modynamic limit, spin squeezing diverges (i.e., ξ 2

⊥ → 0) in
the vicinity of the critical line, where M → 0. This implies
a greatly enhanced phase sensitivity and the emergence of
many-body correlations, which are general properties associ-
ated with second-order phase transitions [13].

III. SPECTRAL PROPERTIES OF THE LIOUVILLIAN

Having characterized the phase diagram of the model, we
analyze now the spectral properties of the Liouvillian, which
contains essential information about the different dissipative
phases and nonergodic dynamics [13,14,34]. In the ferromag-
netic phase, we can use the Holstein-Primakoff expansion to
obtain an expression for the Liouvillian gap in the thermody-
namic limit (see Appendix B)

λ = (�− − �+)M, (10)

showing that the gap closes when M = 0, i.e., at the transition
from a ferromagnetic to a thermal phase, in agreement with
the usual description of DPTs [13,14]. Figure 3(a) depicts
the exact ADR for a finite system, computed by numerical
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diagonalization. The ADR in the thermal phase features a
small but finite value that, as we prove below, scales with
system size as 1/J . Below we focus on this gapless region,
which is the most promising in terms of nonergodic dynamics.

A. Strong symmetry

Even for a finite system, the ADR closes exactly at the line
that separates the T↓ and T↑ phases, θ = π/4, as can be seen
from the logarithmic-scale plot in Fig. 3(a). The reason for
this exact closing, which occurs even at finite system size, is
the existence of a strong symmetry at θ = π/4. For a gen-
eral Liouvillian given by Lρ = −i[H, ρ] +∑

μ(2LμρL†
μ −

{L†
μLμ, ρ}), a strong symmetry is defined by a unitary operator

A which fulfills

[H, A] = 0, (11a)

[Lμ, A] = 0. (11b)

As demonstrated in Ref. [43], the existence of a strong
symmetry implies that if A has nA distinct eigenvalues, there
are at least nA distinct steady states of L with eigenvalue
0. In the particular case A = H = L (with L ≡ L1 being the
only quantum-jump operator), the density matrices ρ (m) =
|m〉〈m| are all steady states, with |m〉 the eigenstates of A.
In our system, we find {H, L} ∝ Sx at the strong-symmetry
point θ = π/4, which means that Sx is a strong symmetry of
the Liouvillian and that all its eigenstates are steady states,
explaining the exact closing of the ADR. The existence of a
strong symmetry at θ = π/4 is key to understanding the effect
of dissipative freezing that we discuss in the following section.

B. Imaginary eigenvalues

A more general analysis of the Liouvillian spectrum in the
large driving limit provides further insight into the different
ways in which the gap can be closed well within the thermal
phase and reveals the existence of eigenstates with purely
imaginary values. In the limit � � �/J , we can remove
counterrotating terms in the master equation and obtain

ρ̇ ≈ −i�[Sx, ρ] + �θ

2J
LSx [ρ] + χθ

8J
(LS+

x
[ρ] + LS−

x
[ρ]),

(12)

where we have defined the ladder operators in the x di-
rection, S±

x ≡ 1
2 (Sz ± iSy), �θ ≡ �(cos θ + sin θ )2, and χθ ≡

�(cos θ − sin θ )2. For θ �= π/4, the steady-state solution is
the infinite-temperature state ρ∞ = 1/2J . One can find an
analytical solution of the eigenvalue problem for this Liouvil-
lian [79]; here we provide compact closed-form expressions
for the eigenvalues and relevant eigenstates. The spectrum of
eigenvalues reads

λ±
q,k = ±iq� − �θ

2J
q2 − χθ

4J
[q + k(1 + k + 2q)], (13)

with q = 0, 1, . . . , 2J and k = 0, 1, . . . , 2J − q. This spec-
trum is plotted in Fig. 3(b) for different values of θ . The
corresponding eigenstates can be written in terms of the states

ρ (n,m) ∝ (S+
x )nρ∞(S−

x )m. (14)

For a given q, the 2J + 1 − q eigenstates corresponding to the
eigenvalues λi

q,k can be built from superpositions of different
ρ (n,m), with (n, m) fulfilling q = |n − m| and i = sgn(n − m).
In particular, the eigenstates with eigenvalue λ±

q,0, which are
the slowest-decaying ones among those having the same q
(i.e., same imaginary eigenvalue), take the simple form ρ (q,0)

and ρ (0,q). In the strong-symmetry situation θ = π/4, i.e.,
when χθ = 0, ρ (n,m) are the exact eigenstates themselves.

Equation (13) clearly shows that, besides the eigenvalue
λ0,0 = 0, which corresponds to the steady state, other eigen-
values with a zero real part can be obtained in two ways:
either reaching the thermodynamic limit J → ∞ or tuning
the system into the strong-symmetry situation χθ = 0. For
any fixed q, limJ→∞ Re[λ±

q,k] = 0, implying eigenstates with
finite, purely imaginary eigenvalues. Purely imaginary eigen-
values have as a consequence the absence of stationary states
and the emergence of oscillatory dynamics in the long-time
limit [53], which has recently attracted attention in similar
models [54,55]. This can also be observed from a mean-field
analysis (see Appendix B), which in the thermal phase yields
the closed orbits displayed at points (iv) and (viii) in Fig. 1(b).

C. Dynamical symmetries

Recently, it was shown that the absence of a stationary state
and the presence of long-time oscillatory dynamics in open
quantum systems can be directly implied by the existence of
a dynamical symmetry operator A fulfilling [53]

[H, A] = A, (15a)

[Lμ, A] = [L†
μ, A] = 0. (15b)

In that case, the matrices ρ (nm) ≡ Anρ∞(A†)m, with a form
similar to the states that we defined in Eq. (14), are eigenvec-
tors of the Liouvillian with purely imaginary eigenvalues

Lρ (nm) = i(m − n)ρ (nm). (16)

Despite the similarities, in the particular case of our model, the
operator S−

x does not fulfill the conditions (15) of a dynamical
symmetry. However, in the �/� � 1 limit, where the system
is in essence purely Hamiltonian, the conditions (15) are
immediately satisfied, yielding purely imaginary eigenvalues
that are integer multiples of �. We note that, in general, this
will not happen for any arbitrary dissipative system in the
purely Hamiltonian limit. Here the existence of a dynamical
symmetry and oscillatory dynamics in the long-time limit is
a consequence of having a spin Hamiltonian with equally
spaced energy levels, preventing the mechanisms of eigenstate
thermalization typical of closed many-body systems [80–82].

IV. DISSIPATIVE FREEZING OF THE DYNAMICS

Having completely characterized the dissipative phases of
the system and the spectral properties of the Liouvillian, we
are ready to describe the effect of dissipative freezing. Several
manifestations of the coexistence of multiple steady states,
such as bistability and intermittency, have attracted a great
deal of attention in recent years [3–6,22,26,27,30–33]. The
timescale τ associated with this intermittency is related to
the inverse of the ADR, which necessarily diverges at a DPT
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associated with a gapless Liouvillian. These critical phenom-
ena, however, are typically discussed in contexts in which
DPTs take place in the thermodynamic limit. Therefore, the
long-time limit τ exists, at least formally, in any real finite
system.

Systems with a strong symmetry differ radically from this
situation, since the gap is exactly closed even for a finite
system. In these cases, the dynamics is split into several
unconnected symmetry sectors. In this section we describe
the evolution of individual quantum trajectories of the wave
function and discuss the particular situation in which the ini-
tial state is a superposition involving several of these sectors.
We report the emerging phenomenon of dissipative freezing
and discuss in further detail the implications of this effect in
several indicators of statistics of the quantum jumps, such as
the activity distribution or related quantities that appear natu-
rally in the context of thermodynamics of quantum trajectories
[33,41,42,83–86].

