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In traditional open quantum systems, the baths are usually traced out so that only the system information is left
in the equations of motion. However, recent studies reveal that using only the system degrees of freedom can be
insufficient. In this work, we develop a stochastic c-number Langevin equation method which can conveniently
access the bath information. In our approach, the studied quantities are the expectation values of operators which
can contain both system operators and bath operators. The dynamics of the operators of interest is formally
divided into separate system and bath parts, with auxiliary stochastic fields. After solving the independent
stochastic dynamics of the system part and the bath part, we can recombine them by taking the average over these
stochastic fields to obtain the desired quantities. Several applications of the theory are highlighted, including the
pure dephasing model, the spin-boson model, and an optically excited quantum dot coupled to a bath of phonons.
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I. INTRODUCTION

An open quantum system problem [1–3] is usually divided
into the most relevant part (the system) and the secondary
part (the bath). Usually one can use a partial trace to eliminate
the bath. However, recent studies make the division between
the system and the bath somewhat unclear. For example,
closed many-body systems do not have bath parts, but can still
thermalize [4–12] like open systems; large coupling strengths
can make the correlation between the system and the bath
important in thermodynamics [13–21]; in photosynthesis, the
mixing of the system modes and the bath modes can suppress
decoherence [22–30,30]; when the bath is influenced by the
pump exerted on the system, tracing out the bath is difficult
and usually contains approximations [31–33]. Thus a method
without performing a partial trace is very desirable.

To retain the potential information lost in tracing out
the baths, one approach is to introduce generating functions
[34–36]. However, it is difficult to find the generating func-
tions in general cases. The Heisenberg-Langevin approach
[37–42] can be another good choice for such problems with-
out apparent divisions between the systems and the baths.
Although the Langevin equations consist of the system parts
and the bath parts, no partial trace is included. Therefore,
the accessible quantities are not restricted to the system parts
[43–45]. Nevertheless, the bath parts become the quantum
noise terms in the equations, which makes the numerical
simulations of the Langevin equations very difficult. Also, in
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some models, e.g., multilevel systems, the Langevin equations
may contain nonlinear time-nonlocal terms. Thus the use of
the Heisenberg-Langevin approach in open quantum systems
has limitations.

In the Schrödinger picture, the nonlinear time-nonlocal
terms can be avoided. Therefore, researchers have developed
many successful methods, such as the quantum state diffusion
method [46–50], polaron transform methods [51–59], the hier-
archy equation methods [60–67], path-integral methods [68],
and the stochastic Liouville equation methods [69–76]. These
methods are suitable for different situations, but with various
limitations. For example, the quantum state diffusion method
can efficiently calculate large systems, but its application is
difficult for many models. The polaron transform methods,
which can provide compact master equations, usually include
perturbations in either the transformations or the derivations
of the master equations (which treats only certain parts of
the bath coupling nonperturbatively). One can calculate the
long-time results with hierarchy equation methods if the
correlation functions of the baths are not too complicated.
The path-integral methods are powerful but complicated, and
restricted when adding in other effects to the model. The
stochastic methods are not restricted to any bath spectrum or
temperature, but at the cost of poor long-time performance.
However, most of the recent methods contain a partial trace.

In this article, we combine the Heisenberg-Langevin
method and the stochastic Liouville equation to overcome
some of the mentioned disadvantages of these recent methods.
To avoid the nonlinear time-nonlocal terms in the equations,
we separate the dynamics of the system and the bath with
the Hubbard-Stratonovich transformation [77] (by introduc-
ing auxiliary stochastic fields). Then the Langevin equations
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become linear and time local at the cost of containing classical
noise terms. Moreover, we change the stochastic equations
to c-number equations by taking expectation values. The
final result can be obtained by taking the average over the
noise terms. Our method is not based on the perturbation or
the Markovian approximation, so it is, in principle, numeri-
cally exact. Similar to the stochastic Liouville equation, the
stochastic c-number Langevin equations can deal with very
complicated bath spectra at any temperature, but may have
poor numerical convergence for long-time simulations. In ad-
dition, our method also has the advantage of the Heisenberg-
Langevin method, in that it can conveniently obtain the quan-
tities of the bath.

Our paper is organized as follows. In Sec. II, we derive
the stochastic c-number Langevin equations. We first separate
the dynamics of the system and the bath by introducing the
stochastic noise terms. Then, we solve the stochastic dynam-
ics of the system part and the bath part separately. Finally,
we combine the system part and the bath part by taking the
average over the noise terms to obtain the desired results.
In Sec. III, several numerical examples of two-level systems
are calculated. The first example is the pure dephasing model
which can be used to check the method. The second exam-
ple, the spin-boson model, has been calculated with many
numerical methods, but the bath quantities are seldom studied.
Then a realistic and practical system, a quantum dot system
coupled to phonons, is chosen as the third example. Section IV
presents our conclusions. We also include four appendices.
Appendix A provides the derivation of the stochastic bath
evolution operator. In Appendix B, we describe how to gen-
erate the bath operators from the stochastic bath evolution
operator. In Appendix C, we derive the expectation value of
the stochastic identity operator of the bath. The c-number
Langevin equation for the Brownian motion problem is de-
rived in Appendix D. In Appendix E, our method is extended
to the time-dependent Hamiltonian case.

II. THE STOCHASTIC c-NUMBER LANGEVIN
EQUATIONS

For the total system, we consider the Caldeira-Leggett type
model [78], with Htot = H0 + HI (setting h̄ = 1),

H0 = Hsys + Hb,

Hb =
∑

k

ωka†
kak,

HI = S
∑

k

(g∗
ka†

k + gkak ). (1)

Here, H0 is composed of the free Hamiltonian of the sys-
tem, Hsys, and the multimode bosonic bath Hb. The coupling
Hamiltonian HI describes the coupling between the system
and the bosonic bath. In the coupling Hamiltonian, S is a
Hermitian operator of the system, and a†

k (ak) is the bosonic
creation (annihilation) operator of the kth mode in the bath.

Solving such an open system with the Heisenberg-
Langevin approach is usually difficult. Here, we take the
standard generalized quantum Langevin equation as an exam-
ple [79]. Consider the Heisenberg equations of an arbitrary

system operator As(t ) and the bath operator ak ; then,

Ȧs(t ) = i[Hsys, As(t )] + i[S, As(t )]
∑

k

[g∗
ka†

k (t ) + gkak (t )],

ȧk (t ) = −igkS(t ) − iωkak . (2)

The bath equations can be formally solved,

ak = e−iωkt ak (0) − igk

∫ t

0
dse−iωk (t−s)S(s). (3)

Substituting this formal solution for the bath operators in the
equation of the system operator As(t ), the Langevin equation
of As(t ) can be derived:

Ȧs(t ) = i[Hsys(t ), As(t )] + i[S(t ), As(t )]ξ̂ (t )

+[S(t ), As(t )]
∫ t

0
ds[α(t − s) − α∗(t − s)]S(s), (4)

where

α(t − s) ≡
∑

k

gkg∗
k exp[−iωk (t − s)] (5)

is the zero-temperature correlation function, and

ξ̂ (t ) ≡
∑

k

[gkak (0) exp(−iωkt ) + g∗
ka†

k (0) exp(iωkt )] (6)

is the quantum noise. In this article, noise terms with hat
correspond to quantum noise terms of the bath, and noise
terms without hat are classical noise terms from the aux-
iliary field. In general, the commutator [S, As(t )] is some
operator Bs(t ). Thus the last term in Eq. (4) has the form∫ t

0 ds[α(t − s) − α∗(t − s)]Bs(t )S(s), which is both nonlinear
and time nonlocal. Such a term makes it difficult to ap-
ply the Heisenberg-Langevin approach to general cases. In
addition, the quantum noise further increases the difficulty
of solving these equations. Therefore, we follow the idea
of the stochastic Liouville equation [69–76], instead of the
traditional approach to derive the Langevin equation.