A. Freezing in individual trajectories

Dissipative evolution of the system density matrix admits
an alternative interpretation in terms of individual stochastic
evolution of pure wave functions, the so-called quantum-jump
or Monte Carlo wave-function approach [39]. The predictions
of the master equation are recovered when one takes an en-
semble average over a sufficiently high number of trajectories.

The evolution of a single trajectory can be summarized as
follows. At every differential time step dt , for each element
of the type (γi/2)L0i [ρ] in the master equation, the wave
function |ψ (t )〉 can randomly undergo a quantum jump with
probability pi = γi〈ψ (t )|Oi|ψ (t )〉dt that transforms the sys-
tem, under proper normalization, as

|ψ (t + dt )〉 ∝ Oi|ψ (t )〉. (17)

When no jump occurs, the wave function evolves under the
action of a non-Hermitian Hamiltonian

|ψ (t + dt )〉 ∝ (1 − iH̃dt )|ψ (t )〉, (18)

where H̃ ≡ H − i
∑

i(γi/2)O†
i Oi. These trajectories can be

physically understood as individual stochastic realizations of
an experiment where quantum jumps are recorded.1 If the
system is ergodic, a time average over a single trajectory also
recovers the predictions of the master equation.

In the presence of a strong symmetry, the system is not
ergodic and multiple degenerate steady states can exist [43].
The actual steady state of the system is then composed by
a particular superposition of these states, fixed by the initial
conditions [14,34]. However, because the evolution is not
ergodic, it is not guaranteed that a single trajectory will switch
among these states, which is the main assumption behind the
notion of intermittency [6,27,30–33]. Another question that

1These unravelings are not uniquely defined, since different jump
operators can be chosen that yield the same master equation (by
changing the Hamiltonian accordingly). These different unravelings
would correspond to different detection schemes, such as photon
counting or homodyne detection, that differ on the way the system
is monitored [87].

(a)

(b)

(c)

FIG. 4. (a)–(c) Three different quantum trajectories at θ = π/4
for the same initial state (a superposition of three eigenstates of Sx).
The inset in (a) shows the exponential decrease of the occupation of
nonselected states. The parameters are J = 5 and � = 0.8�.

arises is whether the conservation law associated with the
strong-symmetry operator Ȧ = L†A = 0 will hold at the level
of individual trajectories.

In the particular case θ = π/4, the model of squeezed su-
perradiance that we study here represents one of the simplest
implementations of a strong symmetry, offering a privileged
platform to address these questions. In order to do this, we
study the quantum trajectories of states initialized in superpo-
sitions of different eigenstates of Sx. The evolution of the wave
function then features what we term a dissipative freezing
of the dynamics. The phenomenon is depicted in Figs. 4(a)–
4(c): After initializing the state in a given superposition (in
this example, of the Sx eigenstates |0〉, |3〉, and |5〉), the
stochastic dissipative evolution of the wave function brings
it into one of the eigenstates of Sx, with the probability of
being in any of the other ones decaying exponentially with
time; the evolution is effectively frozen in one eigenstate for
an individual realization of the dynamics.

An eigenstate of a strong symmetry is stationary under this
stochastic evolution. To prove this, we consider the general
form of any wave function undergoing a stochastic dissipa-
tive evolution described by H̃ and the set of quantum-jump
operators {Lμ}. Starting from an initial state |ψ (t0)〉, the wave
function evolves for a time t experiencing n quantum jumps
at times (t1, . . . , tn) < t with jump operators (L(1), . . . , L(n) ),
where L(i) ∈ {Lμ}. The form of the wave function is then given
by a nonunitary evolution |ψ (t )〉 = 1

N Ũ (t, tn, . . . , t0)|ψ (t0)〉,
where N is a normalizing constant and Ũ (t, tn, . . . , t0) is an
evolution operator given by

Ũ (t, tn, . . . , t0) = e−iH̃ (t−tn )
n∏

m=1

L(m)e−iH̃ (tm−tm−1 ), (19)
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with
∏n

m=0 Om ≡ On · On−1 · · · · · O0. Let us consider a
strong-symmetry operator A so that [A, Ũ ] = 0. Therefore,
if |ψ (t0)〉 is an eigenstate of a strong symmetry A|ψ (t0)〉 =
λ|ψ (t0)〉, we obtain

A|ψ (t )〉 = AŨ (t, tn, . . . , t0)|ψ (t0)〉
= Ũ (t, tn, . . . , t0)A|ψ (t0)〉 = λ|ψ (t )〉, (20)

i.e., an eigenstate of A remains unchanged at the level of
individual trajectories. This proof can be easily extended to
the eigenstates of any power An. This fact may suggest that
any quantum trajectory could eventually get “trapped” in one
of these eigenstates, in a picture somewhat analogous to the
dark-state cooling [88] or population trapping [89]. However,
for this to happen, the combination of non-Hermitian Hamil-
tonian evolution and quantum jumps (which have opposing
effects on the occupancy of each eigenstate) should bring the
system into one of these eigenstates in the first place. It is a
priori not certain that this will occur.

Here we prove that this is indeed the case when ρ̇ =
−i�[A, ρ] + �/2JLA{ρ}, i.e., dynamics with a single quan-
tum jump L and a general Hermitian strong symmetry A ∝
H ∝ L. We set t0 = 0 and consider an initial state |ψ (0)〉 =∑

m cm(0)|m〉, expanded in the basis of eigenstates of A,
|m〉, with eigenvalue m. For any general quantum trajectory
that evolves for a time t undergoing n quantum jumps, the
probability for the final state to be in an eigenstate of |m〉 takes
the form (see Appendix C)

p(m; t, n) = 1

N (e−|m|2 |m|2α )t�/J |cm(0)|2, (21)

with α = nJ/t� and N a normalizing constant. The expo-
nent t�/J in Eq. (21) tends to enhance the maximum of
the function in parentheses as time increases. Hence, after
normalization, p(m; t, n) tends to zero for all m except for
the optimum value. Since the function e−xxα has a maximum
at x = α, only the eigenstates |m〉 from the subspace of A†A
yielding the minimum |α − |m|2| have a nonzero occupancy in
the long-time limit t � J/�. Equation (21) thus encapsulates
the essence of the dissipative freezing effect and is the main
result of this paper: For t � J/�, any general trajectory will
be trapped in an eigenspace of A†A, consequently breaking
the conservation law Ȧ = 0 if initialized in a superposition of
different eigenspaces. In the long-time limit, the total number
of jumps recorded in a trajectory allows one to unambigu-
ously determine, from those eigenspaces of A†A having an
overlap with the initial state, which one the system has been
trapped in.

For the particular case that we study in this paper, H ∝
L ∝ A = Sx, m = −J, . . . , J . In this case, the eigenstates of
A†A = S2

x are doubly degenerate. For t � J/�, the proba-
bility distribution for any quantum trajectory is p(m; t, n) ∝∑

m(δm,m̃ + δm,−m̃)|cm(0)|2, with m̃ the natural number less
than or equal to J closest to

√
nJ/t�. The resulting probability

distribution versus n/t is plotted in Fig. 5 for an initial state
composed of an equal superposition of all the eigenstates.

The phenomenon can be interpreted in terms of the
quantum-measurement description that can be applied to any
dissipative dynamics [90–92]. The information provided by
the quantum jumps makes the eigenspaces of A†A with a

FIG. 5. (a) Probability distribution for any quantum trajectory at
time t = 100J/�, versus the number of jumps n, in the model of
squeezed superradiance for θ = π/4 and J = 10. The initial state is
an equal superposition of all the eigenstates |m〉 of Sx . The resulting
wave function always freezes into an eigenstate of S2

x . The inset
shows the probability distribution for the value n/t = 5 indicated by
the dashed line.

particular eigenvalue increasingly likely and continuously
updates the state accordingly; we note, however, that this
update is different from a projective measurement of A†A that
would collapse the system into one of its eigenstates. In a
standard situation, the update after each jump will not tend to
freeze the state, due to the non-Hermitian evolution between
jumps, which changes the occupancy of these eigenstates
and dissolves the effect of the jump. In our case, this is
prevented by the strong symmetry, and the effect of the jumps
accumulates, giving rise to the phenomenon of dissipative
freezing.

B. Activity distribution

Now that we have presented the dissipative freezing effect,
it is instructive to analyze it in terms of one of the main
observables of interest when discussing multistability: the
activity [33,83]. The activity is defined as the mean number
of quantum jumps undergone by the system per unit time;
this can be defined through the probability distribution pT (K )
of counting K jumps over a time T . Following our previous
discussion, we assume the existence of a strong symmetry
A with eigenstates |m〉 and only one quantum-jump operator
L = √

�/JA. We consider an initial state with the form

ρ(0) =
∑

m

cm|m〉〈m|. (22)

This initial state is a steady state of the system, meaning that
its preparation can always be conceived as the long-time limit
of another initial state. Other choices of ρ(0) may involve
transient effects that will be irrelevant in the limit T → ∞.
We can then prove (see Appendix D) that the photon-counting
distribution takes the form

pT (K ) =
∑

m

1

K!

(
T �m2

J

)K

e−�m2T/Jcm, (23)

which is dependent on the initial state. This equation presents
the multimodal structure depicted in Fig. 6(a), where we plot
it for the particular case of our model, where A = Sx. The
physical interpretation is simple: With every eigenstate |m〉
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Exact
Legendre-transformed

(a)

(b)

FIG. 6. (a) Probability of having K quantum jumps in a time T =
3 × 103/� in the case of our model, where A = Sx , for N = 20, � =
0.8�, and θ = π/4 (strong-symmetry point). (b) Rate function ϕ(k),
obtained directly from the logarithm of Eq. (23) (blue solid line)
and by a Legendre transformation (red dashed line). The Legendre
transformed ϕ(k) is given by Eq. (32) plus an additive constant to
match the normalization of p(K ) for a finite T .

of A, there is an associated steady state

ρ
(m)
0 = |m〉〈m|, (24)

with a corresponding quantum-jump rate of Tr[L†Lρ] =
m2�/J . The set of ρ

(m)
0 forms a basis, meaning that any

combination of these steady states is a also steady state. The
asymptotic state

ρss = lim
t→∞ eLtρ(0) =

∑
m

Tr
[
ρ

(m)
0 , ρ(0)

]
ρ

(m)
0 , (25)

is therefore strongly dependent on the initial state and given
by its overlap with each of the ρ

(m)
0 . Those ρ

(m)
0 having a

finite overlap with ρ(0) will manifest as a distinct peak in
the counting distribution pT (K ), centered at the value Km =
T m2�/J .

Multimodality (as a signature of multistability) has been
recently associated with dynamical phase transitions [33] that
feature the coexistence of two phases in time, with a stochastic
switching between these phases that has been observed experi-
mentally on multiple occasions [6,27,30–32]. While we obtain
a clear multimodal structure for the activity distribution, our
results on the dissipative freezing do not match this notion of
intermittency. Let us therefore put our results in the context of
the theory used in Ref. [33]: the thermodynamics of quantum
trajectories.

C. Thermodynamics of quantum trajectories:
Dynamical phase transition

1. Brief introduction to the thermodynamics
of quantum trajectories

Recently, several works [33,41,42,83–86] have approached
the questions of multimodality and intermittency from the

perspective of the thermodynamics of quantum trajectories.
This approach regards the set of quantum trajectories in which
the dynamics can be unraveled as a statistical ensemble that
can be analyzed using the tools of statistical mechanics. In
the following, we briefly outline this theory (a comprehensive
description can be found in Refs. [33,83]) and discuss its
implications in systems, such as the one we report here, where
dissipative freezing of the dynamics occurs.

Let us consider a system governed by the master equation
ρ̇ = Lρ = −i[H, ρ] + LρL† − 1

2 {L†L, ρ}. The evolution of ρ

can be unraveled as a set of quantum trajectories [38–40] by
which a conditional density matrix ρK (t ) can be built from the
ensemble average of all the trajectories of duration t having
K quantum jumps. The activity distribution is then given by
pK (t ) = TrρK (t ). We can define a generating function Z =
〈esK 〉,

Z =
∞∑

K=0

esK pK (t ) = Tr
∞∑

K=0

esKρK (t ) = Trρs(t ), (26)

where ρs(t ) ≡ ∑∞
K=0 esKρK (t ) is a Laplace transformed den-

sity matrix that evolves according to a tilted master equation

Wsρs = ρ̇s = −i[H, ρs] + esLρL† − 1
2 {L†L, ρ} (27)

and the counting field s is a variable conjugate to K . For s = 0,
Eq. (27) corresponds to the normal master equation Ws = L.
For s �= 0, Eq. (27) is not a physical trace-preserving master
equation and describes a class of dynamics in which the
quantum jumps are biased by the factor es. Despite Ws being
unphysical, its spectral properties contain valuable informa-
tion about the fluctuations of the ensemble of trajectories.
In particular, the partition function acquires, in the long-
time limit, a large deviation form Z � etλ(s), with λ(s) the
eigenvalue of Ws with the largest real part. This allows us to
write the activity or mean emission rate as

〈k〉 = 〈K〉/t = 1

t

∂Z

∂s

∣∣∣∣
s=0

= ∂λ(s)

∂s

∣∣∣∣
s=0

. (28)

This suggests the definition of an s-dependent emission rate
〈k〉s ≡ ∂λ/∂s(s). Equivalently, fluctuations in the activity
can be described by Mandel’s Q parameter Q = (〈K2〉 −
〈K〉2)/〈K〉 − 1, given by

Q = ∂2λ/∂s2

∂λ/∂s

∣∣∣∣
s=0

. (29)

To sum up, the behavior of λ(s) around the vicinity of s =
0 characterizes the fluctuations of the ensemble of quantum
trajectories.

The connection to thermodynamics put forward in
Ref. [83] can be made by assuming that, in the long-time limit,
pK (t ) also acquires a large-deviation form

pK (t ) � e−tϕ(K/t ). (30)

If pK (t ) describes the probability distribution of an statistical
ensemble, then the rate function ϕ(K/t ) = − ln pK (t )/t plays
the role of an entropy density [93]. By plugging Eq. (30)
into Eq. (26), we obtain directly that ϕ(k = K/t ) and λ(s) are
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related by a Legendre transformation

λ(s) = max
k

[ks − ϕ(k)], (31)

meaning that λ(s) has the properties of a free energy. The
inverse transformation

ϕ(k) = max
s

[ks − λ(s)] (32)

is a useful relation that allows us to obtain ϕ(k) from the
knowledge of λ(s), which can in turn be computed from
the eigenvalues of Ws. However, this relation follows from
the Gärtner-Ellis theorem [93], which requires λ(s) to be
differentiable for all s ∈ R or, equivalently, ϕ(k) to be concave
for all k ∈ R. These are precisely the conditions that are
violated when a phase transition occurs.

2. Multistability and breaking of the intermittency:
Connection to known models

In Ref. [33], the coexistence of dynamical phases was
linked to a discontinuity in the s-dependent order parameter
〈k〉s at the physical point s = 0, i.e., a first-order phase transi-
tion with respect to the counting field. Based on this temporal
coexistence between phases, such a first-order phase transition
was then referred to as a dynamical phase transition. As we
show in Fig. 7(a), where we plot a numerical calculation of
〈k〉s versus θ , the closing of the gap at the strong-symmetry
point gives rise to such a discontinuity; the limit s → 0+ fea-
tures a bright phase characterized by a high activity, whereas
for s → 0− we find a dark phase with virtually no quantum
jumps. The discontinuity turns into a continuous crossover
as we depart from the point θ = π/4, consistent with a first-
order phase transition smoothed by finite-size effects. Such a
crossover is responsible for the phenomenon of intermittency
typically observed in finite many-body systems undergoing a
DPT [33]. When the crossover turns into a real discontinuity,
here due to the appearance of a strong symmetry, intermit-
tency is replaced by the phenomenon of dissipative freezing.