A. Separating the system and the bath with stochastic noise
terms

To avoid dealing with the nonlinear terms directly, we
formally separate the dynamics of the system and the bath
[70–75]. The basic idea is similar to generating indirect
interactions with intermediate fields [80–83]. Instead of the
original system-bath coupling, we consider the equivalent
coupling induced by auxiliary fields with trivial dynamics.
This produces stochastic, but uncoupled system dynamics and
bath dynamics. By averaging over the noise terms, which
resembles tracing out the intermediate field, we can recover
the original system-bath coupling.

An operator at time t in the Heisenberg picture B(t ) is
related to its initial value B(0) by

B(t ) = U †(t )B(0)U (t ), (7)

with the evolution operator U (t ) ≡ exp(−iHtott ). It is diffi-
cult to obtain U (t ) for general cases. However, by applying
the Hubbard-Stratonovich transformation [77], the evolution
operator U (t ) can be divided into two parts. Consider the
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coupling Hamiltonian,

HI = Sx

= (S + x)2 − (S − x)2

4

=
(

S + x

2

)2

+
(

S − x

2i

)2

,

with

x ≡
∑

k

(g∗
ka†

k + gkak ). (8)

The coupling Hamiltonian is now in a quadratic form, so
that the total evolution operator, which is also the partition
function with imaginary temperature, can be expressed as

U (t ) =
∫

D[z1,τ ]D[z2,τ ]
1

2π
exp

[∫ t

0
dτ

(
−1

2
z2

1,τ − 1

2
z2

2,τ

)]
Usys(t ; z1,τ , z2,τ )Ub(t ; z1,τ , z2,τ )

≡ Mz{Usys(t ; z1,τ , z2,τ )Ub(t ; z1,τ , z2,τ )},
where

Usys(t ; z1,τ , z2,τ ) = T+ exp

{
−i

∫ t

0
dτ

[
Hsys + 1√

2
S(z1,τ + iz2,τ )

]}
,

and

Ub(t ; z1,τ , z2,τ ) = T+ exp

{
−i

∫ t

0
dτ

[
1√
2

∑
k

(gkak + g∗
ka†

k )(iz1,τ + z2,τ ) +
∑

k

ωka†
kak

]}
. (9)

Here, Usys(t ; z1,τ , z2,τ ) is the stochastic evolution operator
of the system and Ub(t ; z1,τ , z2,τ ) is the stochastic evolution
operator of the bath; T+ is the time-ordered operator, and the
average over the noise terms is denoted by Mz{}. We first
assume B(0) = Bsys(0) ⊗ Bb(0) so that the dynamics of the
total system can be divided into two parts. Thus,

B(t ) = Mz{Bsys(t ; z) ⊗ Bb(t ; z)},
Bsys(t ; z) = U †

sys(t ; z1,τ , z2,τ )Bsys(0)Usys(t ; z3,τ , z4,τ ),

Bb(t ; z) = U †
b (t ; z1,τ , z2,τ )Bb(0)Ub(t ; z3,τ , z4,τ ). (10)

In more general cases, with B(0) = ∑
i Bi,sys(0) ⊗ Bi,b(0), we

can deal with these terms one by one.
In the master-equation method, the bath part is usually

traced out to obtain the reduced density matrix ρsys(t ). How-
ever, some information of the bath is lost in this procedure. To
avoid such a disadvantage, we take the expectation value of
the operator, instead of tracing out the bath,

〈B(t )〉 = Tr{B(t )ρtot (0)}. (11)

Now we assume that the system and the bath are factorized
at the initial time ρtot (0) = ρsys(0) ⊗ ρb(0). Then, the expec-
tation value can also be divided into the system part and the
bath part,

〈B(t )〉 = Tr{Mz
{
Bsys(t ; z) ⊗ Bb(t ; z)

}
ρsys(0) ⊗ ρb(0)}

= Mz{〈Bsys(t ; z)〉〈Bb(t ; z)〉}, (12)

with

〈Bsys(t ; z)〉 ≡ Tr{Bsys(t ; z)ρsys(0)}, (13)

and

〈Bb(t ; z)〉 ≡ Tr{Bb(t ; z)ρb(0)}. (14)

According to Eq. (12), we can separately calculate the
stochastic expectation value of the system part 〈Bsys(t ; z)〉

and the bath part 〈Bb(t ; z)〉. Then, the expectation value of
the concerned operator 〈B(t )〉 can be obtained by taking
the noise average of the stochastic ones. Note that these
noise terms come from the auxiliary fields instead of the
bath. The quantum noise induced by the bath is included
in 〈Bb(t ; z)〉.

B. The stochastic dynamics of the system part

We first consider a system of finite dimension. In such a
case, a set of basis operators Yl can be found to represent the
Bsys(0; z),

Bsys(0; z) =
∑

l

blYl . (15)

The stochastic system operator at time t can also be expressed
in the same way,

Bsys(t ; z) = U †
sys(t ; z1,τ , z2,τ )

∑
l

blYlUsys(t ; z3,τ , z4,τ )

=
∑

l

blYl (t ; z),

with

Yl (t ; z) ≡ U †
sys(t ; z1,τ , z2,τ )YlUsys(t ; z3,τ , z4,τ ). (16)

The expectation value of the system part can then be expressed
as

〈Bsys(t ; z)〉 =
∑

l

bl〈Yl (t ; z)〉. (17)

According to Eq. (17), once all the stochastic expectation
values of the basis Yl (t ; z) are known, the stochastic expec-
tation value of the system part can be easily calculated. The
equation for Yl (t ; z) can be obtained by directly taking the time
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derivative of it, so that

∂

∂t
Yl (t ; z) = ∂

∂t
{U †

sys(t ; z1,τ , z2,τ )YlUsys(t ; z3,τ , z4,τ )}

=
[

∂

∂t
U †

sys(t ; z1,τ , z2,τ )

]
YlUsys(t ; z3,τ , z4,τ )

+U †
sys(t ; z1,τ , z2,τ )Yl

[
∂

∂t
Usys(t ; z3,τ , z4,τ )

]
. (18)

According to the form of the stochastic evolution operator in
Eq. (9), Eq. (18) can be written as

∂

∂t
Yl (t ; z) = U †

sys(t ; z1,τ , z2,τ )D(0; z)Usys(t ; z3,τ , z4,τ ),

where

D(0; z) = i

[
Hsys + 1√

2
Ssys(z1,t − iz2,t )

]
Yl

−iYl

[
Hsys + 1√

2
Ssys(z3,t + iz4,t )

]
. (19)

If we define two complex noise terms,

x1,t = 1
2 (z1,t − iz2,t + z3,t + iz4,t )

and

x2,t = 1
2 (z1,t − iz2,t − z3,t − iz4,t ), (20)

we can express D(0; z) in Eq. (19) in a compact form,

D(0; x) = i[Hsys,Yl ] + i
1√
2

x1,t [Ssys,Yl ]

+i
1√
2

x2,t {Ssys,Yl}. (21)

The commutators and anticommutators can also be expressed
by the basis operators Ym,

[Hsys,Yl ] =
∑

m

HlmYm,

[Ssys,Yl ] =
∑

m

Sc
lmYm,

{Ssys,Yl} =
∑

m

Sa
lmYm. (22)

The superscripts “c” and “a” refer to “commutator” and “anti-
commutator,” respectively. When the dimension of the system
Hilbert space is infinite, our method can also be applied if a
set of basis operators which satisfies Eq. (22) can be found.
With Eqs. (19) and (22), we can obtain the following equation
for Yl (t ; x):

∂

∂t
Yl (t ; x) = i

∑
m

(
Hlm + x1,t√

2
Sc

lm + x2,t√
2
Sa

lm

)
Ym(t ; x). (23)

The equation for the expectation values is straightforward to
obtain,

∂

∂t
〈Yl (t ; x)〉 = i

∑
m

(
Hlm + x1,t√

2
Sc

lm + x2,t√
2
Sa

lm

)
〈Ym(t ; x)〉.