We elaborate on this argument by proving first that a
strong symmetry implies that 〈k〉s is discontinuous (a similar
analysis was performed in Ref. [35]). Following our previous
discussion, we focus on the case where a strong symmetry A
is present and L = √

�/JA. We can immediately see that the
steady states ρ

(m)
0 in Eq. (24) are also eigenstates of Ws, with

eigenvalues

λ(m)(s) = �

J
m2(es − 1). (33)

Since these are the largest eigenvalues for s = 0, they must
also be in the vicinity of that point. Therefore, we can write
λ(s) around s = 0 as

λ(s) =
{

(�/J )m2
min(es − 1), s < 0

(�/J )m2
max(es − 1), s > 0,

(34)

with mmin (max) the minimum (maximum) eigenvalues of A. If
mmin �= mmax, it is clear that λ(s) shows a singular behavior
at s = 0, having a discontinuous derivative. Contrary to the
situations typically considered, the discontinuity does not
become a crossover when the system has a finite size, since
its origin is the exact closing of the Liouvillian gap due to

1

0

0.15

0.1

0.05

0.02

(i) (ii) (iii)

(i)
(ii)
(iii)

0.

0.2

(a)

(b)

(c)

Bright phase

Dark phase

FIG. 7. (a) Plot of 〈k〉s versus θ , featuring the coexistence be-
tween a bright and a dark phase in the vicinity of θ = π/4. (b) Prob-
ability distribution pT (k) of the activity versus the squeezing angle θ

for � = 0.8�. The distribution for each θ has been computed from
400 Monte Carlo trajectories. The time T has been taken in each
case as half the relaxation time τ = 1/|λ1|. Points (i)–(iii) indicate
the three values of θ shown in (c). The blue line (black dashed
line) corresponds to 〈k〉 calculated from the master equation (Monte
Carlo trajectories); blue dashed lines correspond to the variance 
k2

computed from the Monte Carlo trajectories.

the strong symmetry (see Fig. 3). If we were to try to find
ϕ(k) by blindly applying Eq. (32) with a generic expression
for λ(s) = (�/J )m2(es − 1), we would find that the value of s
that maximizes ks − λ(s) is given by

s =

⎧⎪⎨
⎪⎩

ln
(
Jk/�m2

min

)
, k < �

J m2
min

ln
(
Jk/�m2

max

)
, k > �

J m2
max

0, �
J m2

min < k < �
J m2

max.

(35)

This yields the rate function shown by the red dashed line
in Fig. 6(b): The nonconcave regions of ϕ(K/t ) associated
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with multimodality translate into a nonphysical flat plateau
when one tries to use the inverse Legendre transformation
in Eq. (32). This result connects back to standard thermo-
dynamics, where phase transitions are associated with non-
concavities in the underlying fundamental equations for the
thermodynamic potentials. A multimodal distribution pT (k)
as we obtained in Eq. (23) will always yield a discontinu-
ous λ(s) and will therefore be linked to a first-order phase
transition.

To summarize, we have discussed the notions of dissi-
pative freezing (21), multimodal activity distributions (23),
and first-order phase transitions at the trajectory level (35).
We conclude that these phenomena are linked, since all of
them emerge from the existence of a strong symmetry that
yields a perfect closing of the Liouvillian gap for any system
size. Intermittency is therefore a consequence of the finite
system size; it implies a smoothing of the phase transition that
allows us to make use of Eq. (32), but that gives in turn a
unimodal probability distribution; i.e., in the long-time limit,
intermittency destroys multimodality [24]. Dissipative freez-
ing can therefore be alternatively described as the survival of
multimodality in the long-time limit. In quantum metrology,
this has strong implications for the scaling in time of the
Fisher information [24].

These ideas are further supported by numerical calcula-
tions in Figs. 7(b) and 7(c), where we show pT (k) computed
from sets of quantum trajectories, for time windows approx-
imately twice the inverse Liouvillian gap T ≈ (2 Re{λ2})−1.
The value of � = 0.8� is such that we can observe the
transition from the ferromagnetic to the thermal phase at
θc ≈ 0.4. When this transition is crossed, fluctuations start
increasing with θ [see the blue dashed lines in Fig. 7(b)]
and the unimodal distribution is strongly distorted. This char-
acteristic of the thermal phase is the consequence of the
increased asymmetry on 〈k〉s at s = 0 [see Fig. 7(a)], which is
associated with the closing of the Liouvillian gap. As we get
close to π = π/4, where Re{λ2} = 0, it becomes impossible
to simulate times of the order of Re{λ2}−1. In the plot, this is
identified by the emergence of several peaks in pT (k): The
crossover in 〈k〉s gives rise to a multipeaked structure that
would merge into a single peak were T long enough. Since
this multimodality does not correspond to the long-time limit,
the large-deviation approach is unable to describe it; this is the
situation in which intermittency occurs. On the other hand, the
strong-symmetry point features a multimodal pT (k) for any
T ; that survival of the multimodal structure is the signature of
dissipative freezing of the dynamics.

The survival of multimodality is of great importance in
the context of enhanced quantum metrology, where it has
been proven that there is a Heisenberg scaling of the quantum
Fisher information for times shorter than the correlation time
τ [24]. Since systems with a strong symmetry will feature
an asymptotic quadratic scaling of the quantum Fisher in-
formation for all times, our results may be of relevance in
the design of sensing protocols aimed to exploit this feature
in continuous Bayesian parameter estimation from photon
counting [92,94,95]. Beyond the model considered here, our
results have significant implications for the dynamical char-
acterization of DPTs in more complex systems where the
existence of a strong symmetry can provide a way to tune

FIG. 8. Emergence of a crossover in the s-dependent activity
parameter with increasing system size at θ = 0 for � = 4�.

the Liouvillian gap to zero without the need of reaching a
thermodynamic limit.

Finally, we note that the closing of the Liouvillian gap in
the thermodynamic limit of the thermal phase [cf. Eq. (13)]
also yields a crossover in 〈k〉s (see Fig. 8). Since this closing
is of a different nature (associated with eigenvalues with
imaginary part), it offers the interesting prospect of studying
multistability and intermittency between phases displaying
coherent oscillatory dynamics in the long-time limit. This
could be done, for instance, by analyzing the time correlations
between the spectral features of the different phases, as we
discuss in the following section.

V. SIGNATURES OF CRITICAL DYNAMICS
IN THE EMITTED LIGHT

In this section we discuss the possibility of probing some
of the essential features of the low-energy spectrum of the
Liouvillian by analyzing the light emitted by the system.
Many of the essential features of critical dissipative dynamics
are encoded in the spectral properties of the Liouvillian.
Stationary observables of the form 〈O〉 = Tr[Oρ0] contain a
limited amount of information about these properties, since
they depend only on the lowest eigenvalue of L. How-
ever, observables involving two-time correlators of the form
〈O(t )O(t + τ )〉 require knowledge not only of ρ0, but also of
the Liouvillian L. Consequently, they carry information about
the dynamics of the system that is not present ρ0 and can
provide valuable data about L, such as its spectral properties,
in an experimentally accessible way. To illustrate this point,
we focus here on the case of the spectrum of emission,
providing a closed-form expression in terms of the Liouvillian
eigenvalues and right and left eigenstates.

We define the (unnormalized) spectrum of emission as

S(ω) = lim
t→∞

1

π
Re
∫ ∞

0
dτ eiωτ 〈a†(t )a(t + τ )〉, (36)

where, generally, a is some system operator linked to the
bath output operator by input-output relations (in our case,
a = Dθ ). By applying the quantum regression theorem [96],
we obtain

S(ω) = lim
t→∞

1

π
Re
∫ ∞

0
dτ eiωτ Tr{aeLτ [ρ(t )a†]}. (37)

Note that, typically, the limit t → ∞ will imply that ρ(t ) is
simply ρ0, the steady state of the system. In most systems
this steady state is unique, but here we want to take into
account the possibility of multiple steady states (i.e., multiple
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(b)(a) (c)Spectrum Spectrum

FIG. 9. (a) Liouvillian eigenvalues λμ weighted by Lμ. This illustrates the set of eigenvalues that is experimentally accessible by the
measurement of the spectrum of emission. (b) Spectrum of emission versus �, for θ = 0. (c) Spectrum versus θ , for � = 0.8�. At the
strong-symmetry point, the gap closes exactly, and the spectrum features an extreme line narrowing. White dashed lines indicate where a phase
transition occurs; the signature of the phase transition is the emergence of sideband peaks.

eigenstates of L with eigenvalues with zero real part), mean-
ing that ρ(t ) can be any superposition of these steady states,
defined by the initial state. Therefore, we take the limit t →
∞ and replace ρ(t ) by an arbitrary superposition of steady
states ρss determined by the initial state. We can perform a
spectral decomposition of the Liouvillian to write, for any ρ,

eLtρ =
∑

μ

eλμt Tr[ρL,μρ]ρR,μ, (38)

where ρL (R),μ is the left (right) eigenstate of L with eigenvalue
λμ. This allows us to write

S(ω) = 1

π
Re
∫ ∞

0
dτ

∑
μ

e(iω+λμ )τ Tr[aρR,μ]Tr[a†ρL,μρss].

(39)

By defining

ωμ ≡ Imλμ, (40a)

γμ/2 ≡ −Reλμ, (40b)

Lμ ≡ Re Tr[aρR,μ]Tr[a†ρL,μρss], (40c)

Kμ ≡ Im Tr[aρR,μ]Tr[a†ρL,μρss], (40d)

we can formally integrate Eq. (39) to obtain

S(ω) = 1

π

∑
μ,Reλμ �=0

(γμ/2)Lμ − (ω + ωμ)Kμ

(γμ/2)2 + (ω + ωμ)2

+
∑

μ,Reλμ=0

[
Lμδ(ω + ωμ) + Kμ

π
P.V.

(
1

ω + ωμ

)]
.

(41)

Note that terms with Reλμ = 0 give rise to a series of δ peaks
in the spectrum, positioned at frequencies that are given by the
imaginary part of the eigenvalues with a zero real part. The
last term means that the principal value integral of 1/(ω +
ωμ) should be computed when integrating that distribution.

That term never appears in the case of a unique steady state
(μ = 0), since in that case ρL,0 = 1 and K0 = Im|〈a〉ss|2 = 0.
All the terms proportional to Kμ in Eq. (41) are dispersive
line shapes that break the symmetry of the corresponding
Lorentzians (proportional to Lμ). Although they may appear
unphysical (since they can yield negative values), they give a
physical result once the sum is performed.

Equation (41) tells us that the spectrum of emission can
be used to probe the Liouvillian spectrum and also infer,
indirectly, information about the right and left eigenvectors.
Similar formal integrations of Eq. (37) have been presented
before [97–99]; ours differs from those in that they make
explicit use of the left and right eigenvectors of L. In partic-
ular, we see that the existence of eigenvalues with a zero real
part and a finite imaginary part translates into the presence
of measurable δ peaks in the spectrum. These turn into peaks
with a finite width when the linewidth of the detectors and/or
other unavoidable losses to different channels are included in
the description. Figure 9 illustrates the information about the
Liouvillian eigenvalues provided by the spectrum in the model
discussed in this work. Figure 9(a) shows the distribution of
eigenvalues for N = (5, 10), weighted by their value of Lμ.
This way, features like the emergence of imaginary eigen-
values with a vanishing real part in the thermodynamic limit
can be directly measured in the laboratory. We show this in
Fig. 9(b), where the ferromagnetic-thermal DPT is shown to
be accompanied by the emergence of sideband peaks in the
fluorescence spectrum; this is the well-known generalization
of the Mollow triplet to the case of collective resonance
fluorescence [100]. The result that the Liouvillian gap closes
in this phase as 1/N can be confirmed experimentally: As
shown in Fig. 10, it can be measured directly as a decrease
in the linewidth of the spectral peaks. Finally, Fig. 9(c) shows
the emergence of sideband peaks when θ is varied so as to
enter the thermal phase and the observation of extreme line
narrowing as the gap is closed exactly at the strong-symmetry
point.
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FIG. 10. Spectrum of emission S(ω) in the thermal phase for
different values of N . The fact that the real part of the highest
eigenvalues goes to zero as 1/N can be measured as a narrowing
of the spectral peaks. The parameters are θ = 0 and � = 2�.

These results open the intriguing possibility of exploring
the notions of ergodicity, intermittency, and dissipative freez-
ing in systems with Liouvillian eigenvalues with a vanishing
real part and a finite imaginary part by studying temporal cor-
relations between different spectral windows [98,101–107].
This is a topic of study left for future work.

VI. CONCLUSION

We have studied the model of squeezed superradiance and
analyzed the different types of nonergodic dynamics emerging
in dissipative phases with a gapless Liouvillian. In order to
identify the relevant regimes of nonergodic dynamics, we have
completely characterized the phase diagram of the system,
its metrological properties, and its Liouvillian spectrum. We
have shown the existence of nonstationary dynamics linked
to Liouvillian eigenvalues with a finite imaginary part and a
vanishing real part in the thermodynamic limit and we have
reported the phenomenon of dissipative freezing that appears
when the Liouvillian has a strong symmetry. We have con-
nected the phenomenon of dissipative freezing with the theory
of thermodynamics of quantum trajectories, showing that it is
linked to a real discontinuity in the associated first-order phase
transition with respect to the counting field. Intermittency is,
on the other hand, linked to the smoothing of such first-order
phase transition into a crossover due to finite-size effects.
Notably, the model studied here allows us to explore all this
phenomenology with a finite-size system that can be treated
numerically. Our work sheds light on the critical behavior
of open systems with finite system size and provides useful
insights for the design and characterization of sensors based
on the critical behavior of driven-dissipative quantum systems
[24,25,92,94,95].
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APPENDIX A: MEAN-FIELD EQUATIONS

The study of mean-field equations provides insight into the
system dynamics and the different dissipative phases in the
thermodynamic limit J → ∞. In that case, writing the com-
mutator between the normalized angular momentum operators
si ≡ Si/J , i ∈ {x, y, z}, yields a value [si, s j] = iεi jksk/J (with
εi jk the Levi-Cività symbol) that tends to zero. One thus
obtains the set of equations

ṡx = (�− − �+)sxsz, (A1a)

ṡy = −�sz + (�− − �+)sysz, (A1b)

ṡz = �sy − (�− − �+)
(
s2

x + s2
y

)
, (A1c)

where �± are given by Eqs. (4a) and (4b). At the level of de-
scription of the mean-field equations, the role of the squeezing
angle θ is therefore to renormalize the decay rate � by the
factor (cos2 θ − sin2 θ ), since �− − �+ = �(cos2 θ − sin2 θ ).
Given that these equations conserve the total norm N = s2

x +
s2

y + s2
z , we can write them as a reduced set of dynamical equa-

tions in terms of the polar angles {� ∈ [0, π ],� ∈ [−π, π ]},
related to the Cartesian coordinates as

sx = sin � cos �, (A2a)

sy = sin � sin �, (A2b)

sz = − cos �. (A2c)

Note that our definition differs from the standard one by
the sign of Eq. (A2c), which means that the angle � is
defined with respect to the −z axis in order to make the
lowest eigenstate of Sz correspond to � = 0. The dynamical
equations for the spherical angles are

�̇ = � sin � − (�− − �+) sin �, (A3a)

�̇ = � cos � cot �. (A3b)

These equations define a vector field of derivatives on the
Bloch sphere; these field lines are sketched in Fig. 1(b) for
different values of (�/�, θ ), together with the spin Wigner
function [70,71] of the exact steady state in a finite system
(N = 50). A mean-field approach does not necessarily offer
a faithful description of the dynamics [22]; in our model,
it assumes a classical pointlike state on the Bloch sphere,
therefore failing to describe spin fluctuations. Despite this,
it is interesting to notice that, in a finite system, the shape
of the fluctuations in the Bloch sphere actually bears some
similarities to the vector field of derivatives predicted by
the mean field [108]. This is observed in Fig. 1, where it can
be clearly seen that the asymmetry in the density of field lines
at both sides of the steady state (moving along the meridian)
is replicated as an asymmetry in the corresponding Wigner
function.