(24)

Equation (24) can also be written in a vector form if we define
the stochastic expectation value vector as

Y (t, x) ≡ (〈Y1(t ; x)〉, . . . , 〈Yn(t ; x)〉)T ,

where n is the number of the basis operators of the system and
T means transpose. The vector form of the equation reads

∂

∂t
Y (t, x) = i

(
H + x1,t√

2
Sc + x2,t√

2
Sa

)
Y (t, x). (25)

The elements of the matrices H, Sc, and Sa are, respectively,
the terms Hlm, Sc

lm, and Sa
lm in Eq. (24). With Eqs. (17) and

(25), the stochastic expectation value of the system part can
be calculated. Note that the choice of the basis operators is
arbitrary. For example, we can take Bsys(t ; z) as the first one
of them and find enough operators to satisfy Eq. (22).

C. The stochastic dynamics of the bath part

Next, we come to the stochastic evolution operator for
the bath Ub(t ; z3,τ , z4,τ ). In the following, for simplicity, the
stochastic evolution operators for the bath will be written as
UIb(t ; z) and U †

Ib(t ; z). Note that the noise terms are different
in UIb(t ; z) and U †

Ib(t ; z). We first change to the interaction
picture,

UIb(t ; z) = eiHbtUb(t ; z). (26)

Then the bath part of the stochastic operator becomes

Bb(t ; z) = U †
Ib(t ; z)BIb(t )UIb(t ; z),

where BIb(t ) ≡ exp(iHbt )Bb(0) exp(−iHbt ) is the initial value
of the bath part of the stochastic operator in the interaction
picture. The equation for UIb(t ; z) is

∂

∂t
UIb(t ; z) = ∂

∂t
[eiHbtUb(t ; z)]

= z3,τ − iz4,τ√
2

ξ̂ (t )UIb(t ; z). (27)

Here, the ξ̂ (t ) is the quantum noise term which appears in the
quantum Langevin equation. Equation (27) can be solved by
the Magnus expansion [84,85] (also see Appendix A),

UIb(t ; z) = exp

[
−i

1√
2

∫ t

0
ds (iz3,s + z4,s)

∑
k

g∗
keiωk sa†

kb

]
exp

[
−i

1√
2

∫ t

0
ds (iz3,s + z4,s)

∑
k

gke−iωk sakb

]

× exp

[
−

∫ t

0
ds1

∫ s1

0
ds2

1

2

(
iz3,s1 + z4,s1

)(
iz3,s2 + z4,s2

)
α(s1 − s2)

]
. (28)
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Now we consider the stochastic expectation value of the bath
part 〈Bb(t ; z)〉. We express the bath part of the operator with a
Taylor expansion,

Bb(0) = 	k

∑
mk ,nk

Ck,mk ,nk an
kba†m

kb . (29)

The stochastic bath part Bb(t ; z) of the operator B at time t is

Bb(t ; z) = 	k

∑
mk ,nk

Ck,mk ,nkU
†
b (t ; z)an

kba†m
kb Ub(t ; z). (30)

Conceptually, Eq. (30) can be directly calculated from
Eq. (28). However, the bath operators can also be generated
approximately from the stochastic evolution operator when
the time is not too short (see Appendix B). In this way,

a†
kbUb(t ; z) = Ak (t ; z3,τ , z4,τ )Ub(t ; z),

akbU
†
b (t ; z) = A∗

k (t ; z1,τ , z2,τ )U †
b (t ; z), (31)

where Ak (t ; z3,τ , z4,τ ) has the following form:

Ak (t ; z3,τ , z4,τ ) = i
√

2eiωkt

g∗
k

∫ t

0
ds1

[
e−iωk s1

δ

δz4,s1

+1

2

∫ s1

0
ds2

(
iz3,s2 + z4,s2

)
e−iωk s1α(s1 − s2)

+1

2

∫ t

s1

ds2
(
iz3,s2 + z4,s2

)
e−iωk s1α∗(s1 − s2)

]
.

(32)

The term α(s1 − s2) ≡ ∑
k gkg∗

k exp[−iωk (s1 − s2)] in
Eq. (32) is the zero-temperature correlation function
mentioned in Eq. (4). With Eq. (32), Eq. (30) can be
converted to

Bb(t ; z) = 	k

∑
mk ,nk

Ck,mk ,nk

×[A∗
k (t ; z)]mU †

b (t ; z)[Ak (t ; z)]nUb(t ; z)

= 	k

∑
mk ,nk

Ck,mk ,nk [Ak (t ; z)]n[A∗
k (t ; z)]mIb(t ; z),

where

Ib(t ; z) ≡ U †
b (t ; z)Ub(t ; z). (33)

Note that the stochastic identity operator is no longer an
identity operator. Also, we abbreviate the Ak (t ; z3,τ , z4,τ )
[A∗

k (t ; z1,τ , z2,τ )] to Ak (t ; z) [A∗
k (t ; z)]. Since the stochastic

bath operators can be generated from the bath part of the
stochastic identity operator, the next step is to obtain the
stochastic expectation value of Ib(t ; z). If the initial state of
the bath is the thermal state, then 〈Ib(t ; z)〉 can be exactly
calculated [75] (also see Appendix C):

〈Ib(t ; z)〉 = exp

[∫ t

0
ds g(s, z) x∗

1,ss

]
,

g(s, z) =
∫ s

0
ds1

[(
z3,s1 − iz4,s1

)
αT (s − s1)

+ (
z1,s1 + iz2,s1

)
α∗

T (s − s1)
]
,

with

αT (t − s) =
∑

k

gkg∗
k coth

(
βωk

2

)
cos[ωk (s1 − s2)]

− i
∑

k

gkg∗
k sin[ωk (s1 − s2)]. (34)

The αT (t − s) term in Eq. (34) is the finite-temperature corre-
lation function of the bath. The effects of the bath temperature
T are described by the parameter β ≡ 1/(kBT ). With the
value of 〈Ib(t ; z)〉, the stochastic expectation value of the bath
part 〈Bb(t ; z)〉 can be calculated from

〈Bb(t ; z)〉 = 	k

∑
mk ,nk

Ck,mk ,nk [Ak (t ; z)]n[A∗
k (t ; z)]m〈Ib(t ; z)〉.