We move now to analyzing the steady solutions of these
dynamical equations. Regarding the angle �, Eq. (A3b)
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always has a stationary solution at � = ±π/2. It is instructive
to consider the dynamics of � for � = π/2, which reduces to

�̇ = � − (�− − �+) sin �. (A4)

One can picture this as a dynamical equation for a pendulum,
driven by the first term and damped by the second. The
steady-state solution �0 is determined by setting (A4) to zero,
which, from Eq. (A2), yields the magnetization M ≡ sz(t →
∞) given by Eq. (7). In general, the stationary solutions of
Eqs. (A1a)–(A1c) read

〈sz〉 = M, (A5a)

〈sx〉 = 0, (A5b)

〈sy〉 =
√

1 − M2. (A5c)

There are two situations in which these solutions do not hold.
(i) At the point �− − �+ = 0, where Sx becomes a strong

symmetry, Eq. (A4) does not have a stationary solution except
for the trivial case � = 0. In particular, looking back at
Eqs. (A1a)–(A1c), we see that at this point the evolution
corresponds to a circular motion on a plane of constant sx,
with sy = (1 − s2

x ) cos(�t ) and sz = (1 − s2
x ) sin(�t ).

(ii) At the critical value

�c = �− − �+ = �(cos2 θ − sin2 θ ), (A6)

we have M = 0, which means that the energy supplied by �

is enough to reach the equator of the Bloch sphere, where the
drag is maximum.

Therefore, for values � > �c, the pendulum is able to go
beyond the equator, with a driving that now is large enough
for it to engage in a perpetual oscillation across the Bloch
sphere. This is reflected in the fact that Eq. (A4) has no
stationary solution and in the unphysical imaginary value of
M predicted by Eq. (7) for � > �c. The emergence of initial-
state-dependent closed trajectories at � > �c is represented
at points (iv) and (viii) in Fig. 1(b). This transition to a
phase with time-periodic steady states corresponds, in the case
θ = 0, to the well-studied second-order DPT of collective
resonance fluorescence [52,68,69], it is related to the existence
of steady states with imaginary eigenvalues [53], and it was
the subject of recent work [54,55] where similar models were
used to describe dissipative time crystals.

In general, we observe that the role of the squeezed decay
parametrized by θ is to lower the value of critical driving
towards �c → 0 as θ → π/4 (and �− → �+). Note that such
an apparent nonergodic dynamics does not survive in the
full quantum solution for a finite system, which does reach
stationarity on a time that diverges, however, with the system
size [as predicted by the eigenvalue equation (13)]. The sta-
tionary oscillations predicted by the mean-field equations are
therefore the thermodynamic limit of a transient phenomenon.

APPENDIX B: SPIN OBSERVABLES

1. Holstein-Primakoff approximation

Here we use a Holstein-Primakoff approximation [109]
to obtain analytical expressions for spin mean values and
fluctuations, which can be linked to the Liouvillian gap in the
ferromagnetic phase. The exact HP transformation writes the

angular momentum operator in terms of a bosonic mode with
annihilation operator b:

S− = (
√

2J − b†b)b, Sz = b†b − J. (B1)

The HP approximation, consisting of a truncated series expan-
sion of the square root in Eq. (B1), is based on the premise that
the upper levels of the finite ladder of eigenstates of Sz are not
occupied. Therefore, the nonlinear features that distinguish
such a finite ladder from the infinite one of a harmonic
oscillator are negligible and S− is accurately described by
the bosonic operator b. We will use Eqs. (B1) for θ < π/4
(where we know they are a better description since the system
tends to be polarized towards the −z direction) and assume
that the same result applies for θ > π/4 by flipping the spin
and changing the parameters �− ↔ �−+.

Following the approach outlined in Ref. [13], we use a
displaced operator

b → b +
√

Jβ (B2)

that accounts for the mean polarization of the system. Using
the renormalized operators s− ≡ S−/J and sz ≡ Sz/J , the
corresponding HP expression expanded in terms of ε = 1/

√
J

reads

s− =
√

k

√
1 − ε

βb† + β∗b

k
− ε2

b†b

k
(β + εb) =

∑
i

εis(i)
− ,

(B3)

with k = 2 − |β|2. Up to first order in ε, we have

s(0)
− =

√
kβ, (B4a)

s(1)
− = 1

2
√

k
[(2k − |β|2)b − β2b†]. (B4b)

For the sz operator, we have sz = ∑
i ε

is(i)
z , with

s(0)
z = |β|2 − 1, (B5a)

s(1)
z = βb† + β∗b. (B5b)

It is useful to expand Eq. (1) as

ρ̇ = −i[�Sx, ρ] + �−
2J

LS−ρ + �+
2J

LS+ρ

+ χ

2J
(2S−ρS− − {S2

−, ρ} + 2S+ρS+ − {S2
+, ρ}), (B6)

where �± are defined by Eqs. (4a) and (4b), χ ≡ � sin θ cos θ ,
and we defined the Lindblad operators LO{ρ} ≡ 2OρO† −
O†Oρ − ρO†O. Then we obtain

1

J
ρ̇ = −i[� sx, ρ] + �−

2
Ls−{ρ} + �+

2
Ls+{ρ}

+ χ

2
(2s−ρs− − {s2

−, ρ} + 2s+ρs+ − {s2
+, ρ})

= [L(0) + εL(1) + ε2L(2) + O(ε3)]ρ. (B7)

From Eq. (B5) we immediately obtain L(0) = 0. To all orders
in the expansion, the Hamiltonian term describing coherent
driving can be grouped together with a term coming from the
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dissipative part, in the following form:

− i

2
{s(n)

+ [� − is(0)
− (�+ − �−)] + H.c., ρ}. (B8)

We can therefore simplify the dynamics by eliminating the
driving terms to all orders if we choose a proper value for the
displacement β such that

� − is(0)
− (�+ − �−) = � − i

√
2 − |β|2β(�+ − �−) = 0.

(B9)
This equation has three solutions that, written in terms of r
and φ as βi = rieiφi , read

r1 = √
1 + M, φ1 = −π/2, (B10a)

r2 = √
1 − M, φ2 = −π/2, (B10b)

r3 =
√

1 + Q, φ3 = π, (B10c)

where M is given by Eq. (7) and we defined

Q ≡
√

1 +
(

�

�+ − �−

)2

. (B11)

The first two solutions only exist only when r1 and r2 are
real; we can identify the point at which these solutions cease
to exist as the critical point where the phase transition occurs
and the HP approximation is not well suited to describe the
new phase. The critical lines �c(θ ) that we get in this way
coincide with the mean-field result (5), since determining β

is essentially analogous to determining the steady-state mean-
field solution.

We proceed now to demonstrate that β = β1 is the only
valid choice for the displacement by analyzing the dynamics
of the bosonic mode. Since all the terms of the form (B8) are
canceled, we have L(1) = 0. We define A ≡ (2k − |β|2)/2

√
k

and B ≡ −β2/2
√

k, so that s(1)
− = Ab + Bb†, and expand the

density matrix ρ(t ) = ∑
n εnρ (n)(t ). By equating powers of ε,

Eq. (B7) yields a master equation for the lowest-order density
matrix ρ (0)(t ),

ρ̇ (0)(t ) = L(2)ρ (0)(t ) = γ−
2
Lb{ρ (0)} + γ+

2
Lb†{ρ (0)}

+ η

2
(2bρ (0)b − {bb, ρ (0)} + 2b†ρ (0)b†

− {b†b†, ρ (0)}), (B12)

where γ− ≡ �−A2 + �+B2 + 2χAB, γ+ ≡ �+A2 + �−B2 +
2χAB, and η ≡ AB(�− + �+) + χ (A2 + B2) are all real
quantities (since β = −ir1 is purely imaginary). The dynam-
ics for 〈b〉 and 〈b†〉 is given by the equation v̇ = Wv, with
v = (〈b〉, 〈b†〉)T and

W = 1

2

(
γ+ − γ− 0

0 γ+ − γ−

)
. (B13)

The eigenvalues of W describe the energy excitation spectrum
of the Liouvillian [13] with the highest real part, to the lowest
order in ε. We therefore find that the gap in the Liouvillian
λ = (γ+ − γ−)/2 is purely real:

λ = �+ − �−
2

(A2 − B2) = −(�− − �+)(1 − |β|2). (B14)

From the three values of βi = rieiφi we get

λ1 = (�− − �+)M, (B15a)

λ2 = −(�− − �+)M, (B15b)

λ3 = (�− − �+)Q. (B15c)

These three solutions are shown in Fig. 11. Only λ1 has a
negative real part in the region � < �− − �+ where these
solutions are valid, and therefore the only valid choice of
displacement is

β = e−iπ/2
√

1 + M. (B16)

The other choices give γ+ > γ−, which clearly yield unstable
equations of motion for the bosonic mode, since the effective
pumping is larger than the losses and observables diverge; this
is related to the instability of the corresponding steady mean-
field solutions. The point where the gap closes γ+ = γ− is
therefore associated with this instability in the equations of
motion of the bosonic mode; this indicates that fluctuations in
the spin become comparable to J and indicates the onset of
the dissipative phase transition.

2. Spin polarization

We can now compute spin observables in the ferromagnetic
phase, where the HP expansion holds. In order to expand
spin mean values 〈sz/±〉 in powers of ε, we must take into
account both the HP expansions [Eqs. (B4) and (B5)] and the
expansion of ρ(t ). Doing so, we obtain, to order ε2,

〈sz/±(t )〉 = Tr
[
s(0)

z/±ρ (0)
]+ ε

{
Tr
[
s(1)

z/±ρ (0)
]+ Tr

[
s(0)

z/±ρ (1)
]}

+ ε2
{
Tr
[
s(2)

z/±ρ (0)
]+ Tr

[
s(1)

z/±ρ (1)
]

+ Tr
[
s(0)

z/±ρ (2)
]}+ O(ε3), (B17)

where we omitted the time dependence of the ρ (n)(t ) for
simplicity. Noting that s(0)

z/± is a c-number and that, by def-

inition, Tr[ρ (1)] = Tr[ρ (2)] = 0, the terms Tr[s(0)
z/±ρ (1)] and

Tr[s(0)
z/±ρ (2)] in Eq. (B17) are equal to zero.

However, there are nonvanishing terms proportional to
ε2 that depend on ρ (1). Since the effective master equa-
tion ρ̇ (1)(t ) = L(2)ρ (1) + L(3)ρ (0) is no longer quadratic, these
terms prevent us from obtaining a closed expression for 〈sz/±〉
at order ε2 = 1/J .

Let us define the correlators to zeroth order in ρ as 〈O〉0 ≡
Tr[Oρ0]. In order to evaluate the first-order terms 〈s(1)

z/±〉0 in
Eq. (B17), we must use Eq. (B12) to obtain correlators of the
form 〈b〉0. In general, the dynamics of any arbitrary correlator
〈b†m

bn〉0 will be given by

d〈b†m
bn〉0

dt
= γ+ − γ−

2
(n + m)〈b†m

bn〉0

+ γ+mn〈b†m−1
bn−1〉0 − η

2
m(m−1)〈b†m−2

bn〉0

− η

2
n(n − 1)〈b†m

bn−2〉0. (B18)

In particular, we are interested in the stationary limit t → ∞,
where the density matrix fulfills L(2)ρ (0) = 0 (in the follow-
ing, the notation 〈 〉0 and ρ (n) will refer to stationary values).
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We obtain steady-state values of the correlators by setting the
derivatives of Eq. (B18) equal to zero. This way, we get, for
the case m = 0 and n = 1,

〈b〉0 = 0. (B19)

Since 〈s(1)
z 〉0 and 〈s(1)

± 〉0 are proportional to 〈b〉0 and 〈b†〉0,
we find that they are all zero and therefore conclude that
〈sz/±〉 has no first-order dependence on ε. Therefore, using
Eqs. (B5), (B4), and (B16), we find that the stationary
expectation values 〈sz〉, 〈sx〉, and 〈sy〉 are given, with
corrections to second order in ε, by the zeroth-order
terms Tr[s(0)

z/±ρ (0)], which coincide with the solutions of
the mean-field equations (A5):

〈sz〉 = M = −R + O(ε2), (B20a)

〈sx〉 = 0 + O(ε2), (B20b)

〈sy〉 = �

�+ − �−
+ O(ε2). (B20c)

3. Spin fluctuations: Spin squeezing

Our lack of an analytical expression for ρ (n) for n > 0
prevents us from obtaining closed-form expressions for the
second-order corrections to the mean spin. However, it is pos-
sible to get expressions for the fluctuations 
s2

z/± to second
order, which is the lowest in their expansion. In particular, it
is easy to prove that


sz/±2 = 〈
s(1)

z/±
2〉

0 + O(ε3). (B21)

The mean spin direction in the thermodynamic limit, ob-
tained from Eqs. (B20a)–(B20c), can be written as

um = 〈sx〉ux + 〈sy〉uy + 〈sz〉uz√
〈s2〉

=
√

1 − M2uy + Muz. (B22)

We are interested in the squeezing along some direc-
tion in the plane perpendicular to um, u⊥(ϕ) ≡ cos(ϕ)ux −
sin(ϕ)[−Muy + √

1 − M2uz]; this direction is to be deter-
mined by finding the ϕ that maximizes the squeezing. As we
prove in Appendix B 4, ux is always the preferential direction
of squeezing. In order to compute ξ⊥, it is useful to obtain,
from the solution of Eq. (B12), the expression for the mean
quadratic correlators

〈b†b〉 = γ+
γ− − γ+

, (B23a)

〈b2〉 = 〈b†2〉 = η

γ+ − γ−
. (B23b)

Using these, we can write the expression for the variance


s2
x = k

2J

(
〈b†b〉 − 〈b2〉 + 1

2

)
+ O(ε3) (B24)

and from there obtain the expression for the spin squeezing

ξ 2
⊥ = N (
Sx )2

〈S〉2
= k

(
γ+ − η

γ− − γ+
+ 1

2

)
+ O(ε), (B25)

which can be rewritten in the form shown in Eq. (9).