(35)

Using the exponential property of 〈Ib(t ; z)〉, we can assume
that 〈Bb(t ; z)〉 has the following form:

〈Bb(t ; z)〉 = f (t, x3)〈Ib(t ; z)〉. (36)

The f (t, x3) term is some stochastic function, where x3 rep-
resents one or more noise terms. The property of x3 depends
on the form of Bb(t ; z). If we are only interested in the system
operators, then the bath part is just Bb(t ; z) = Ib(t ; z).

D. Noise average of the stochastic operators

To obtain the expectation value of the operator B(t ), we
need to eliminate the auxiliary stochastic fields by taking a
noise average over the product of the system part and the bath
part,

〈B(t )〉 = Mz{〈Bsys(t ; z)〉〈Bb(t ; z)〉}

= Mz

{∑
l

bl〈Yl (t ; x)〉 f (t, x3)〈I (t ; z)〉
}

. (37)

Direct calculation of Eq. (37) is numerically inefficient.
We can introduce the Girsanov transformation of the noise
terms to absorb 〈I (t ; z)〉 into the relevant distribution function
[71,72,75],

z′
1,t = z1,t − 1

2 g(t, z),

z′
2,t = z2,t − i

2 g(t, z),

z′
3,t = z3,t − 1

2 g(t, z),

z′
4,t = z4,t + i

2 g(t, z). (38)

Notice that this transformation only changes the noise terms in
the system part. With the transformation in Eq. (38), Eq. (25)
becomes

∂

∂t
Y (t, x) = i

[
H + x′

1,t + g(t, z)√
2

Sc + x′
2,t√
2
Sa

]
Y (t, x). (39)

By defining two colored noise terms ξt = x′
1,t + g(t, z) and

ηt = ix2,t , we obtain the following stochastic equation:

∂

∂t
Y (t, ξ , η) =

(
iH + i

ξt√
2
Sc + ηt√

2
Sa

)
Y (t, ξ , η),

Mz{ηtηs} = 0,
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Mz{ξtηs} = 2θ (t − s) Im[αT (t − s)],

Mz{ξtξs} = 2Re[αT (|t − s|)]. (40)

Here, θ (t − s) is the step function, which is 1 for t > s and 0
for t < s; the value for t = s is not important as Im[αT (0)] =
0. Each line of Eq. (40) is a stochastic c-number Langevin
equation of a stochastic basis operator Ym(t ; ξ, η). Note that
the noise terms in Eq. (40) represent classical noise terms
and therefore are different from the quantum noise terms.
However, these classical noise terms can describe the non-
commutative properties of the quantum noise terms [86]. It is
instructive to compare Eq. (40) with the c-number quantum
Langevin equation of the harmonic-oscillator systems (see,
e.g., [87]), as they seem to be quite different. However, after
assuming a harmonic-oscillator system and taking the noise
average of the stochastic equations, these two methods have
the same form (see Appendix D).

By taking the noise average of these expectation values of
the stochastic basis operators, we obtain the expectation val-
ues of the basis operators 〈Ym(t )〉 = Mz{〈Ym(t ; ξ, η)〉}. With
these 〈Ym(t )〉, the expectation value of any system operator
can be conveniently calculated with the following relation:

〈B(t )〉 =
∑

l

bl〈Ym(t )〉. (41)

When the bath part of the operator B(t ) is not an identity
operator, we just need to add an additional term in the noise
average. Consequently, the expectation value can be calcu-
lated in a similar way,

〈B(t )〉 = Mz

{∑
l

bl〈Yl (t ; ξ, η)〉 f (t, ζ )

}
. (42)

As we have mentioned, the effects of the bath are contained
in the stochastic bath part of the operators, instead of the
artificial noise terms zi,si , i = 1, 2, 3, and 4. However, after
the transformation in Eq. (38), the information of the bath is
absorbed into the noise terms ξt , ηt , and f (t, ζ ). The influence
of the bath on the system dynamics is described by ξt and ηt ;
concerned bath operators are provided by f (t, ζ ); and other
details of the bath are eliminated as in the master equation.

III. THE DYNAMICS OF TWO-LEVEL SYSTEMS

In this section, we will calculate the dynamics of different
two-level systems as applications of our method. Two-level
systems are the simplest kind of multilevel systems and have
a wide range of applications (see, e.g., [88–90]). Meanwhile,
the Langevin equation of a two-level system can also have the
problem of nonlinear time-nonlocal terms. We will consider
the coupling energy 〈HI(t )〉 and the bath displacement,

〈x(t )〉 ≡
〈∑

k

[g∗
ka†

k (t ) + gkak (t )]

〉
, (43)

as two simple cases of quantities which contain bath opera-
tors. Note that the bath displacement has units of frequency
instead of length because it is multiplied by the coupling co-
efficient. Such a displacement can better reveal the influence
of the bath on the system. The stochastic expectation values
of the system part can be obtained from Eq. (40), so we will

directly come to the bath part. According to Eqs. (1) and (33),
we have

〈HIb(t ; z)〉 =
〈∑

k

[g∗
ka†

k (t ; z) + gkak (t ; z)]

〉

=
∑

k

[g∗
kAk (t ; z) + gkA∗

k (t ; z)]〈Ib(t ; z)〉. (44)

Equation (44) can be evaluated with Eqs. (32) and (34),

〈HIb(t ; z)〉 = ζt 〈Ib(t ; z)〉,

ζt =
√

2
∫ t

0
ds[(z1,s + iz2,s)α̃∗(t − s)

+(z3,s − iz4,s)α̃(t − s)],

α̃(t − s) = αT (t − s) − 1
2α(t − s). (45)

From Eqs. (45), we can find that the contribution of the bath
part can be represented by a new noise term ζt . The correlation
among ζt , ξt , and ηt is described through

Mz{ζtζs} = 0,

Mz{ζtξs} = θ (t − s)2
√

2 Re
[
αT (t, s) − 1

2α(t, s)
]
,

Mz{ζtηs} = θ (t − s)2
√

2 Im
[
αT (t, s) − 1

2α(t, s)
]
. (46)

Then, the coupling energy can be calculated with Eq. (42) by
introducing an additional noise to the noise average,

〈HI(t )〉 = Mz{〈Ss(t ; ξ, η)〉ζ }, (47)

where Ss(t ; ξ, η) is the system part stochastic expectation
value of the coupling operator, S(t ), in Eq. (1). Note that the
coupling energy can also be calculated without including the
bath when the heat current can be obtained [91,92]. The bath
part of the bath displacement is just the same as the one of the
coupling energy. Therefore, we have the following relation:

〈x(t )〉 = Mz{〈Isys(t ; ξ, η)〉ζ }. (48)

We will mainly consider two kinds of spectral densities for
the baths. The first spectral density is the Ohmic form with a
Debye regulation (see, e.g., [93]):

∑
k

gkg∗
kδ(ωk − ω) = �ω2

cω

π
(
ω2

c + ω2
) , (49)

where � is the coupling strength and ωc is the cutoff fre-
quency. We will calculate several well-known simple models
with this spectral density. In these models, we will express
all the parameters in normalized units, as the ratio to the
frequency of the two-level system ω0.

The second kind of spectral density we consider is the
super-Ohmic spectrum with an exponential cutoff:

∑
k

gkg∗
kδ(ωk − ω) = αω3 exp

[
−

(
ω

ωc

)2
]
, (50)

where the coupling strength is described by α. This spec-
tral function is frequently used in solid-state quantum dot
systems, e.g., when coupled to acoustic phonons. We will
first reproduce some known results, with our alternative tech-
niques, and then obtain some new results. In addition, the
bath displacement, which cannot be obtained with former
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methods, will also be calculated. The parameters in this part
will be expressed with units of picoseconds, like other works
modeling real quantum dot systems [94,95]. In our numerical
calculations, the noise functions are generated with the FFTW3
pack [96].

A. Pure dephasing model

The first model we consider is the so-called pure dephasing
model,

Hsys = ω0

2
σz, S = σz. (51)

We use such an analytically solvable model to check our
method. According to Eq. (40), the stochastic c-number
Langevin equations of the pure dephasing model are

∂

∂t
〈σxs(t ; ξ, η)〉 = −(ω0 +

√
2ξt )〈σys(t ; ξ, η)〉,

∂

∂t
〈σys(t ; ξ, η)〉 = +(ω0 +

√
2ξt )〈σxs(t ; ξ, η)〉,

∂

∂t
〈σzs(t ; ξ, η)〉 =

√
2ηt 〈Isys(t ; ξ, η)〉,

∂

∂t
〈Isys(t ; ξ, η)〉 =

√
2ηt 〈σzs(t ; ξ, η)〉. (52)

The noise averages of 〈σxs(t ; ξ, η)〉, 〈σys(t ; ξ, η)〉,
〈σzs(t ; ξ, η)〉, and 〈Isys(t ; ξ, η)〉 correspond to the expectation
values of three Pauli matrices and the identity operator. We
assume the initial state of the system to be the eigenstate of
σx, |ψ0〉 = 1√

2
(|e〉 + |g〉), where |g〉 (|e〉) is the ground state

(excited state). The initial state of the bath is assumed to be
a thermal state. The coupling energy between the system and
the bath is

〈HI(t )〉 = Mz{〈σzs(t ; ξ, η)〉ζ }. (53)

From the analytical solution of this model, we obtain the
expectation values of the following quantities:

〈σx(t )〉 = cos(ω0t )e−4
∫ t

0 ds
∫ s

0 ds1Re[αT (s−s1 )]〈σx(0)〉,
〈σy(t )〉 = sin(ω0t )e−4

∫ t
0 ds

∫ s
0 ds1Re[αT (s−s1 )]〈σx(0)〉,

〈HI(t )〉 = 2
∫ t

0
ds Im[α(t − s)]. (54)

With Eq. (54), the stochastic results can be compared with the
analytical results. We first show the results at low temperature
β = 1000 (β has units of 1/ω0).

From Fig. 1, we can see that the converged part of the
stochastic results (solid curves) agrees well with the analytical
results (dotted curves). Figure 1(a) shows the expectation
values of the system operators; there, the stochastic results
are nearly converged except for some tiny deviations at
long times. However, the result in Fig. 1(b), which shows
the coupling energy, is not that good. For comparatively
long times, ω0t > 15, the stochastic result oscillates severely
around the analytical result. Also note that the interaction
energy agrees well with the analytical even for short times,
so the approximation in getting the bath operators is reliable.
Then, we introduce the accumulated errors of 〈σx〉 and 〈HI〉 to
characterize the convergence of our method. The accumulated

FIG. 1. Results for the pure dephasing model. Here, the cutoff
frequency is ωc = 0.5 and the coupling strength � = 1. In (a) and
(b), the stochastic results are calculated taking an average over
45 × 106 trajectories, and the results of the stochastic method and
the analytical expression are denoted by the subscript s and a,
respectively. The accumulated errors are shown in (c) and (d).

error of some operator B(t ) is calculated from

Accumulated error =
∫ t

0
ds[〈B(s)〉a − 〈B(s)〉s]

2. (55)

The 〈B(s)〉a and 〈B(s)〉s correspond to the analytical result and
the stochastic result, respectively. As shown in Fig. 1(c), the
error decreases significantly with the number of trajectories
for the system operator σx. However, the calculation of the
coupling energy is much more difficult. According to the
results in Fig. 1(c), doubling the number of trajectories (black
dotted curve and red dashed curve) makes only a few percent
difference in the error. Only by increasing the number of the
trajectories from 5 × 106 (black dotted curve) to 45 × 106

(green solid curve) can we reduce the error slightly. Therefore,
the converging properties of the system operators and the bath
ones are quite different.

Next, we come to the case of high temperature β = 1.
Compared with Fig. 1, the convergence of the results in Fig. 2
is much better. This is not surprising because the system is
closer to the classical limit at high temperature. However,
the convergence of the coupling energy 〈H(t )〉, shown in
Fig. 2(b), is still not as good as the system operators, shown
in Fig. 2(a).

B. Pure dephasing model with classical field control

We now consider the situation with classical field control.
In addition to the original Hamiltonian in Eq. (51), we will
add a classical control field Hamiltonian,

Hc = C(t )σy. (56)

The coefficient C(t ) describes the shape of the control field
and we choose the ideal π pulses as the control field. The
separation between two successive pulses is 2/ω0. Thus the
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FIG. 2. Expectation values of different operators. The cutoff fre-
quency is ωc = 0.5 and the coupling strength � = 1. The stochastic
results are calculated taking an average over 5 × 106 trajectories.
(a) Comparison between the stochastic and analytical results for
the system operators. (b) Comparison between the stochastic and
analytical results for coupling energy.

coefficient C(t ) can be written as

C(t ) =
∑

n

π

2
δ

(
t − 2n

ω0

)
. (57)

The derivation in Sec. II is based on time-independent Hamil-
tonians, but this formalism also works for time-dependent
Hamiltonians (see Appendix E). The numerical results are
shown in Fig. 3.

In Fig. 3, our results correctly show the effects of the
control field. Compared with the results without control field
in Fig. 2, the coherence time is much longer. At long times,
the expectation values of the system operators become the
steady values, but the coupling energy cannot become a steady
value under the influence of the control pulses. The sudden
changes in Fig. 3 correspond to the control pulses. The 〈σz(t )〉
is not shown as it is a conserved quantity for our initial state.
Here, we can discuss more about the work done by the control
pulse. The ideal π pulse does not change the system energy
in our case; therefore, the thermodynamics for the system is

FIG. 3. Expectation values of different operators with classical
control. The cutoff frequency is ωc = 0.5, the coupling strength is
� = 1, and the inverse of the temperature is β = 1. The stochastic
results are calculated with the average over 40 × 106 trajectories. The
control field is ideal π pulses in the y direction.

trivial. However, after including the interaction energy, we can
clearly see the work done by the control and the relaxation of
the total system.

C. Spin-boson model

The second model we consider is the spin-boson model,
which, unlike the pure dephasing mode, cannot be solved
analytically. The spin-boson model is very important as it can
describe light-matter interaction problems and double-well
potential problems. The system Hamiltonian and coupling
operator of the spin-boson model are

Hsys = ω0

2
σz, S = σx. (58)

The stochastic c-number Langevin equations of the system
operators are as follows:

∂

∂t
〈σxs(t ; ξ, η)〉 = −ω0〈σys(t ; ξ, η)〉 +

√
2ηt 〈Is(t ; ξ, η)〉,

∂

∂t
〈σys(t ; ξ, η)〉 = ω0〈σxs(t ; ξ, η)〉 −

√
2ξt 〈σzs(t ; ξ, η)〉,

∂

∂t
〈σzs(t ; ξ, η)〉 =

√
2ξt 〈σys(t ; ξ, η)〉,

∂

∂t
〈Is(t ; ξ, η)〉 =

√
2ηt 〈σxs(t ; ξ, η)〉. (59)

The coupling energy can be estimated with

〈HI(t )〉 = Mz{〈σxs(t ; ξ, η)〉ζ }, (60)

and we assume the bath to be in the thermal state, while the
system is in the excited state |e〉.