4. Preferential direction of squeezing

To complete our previous discussion, we demonstrate here
that ux is the direction with minimum fluctuations finding
the angle ϕ that minimizes spin fluctuations along the gen-
eral direction u⊥(ϕ). We define the short notation for the
quantities with the properties of sine and cosines, c ≡ cos(ϕ),
s ≡ sin(ϕ), c̃ ≡ M, and s̃ ≡ √

1 − M2, and define the covari-
ance cov[X,Y ] ≡ 〈(X − 〈X 〉)(Y − 〈Y 〉)〉. Then we get, for
the fluctuations along a general direction perpendicular to the
mean spin,

(
S⊥)2

J2
= 1

J2

{
s2

[
c̃2 2 cov[S+, S−] − (
S+)2 − (
S−)2 − 2〈Sz〉

4
+ s̃2(
Sz )2 − is̃c̃

(
(
S+Sz )2 − (
S−Sz )2 + 〈S+〉 + 〈S−〉

2

)]

+ c2

[
2 cov[S+, S−] + (
S+)2 + (
S−)2 − 2〈Sz〉

4

]

+ sc

[
ic̃

(
S+)2 − (
S−)2

2
− s̃

(
cov[S+, Sz] + cov[S−, Sz] + 〈S+〉 − 〈S−〉

2

)]}
, (B26)

which we can express, grouping the coefficients of s2, c2, and sc into three parameters κ , λ, and μ, respectively, as

(
S⊥)2

J2
= 1

J
[κ sin(ϕ)2 + λ cos(ϕ)2 + μ cos(ϕ) sin(ϕ)] = 1

2J
[(λ − κ ) cos(2ϕ) + μ sin(2ϕ) + κ + λ]. (B27)

To find the angle ϕ that minimizes (
S⊥)2, we take the
derivative with respect to ϕ and make it equal to zero, giving
the following solution for ϕ:

2ϕ = arctan

(
μ

λ − κ

)
. (B28)

This function is usually treated as a single-valued function by
restricting the domain of tan(x) to x ∈ [−π/2, π/2]. We know

from numerical calculations that indeed ϕ ≈ 0, so we use this
single-valued definition of arctan(x). In that case, we can use
the properties

cos[arctan(x)] = 1√
x2 + 1

, (B29a)

sin[arctan(x)] = x√
x2 + 1

(B29b)
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FIG. 11. Eigenvalues as a function of the normalized driving
amplitude �/(�− − �+), assuming �− > �+. Lines shows the ana-
lytical solutions given by Eq. (B15). Markers indicate the numerical
solutions for finite systems. Below �/(�− − �+) = 1, the only valid
solution is λ1.

and then get

(
S⊥)2

J2
= 1

2J

⎡
⎣κ + λ + (λ − κ )

√
1 +

(
μ

λ − κ

)2
⎤
⎦. (B30)

We are now left to compute the values of κ , λ, and μ. To do
so, let us observe that, to order ε2,

〈S2
−〉

J2
= 〈

s(0)
−

2〉+ 1

J

[〈
s(1)
−

2〉+ 〈
s(0)
− s(2)

−
〉+ 〈

s(2)
− s(0)

−
〉]
, (B31)

and since s(0)
− is a c-number, we have that (
S−)2/J2 =

〈s(1)
−

2〉/J . By following the same argument to express the rest
of the variances and covariances present in the equation in
terms of the s(n)

±,z, we can write down the following values of
κ , λ, and μ, to zeroth order in ε:

κ = c̃2 2〈s(1)
+ s(1)

− 〉 − 〈
s(1)
+

2〉− 〈
s(1)
−

2〉− 2
〈
s(0)

z

〉
4

+ s̃2
〈
s(1)

z
2〉

− is̃c̃

[
〈s(1)

+ s(1)
z 〉 − 〈s(1)

− s(1)
z 〉 + 〈s(0)

+ 〉 + 〈s(0)
− 〉

2

]
, (B32)

λ = 2〈s(1)
+ s(1)

− 〉 + 〈
s(1)
+

2〉+ 〈
s(1)
−

2〉− 2
〈
s(0)

z

〉
4

, (B33)

μ = ic̃

〈
s(1)
+

2〉− 〈
s(1)
−

2〉
2

− s̃

(〈
s(1)
+ s(1)

z

〉+ 〈
s(1)
− s(1)

z

〉+ 〈s(0)
+ 〉 − 〈s(0)

− 〉
2

)
. (B34)

Taking into account that 〈b2〉 = 〈b†2〉 and s(1)
− = Ab + Bb†, we

can write the expressions of the correlators appearing in the
equations:〈

s(1)
±

2〉 = 〈b2〉(A2 + B2) + 2AB〈b†b〉 + AB, (B35a)

〈s(1)
+ s(1)

− 〉 = 〈b†b〉(A2 + B2) + 〈b2〉2AB + B2, (B35b)〈
s(1)

z
2〉 = |β|2[2(〈b†b〉 − 〈b2〉) + 1], (B35c)〈

s(1)
+ s(1)

z

〉 = i|β|(A − B)(〈b†b〉 − 〈b2〉) + Bβ, (B35d)〈
s(1)
− s(1)

z

〉 = i|β|(A − B)(〈b2〉 − 〈b†b〉) + Aβ. (B35e)

We know that 〈s(0)
− 〉 = √

kβ = −〈s(0)
+ 〉, and from Eqs. (B35e)

and (B35e) we have that 〈s(1)
+ s(1)

z 〉 + 〈s(1)
− s(1)

z 〉 = β(A + B) =
−i|β|√k = −is̃. Also, 〈s(1)

+
2〉 = 〈s(1)

−
2〉. It is then easy to see

that

μ = 0 → ϕ = 0, (B36)

proving that, in the thermodynamic limit, ux is always the
preferential direction for squeezing.

APPENDIX C: PROBABILITY AMPLITUDES OF
GENERAL MONTE CARLO TRAJECTORIES

In this Appendix we demonstrate Eq. (21). By expanding
the wave function in eigenstates |m〉 of the strong symmetry,
we find, for a trajectory with jumps at times (t1, . . . , tn) < t ,

|ψ (t )〉 ∝ e−iH̃ (t−tn )A|ψ (Tn)〉 ∝
∑

m

e−iH̃ (t−tn )mcm(tn)|m〉

∝
∑

m

e−iH̃ (t−tn )me−iH̃ (tn−tn−1 )mcm(tn−1)|m〉

∝ · · · ∝ e−iH̃t mn cm(0)|m〉. (C1)

From here, taking into account that H̃ = H − i�A†A/2J , the
probability to find the |ψ (t )〉 in an eigenstate |m〉 simply reads

p(m; t, n) = |〈m|ψ (t )〉|2 = 1

Nt,n
e−�|m|2t/J |m|2n|cm(0)|2,

(C2)

with Nt,n a normalization constant. Defining a rate α =
nJ/�t , we can rewrite Eq. (C2) as

p(m; t, α) = 1

Nt,α
(e−|m|2 |m|2α )t�/J |cm(0)|2. (C3)

APPENDIX D: EXACT EXPRESSION
FOR THE ACTIVITY DISTRIBUTION

In this Appendix we demonstrate Eq. (23). Defining the
quantum-jump superoperator J {·} ≡ L{·}L† and the no-jump
part of the Liouvillian S = L − J , the probability for the
system to experience K quantum jumps on a time T , starting
at the state ρ(0), is given by [38,110]

pT (K ) =
∫ T

0
dtK

∫ tK

0
dtK−1 · · ·

∫ t2

0
dt1

× Tr[eS(T −tK )J eS(tK −tK−1 ) · · ·J eSt1ρ(0)]. (D1)

From Eqs. (11a) and (11b) we find

eSt |m〉〈m| = e−�|m|2t/J |m〉〈m|, (D2a)

J |m〉〈m| = �

J
|m|2|m〉〈m|, (D2b)

and therefore

pT (K ) =
∫ T

0
dtK · · ·

∫ t2

0
dt1
∑

m

cm

(
�

J
|m|2

)K

e−�|m|2T/J

=
∑

m

1

K!

(
T �|m|2

J

)K

e−�|m|2T/Jcm. (D3)
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