The convergence of the results, as shown in Fig. 4, is com-
paratively good, and there are only some small fluctuations
at the end of the red curve in Fig. 4(a). Similar to the pure
dephasing model, the coupling energy at low temperature is
hard to calculate. The coupling energy decreases monotoni-
cally when the temperatures is low [Fig. 4(a)]. In the high-
temperature case [Fig. 4(b)], the coupling energy increases
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FIG. 4. Expectation values of different operators. The cut-off
frequency is ωc = 0.5, and the coupling strength is � = 1. The
stochastic results are calculated with the average over 40 × 106

trajectories for (a) and (b). (a) The results at the low temperature
β = 1000. (b) The results at hight temperature β = 1. The pumped
cases, shown in (c) and (d), are calculated for different detunings δ at
high temperature β = 1 with the pumping intensity � = 0.5 (in the
units of ω0), and 10 × 106 trajectories. The expectation values of σz

are shown in (c), and the coupling energies are shown in (d).

first, then decreases to a steady value. As mentioned above,
our calculation of the coupling energy can be unreliable for
short times, so this difference should be treated carefully. One
way to check this is directly calculating Eq. (30). In this work,
we focus on comparatively long times. The steady-state value
of the interaction energy at higher temperatures is much lower
than the low-temperature one. Then we add an optical pump
term to the system,

Hp = �

2
sin[(ω0 + δ)t]σx. (61)

The peak Rabi frequency is set to � = 0.5 (in units of ω0) and
we consider different detunings. We assume the initial state of
the system to be its ground state. From Figs. 4(c) and 4(d),
we can find that the influence of the detuning is insignificant.
This means that the effects of the pump are suppressed by the
bath. However, note that the pump here only differs from S =
σx, which describes the coupling to the bath, by a coefficient.
We will show in the next example that the situation can be
different when S = σz.

D. Optically pumped quantum dot system

Next we consider an optically pumped quantum dot sys-
tem, which has many applications in solid-state quantum
optics. The system considered here is a quantum dot with a
pump and electron-phonon coupling, which has been studied
in various experiments (e.g., [97,98]). The Hamiltonian under
the rotating frame is

Hsys = δ

2
σz + �(t )

2
σx, S = σz

2
. (62)

FIG. 5. Quantum dot systems with different pump intensity. The
displacement of the bath is calculated using 〈x(t )〉 = ∑

k〈[g∗
ka†

k (t ) +
gkak (t )]〉. The cutoff frequency is ωc = 2.2 ps−1 and the coupling
strength is α = 0.027 ps−2. The temperatures are (a)–(e) T = 50 K
and (f) 4.2 K. The detunings for (a)–(d) are δ = 0, and for (e) and
(f), the detunings are δ = −1.26 ps−1. The stochastic results are
calculated with the average over 1 × 106 trajectories. The pump in-
tensities are (a) � = π/6 ps−1, (b) � = π/2 ps−1, (c) � = π ps−1,
and (d) � = 4π ps−1. For (e) and (f), the pump intensities are
time dependent, �(t ) = 1.28 exp[−(t/τ )2] ps−1 with τ = 20.2 ps,
corresponding to the pulse area � = 14.6π .

Here, the detuning of the pump is δ and the Rabi frequency of
the pump is �(t ). The spectrum of the bath is of super-Ohmic
form. We first consider the case of on-resonant pumping δ =
0. The parameters used here are from Ref. [53]. In addition to
the population of the excited state, which is (1 + 〈σz〉)/2, we
also calculate the bath displacement induced by the system,
〈x(t )〉 = ∑

k〈[g∗
ka†

k (t ) + gkak (t )]〉.
From the red dashed curves in Figs. 5(a)–5(c), our cal-

culations agree well with other results [53]; namely, the
〈σz〉 oscillates for different pump Rabi frequencies and these
oscillations show bath-induced damping. The bath displace-
ments (black solid curves) can provide more insights into
the bath dynamics and coupling. When the pump intensities
are moderate [Figs. 5(b) and 5(c)], the bath displacements
are large compared to Fig. 5(d) and oscillate with the same
frequencies of the oscillations of 〈σz〉. The bath displacement
is still large if the pump is weak [Fig. 5(a)], but the oscillation
is not resonant with the system. For very strong pumping
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TABLE I. Numbers of trajectories for different results.

Pure dephasing model (low temperature) 4.5 × 107

Pure dephasing model (high temperature) 5 × 106

Pure dephasing model with control 4 × 107

Spin-boson model 4 × 107

Spin-boson model with pump 107

Quantum dot with optical pump 106

[Fig. 5(d)], the bath displacement is very small and there
is little bath-induced damping; this is consistent with other
approaches such as the variational polaron transform master
equation [53], where there is a suppressed bath response at
large pump Rabi frequencies. Recently it was shown how to
use such an effect to generate single photons on demand [99],
which exploits a dynamical decoupling effect from the bath.
In addition, our method can also provide a clear picture of the
bath response when the Rabi frequency of the pump is close to
the cutoff frequency. In such a case, the bath displacement and
the system population always oscillate at the same frequency
and the dissipation reaches its maximum.

Next we consider the time-dependent pump intensity [58].
Note that the variational polaron transform master equation
is not suitable for time-dependent pump intensity because the
optimal coefficient changes with time. The parameters of the
bath are the same as the ones in the time-independent case. We
set the detuning to be δ = −1.26 ps−1, and the pump intensity
to be �(t ) = �0 exp[−(t/τ )2], with �0 = 1.28 ps−1 and τ =
20.2 ps−1 corresponding to the pulse area � ≡ √

π�0τ =
14.6π . As shown in Figs. 5(e) and 5(f), the populations (red
dashed curves) are inverted with negative detunings. Also, the
steady values of the bath displacements are not zero in these
cases. This is consistent with other works and experiments
[94,95,100], which show that the phonon dissipation can assist
to invert the population of a pumped quantum dot when the
detuning is negative.

In this section, we have calculated the expectation values of
different operators in two-level systems. Although our results
do not totally converge in Fig. 1(b), the coupling energy has
reached its steady-state value before the results diverge. For
other examples, the trajectory numbers are sufficient to obtain
convergence. The numerical efficiency of our approach can
change with the problem studied. Here, we summarize the
numbers of trajectories used for different results in Table I.

We have shown that our method can obtain the expectation
values of operators which contain bath operators. Also, our
method can deal with both low- and high-temperature cases.
However, the low-temperature or the nontrivial bath parts can
increase the calculation costs.

IV. CONCLUSIONS

We have developed a stochastic c-number Langevin equa-
tion method to access both the system information and the
bath information. The problem of the nonlinear time-nonlocal
terms in Langevin equations is avoided by formally dividing
all the operators into system parts and bath parts with auxiliary
stochastic fields (noise).

As a Heisenberg-Langevin method, our approach can con-
veniently access the bath information. Such information about
the bath can be quite different even when the dynamics of
Pauli matrices [σx(t ), σy(t ), and σz(t )] are similar. In addi-
tion, this method is not limited to certain bath spectra or
temperature in spite of the increased computing cost at low
temperatures. We have also applied our method to several
cases. For example, our equations work well in different
well-known simple models, such as the pure dephasing model
and the spin-boson model, and can compute both system
and bath quantities. We have also reproduced some existing
results in a pumped quantum dot system, and extended our
model into a range of validity where typically these methods
fail. In addition, the bath displacement, which is difficult
to obtain with former approaches, can be calculated with
our methodology. Finally, we stress that our method can be
applied to problems such as closed many-body systems or
quantum thermodynamics.
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APPENDIX A: STOCHASTIC BATH EVOLUTION OPERATOR

The solution of Eq. (28) can be obtained with the Magnus expansion,

UIb(t ; z) = exp

[
−i

1√
2

∑
k

∫ t

0
ds(iz1,s + z2,s)(gke−iωk sakb + g∗

keiωk sa†
kb)

]

× exp

[
−

∑
k

∫ t

0
ds1

∫ s1

0
ds2

1

4

(
iz1,s1 + z2,s1

)(
iz1,s2 + z2,s2

)
(gkg∗

ke−iωk (s1−s2 ) − gkg∗
keiωk (s1−s2 ) )

]
. (A1)
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Then we separate the annihilation operators ak and creation operators a†
k in Eq. (A1) with the Baker-Campbell-Hausdorff

formula,

UIb(t ; z) = exp

[
−i

1√
2

∫ t

0
ds(iz1,s + z2,s)

∑
k

g∗
keiωk sa†

kb

]
exp

[
−i

1√
2

∫ t

0
ds(iz1,s + z2,s)

∑
k

gke−iωk sakb

]

× exp

[
−1

2

∫ t

0
ds1ds2

(
iz1,s1 + z2,s1

)(
iz1,s2 + z2,s2

)
α(s1 − s2)

]
. (A2)

APPENDIX B: THE GENERATOR OF THE BATH OPERATORS

By taking the functional variation on the noise term in Eq. (28), we obtain

δ

δz4,s1

UIb(t ; z3,τ , z4,τ ) = −i
∑

k

g∗
keiωk s1

√
2

a†
kbUIb(t ; z3,τ , z4,τ ) − i

gke−iωk s1

√
2

UIb(t ; z3,τ , z4,τ )akb

− 1

2

∫ s1

0
ds2α(s1 − s2)

(
iz3,s2 + z4,s2

)
UIb(t ; z3,τ , z4,τ )

− 1

2

∫ t

s1

ds2α(s2 − s1)
(
iz3,s2 + z4,s2

)
UIb(t ; z3,τ , z4,τ ). (B1)

For sufficiently long times, we can obtain the creation operator of the kth bath mode with Fourier transforms. Note that this
approximation may introduce some error in the short-time limit. We have

a†
kbUIb(t ; z3,τ , z4,τ ) = i

√
2

g∗
k

∫ t

0
ds1e−iωk s1

δ

δz4,s1

UIb(t ; z3,τ , z4,τ )

+ i

g∗
k

√
2

∫ t

0
ds1

∫ s1

0
ds2

(
iz3,s2 + z4,s2

)
e−iωk s1α(s1, s2)UIb(t ; z3,τ , z4,τ )

+ i

g∗
k

√
2

∫ t

0
ds1

∫ t

s1

ds2
(
iz3,s2 + z4,s2

)
e−iωk s1α∗(s1, s2)UIb(t ; z3,τ , z4,τ )

≡ Ak (t ; z3,τ , z4,τ )UIb(t ; z3,τ , z4,τ ). (B2)

The annihilation operator ak can be easily obtained by taking the transpose conjugate of Eq. (B2).

APPENDIX C: THE STOCHASTIC EXPECTATION VALUE OF THE BATH IDENTITY OPERATOR 〈Ib(t; z)〉
Let us now calculate the average value of the stochastic bath identity operator:

〈Ib(t ; z)〉 = Tr
[
ρb(0)U †

Ib(t ; z1,τ , z2,τ )ei
∑

k′ ωk′ a†
k′bak′bt Ib(0)e−i

∑
k ωka†

kbakbtUIb(t ; z3,τ , z4,τ )
]

= exp

[
i

1√
2

∫ t

0
ds(−iz1,s + z2,s)

∑
k

g∗
keiωk sa†

kb

]
exp

[
i

1√
2

∫ t

0
ds(−iz1,s + z2,s)

∑
k

gke−iωk sakb

]

× exp

[
−i

1√
2

∫ t

0
ds(iz3,s + z4,s)

∑
k

g∗
keiωk sa†

kb

]
exp

[
−i

1√
2

∫ t

0
ds(iz3,s + z4,s)

∑
k

gke−iωk sakb

]

× exp

[
−

∫ t

0
ds1

∫ s1

0
ds2

1

2

(−iz1,s1 + z2,s1

)(−iz1,s2 + z2,s2

)
α∗(s1 − s2)

]

× exp

[
−

∫ t

0
ds1

∫ s1

0
ds2

1

2

(
iz3,s1 + z4,s1

)(
iz3,s2 + z4,s2

)
α(s1 − s2)

]
. (C1)

The operators in Eq. (C1) can be rearranged in normal order as follows:

exp

(√
2

∫ t

0
dsx∗

1,s

∑
k

g∗
keiωk sa†

kb

)
exp

(√
2

∫ t

0
dsx∗

1,s

∑
k

gke−iωk sakb

)

× exp

[
1

2

∫ t

0
ds1ds2

( − iz1,s1 + z2,s1

)(
iz3,s2 + z4,s2

)
α(s1 − s2)

]
. (C2)
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The x∗
1,s is the complex conjugate of the noise term x1,t in Eq. (25). Then, we can calculate the trace in Eq. (C1),

〈Ib(t ; z)〉 = 	k′,k

∑
nk′ ,m1,m2

〈nk′ | (1 − e−βωk′ )e−βωk′ nk′

m1!m2!

(√
2

∫ t

0
dsx∗

1,sg
∗
keiωk sa†

kb

)m1
(√

2
∫ t

0
dsx∗

1,sgke−iωk sakb

)m2

|nk′ 〉

× exp

{∫ t

0
ds1

∫ s1

0
ds2x∗

1,s

[(
z1,s2 + iz2,s2

)
α∗(s1, s2) + (

z3,s2 − iz4,s2

)
α(s1, s2)

]}

= 	k

∑
nk

(1 − e−βωk )e−βωknk
∑
m�nk

nk!

m!2(nk − m)!

(
2

∫ t

0
ds1ds2x∗

1,s1
x∗

1,s2
g∗

kgkeiωk (s1−s2 )

)m

× exp

{∫ t

0
ds1

∫ s1

0
ds2x∗

1,s

[(
z1,s2 + iz2,s2

)
α∗(s1, s2) + (

z3,s2 − iz4,s2

)
α(s1, s2)

]}

= 	k

∑
m

1

m!

(
2

∫ t

0
ds1ds2x∗

1,s1
x∗

1,s2
g∗

kgkeiωk (s1−s2 )

)m

e−βωkm
∑

(n−m)�0

(1 − e−βωk )e−βωk (n−m) n!

m!(n − m)!

× exp

{∫ t

0
ds1

∫ s1

0
ds2x∗

1,s

[(
z1,s2 + iz2,s2

)
α∗(s1, s2) + (

z3,s2 − iz4,s2

)
α(s1, s2)

]}

= exp

(∫ t

0
ds1

∫ s1

0
ds2x∗

1,s1

(
z3,s2 − iz4,s2

)∑
k

gkg∗
k

{
1 + e−βωk

1 − e−βωk
cos[ωk (s1 − s2)] − i sin[ωk (s1 − s2)]

})

× exp

(∫ t

0
ds1

∫ s1

0
ds2x∗

1,s1
(z1,s2 + z2,s2 )

∑
k

gkg∗
k

{
1 + e−βωk

1 − e−βωk
cos[ωk (s1 − s2)] + i sin[ωk (s1 − s2)]

})
. (C3)

Now we define the correlation function at temperature T as

αT (t, s) =
∑

k

gkg∗
k

{
1 + e−βωk

1 − e−βωk
cos[ωk (s1 − s2)] − i sin[ωk (s1 − s2)]

}
.

Subsequently, the stochastic expectation value of the bath identity operator in Eq. (C3) can be expressed in a compact form,

〈Ib(t ; z)〉 = exp

{∫ t

0
ds1

∫ s1

0
ds2x∗

1,s1

[(
z1,s2 + iz2,s2

)
α∗

T (s1, s2) + (
z3,s2 − iz4,s2

)
αT (s1, s2)

]}
. (C4)

APPENDIX D: HARMONIC-OSCILLATOR SYSTEMS

When the system is a harmonic oscillator and coupled to
the bath with x − x coupling, Eq. (40) becomes

ẋ(t, ξ , η) = p(t, ξ , η)

m
+

√
2ηt x

2(t, ξ , η),

ṗ(t, ξ , η) = −mωx(t, ξ , η) − ξt√
2

I (t, ξ , η)

+ ηt√
2

xp(t, ξ , η) + ηt√
2

px(t, ξ , η),

İ (t, ξ , η) =
√

2ηt x(t, ξ , η). (D1)

Here, x is the position, p is the momentum, m is the mass, and
ω is the frequency. Note that the subscript “sys” is omitted
because there are no bath quantities considered here. The
stochastic identity operator I (t, ξ , η) can be formally solved
as

I (t, ξ , η) = I +
∫ t

0
ds

√
2ηsx(s, ξ , η).

Then, substitute the solution into the equation of p,

ẋ(t, ξ , η) = p(t, ξ , η)

m
+

√
2ηt x

2(t, ξ , η),

ṗ(t, ξ , η) = −mωx(t, ξ , η) − ξt√
2

−
∫ t

0
dsξtηsx(s, ξ , η)

+ ηt√
2

xp(t, ξ , η) + ηt√
2

px(t, ξ , η). (D2)

Now, we take the average over the noise terms. According to
Eq. (40), the noise averages of terms containing ηt are zero, if
there is no ξs with s > t in these terms. Therefore, the noise
average of Eq. (D2) is

ẋ(t ) = p(t )

m
,

ṗ(t ) = −mωx(t ) − Mz{ξt }√
2

−
∫ t

0
dsMz{ξtηsx(s, ξ , η)}. (D3)

Although Mz{ξt } is zero in our case, we keep it to recover the
form of the c-number Langevin equation. To obtain the third
term in the equation of p, we need to consider all the possible
ways of pairing Gaussian noise terms in Mz{ξtηsx(s, ξ , η)}.
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However, pairing ηs to terms other than ξt results in a zero
average. Thus Eq. (D3) can be expressed as

ẋ(t ) = p(t )

m
,

ṗ(t ) = −mωx(t ) − Mz{ξt }√
2

−
∫ t

0
dsMz{ξtηs}x(s). (D4)

Equation (D4) is just the c-number Langevin equation of a
harmonic oscillator.

APPENDIX E: SYSTEM WITH CLASSICAL FIELD
CONTROL

The derivations in Sec. II do not allow for a time-dependent
Hamiltonian because we have used the property that the
Hamiltonian is unchanged during the time evolution. Now we
provide the derivation of the time-dependent case. Consider a
system with control field

Hsysc(t ) = Hsys +
∑

l

Cl (t )Sl,c. (E1)

Here, Hsys is the system Hamiltonian without control, Sl,c

is a system operator, and Cl (t ) is the control function. Note
that the Hamiltonian in Eq. (E1) is an approximate one. The
original Hamiltonian should be

Horigin = Hsys +
∑

l

Cl,extSl,c + Hext. (E2)

The control field is also governed by the quantum dynamics.
The contribution of the external Hamiltonian Hext is usually
assumed to be very large (classical limit). Therefore, the
evolution of the operator of the external control Cl,ext is
only decided approximately by Hext. If we further omit the
entanglement between the system and the external field, the
operator of the external field Cl,ext can be substituted with its
classical expectation value, so that

Hsysc(t ) = Hsys + Trext

[(∑
l

Cl,extSl,c + Hext

)
ρext (t )

]

= Hsys +
∑

l

Cl (t )Sl,c. (E3)

The effective Hamiltonian in Eq. (E3) is obtained in the
Schrödinger picture, so it cannot be used directly in the
Heisenberg picture. Now, we start from the original Hamil-
tonian in Eq. (E2), which can be solved with our method:

Htot = Horiginal +
∑

k

ωka†
kak + S

∑
k

(g∗
ka†

k + gkak ). (E4)

According to Eq. (19), the stochastic equations of the external
field operator Oext and system operators are

∂

∂t
Yl (t ; z) = U †

original(t ; z1,τ , z2,τ )D(0; z)Uoriginal(t ; z3,τ , z4,τ ),

D(0; z) = i

[
Hsys +

∑
l

Cl,extSl,c,Yl

]

+ 1√
2

Ssys(z1,t − iz2,t )Yl−iYl
1√
2

Ssys(z3,t+iz4,t ),

∂

∂t
Oext = i

[∑
l

Cl,extSl,c+ Hext, Oext

]
≈ i[Hext, Oext].

(E5)

The influence of the system on the external field is not
considered here. Then, the dynamics of the external field is
just the free dynamics,

Cl,ext (t ) = eitHextCl,exte
−itHext ,

〈ψext|Cl,ext (t )|ψext〉 = Cl (t ), (E6)

with the initial state of the external field |ψext〉. Then we “trace
over” the degrees of freedom of the external field in Eq. (E5)
by taking the expectation value:

∂

∂t
Yl (t ; z) = 〈ψext|U †

original(t ; z1,τ , z2,τ )D(0; z)

×Uoriginal(t ; z3,τ , z4,τ )|ψext〉
= U †

sys(t ; z1,τ , z2,τ )D′(0; z)Usys(t ; z3,τ , z4,τ ),

where

D′(0; z) = i

[
Hsys +

∑
l

Cl (t )Sl,c,Yl

]
+ 1√

2
Ssys(z1,t − iz2,t )Yl

−iYl
1√
2

Ssys(z3,t + iz4,t ). (E7)

Here we have use the property 〈ψext| ∂
∂t Yl (t ; z)|ψext〉 =

∂
∂t Yl (t ; z) because the entanglement between the system and
the external field is neglected. With Eq. (E7), we can follow
the way in Sec. II and obtain the time-dependent stochastic
equations,

∂

∂t
Y (t, ξ , η) =

[
iH + iC(t ) + i

ξt√
2
Sc + ηt√

2
Sa

]
Y (t, ξ , η),

∑
m

Clm(t )Ym =
∑

n

Cn(t )[Sn,Yl ]. (E8)
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