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Nonlocality, quantum correlations, and violations of classical realism in the dynamics
of two noninteracting quantum walkers
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That quantum correlations can be generated over time between the spin and the position of a quantum walker
is indisputable. The creation of bipartite entanglement has also been reported for two-walker systems. In this
scenario, however, since the global state lies in a fourpartite Hilbert space, the question arises as to whether
genuine multipartite entanglement may develop in time. Also, since the spatial degrees of freedom can be viewed
as a noisy channel for the two-spin part, one may wonder how other nonclassical aspects, such as Bell nonlocality,
Einstein-Podolsky-Rosen steering, quantum discord, and symmetrical quantum discord, evolve in time during
the walk. The lack of analytical and numerical evidences which would allow one to address these questions is
possibly due to the usual computational difficulties associated with the recursive nature of quantum walks. Here,
we work around this issue by introducing a simplified Gaussian model which proves to be very accurate within
a given domain and powerful for analytical studies. Then, for an instance involving two noninteracting quantum
walkers, whose spins start in the singlet state, we quantify the aforementioned nonclassical features as a function
of time, and evaluate violations of both realism and related aspects of locality. In addition, we analyze situations
in which the initial two-spin state is affected by white noise. The typical scenario found is such that while
genuine fourpartite entanglement increases over time, all the investigated nonclassical features vanish (suddenly
or asymptotically) except realism-based nonlocality. Moreover, realism is prevented for all finite times. Our
findings open perspectives for the understanding of the dynamics of quantum resources in quantum walks.
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I. INTRODUCTION

Originally introduced as quantum versions of classical
random walks [1]—with some foundational motivations and
potential applications to quantum optics—quantum walks
have now achieved the status of an ubiquitous tool for studies
in areas like quantum computation [2–4], quantum thermody-
namics [5,6], and foundations of quantum theory [7]. Gener-
ically speaking, a quantum walk refers to the dynamics of a
particle (the walker) whose motion is conditioned to some
internal degree of freedom (“the coin”). Some of the usual
formulations of this problem consist of confining the walker
motion to a dimensionless discrete structure of space-time and
modeling the internal coin with a spin-1/2 algebra. By virtue
of the superposition principle, interference patterns typically
develop over time, which produces a distinctive mark of
quantum walks, namely, ballistic spreading [8]. Interestingly,
the mathematical formalism of quantum walks is platform
independent, meaning that other physical quantities can be
used as internal and external degrees of freedom. In fact, it
has been shown that energy levels [7] or light polarization [9]
perfectly implement the notion of internal coin, whereas the
walker position can be suitably emulated with time encoding
[9], photonic orbital angular momentum [10], or even actual
physical position [11]. References [12,13] are excellent start-
ing points for the study of quantum walks and Ref. [14] offers
a review of physical implementations.

Another relevant feature of a quantum walk is the ability
to produce quantum resources. Since information about the

spin is shared with the position every time the particle takes a
step, quantum correlations are created between these degrees
of freedom, especially in the form of entanglement [15,16].
For instances involving two quantum walkers [17–20], the
production of nonclassical features becomes even more so-
phisticated. Different partitions exist and entanglement can be
found between the subsystems [21,22], the spins [23], and
the positions [24]. Incidentally, it is precisely the presence
of interaction—and entanglement—between the walkers that
makes it possible to solve, for example, a wider range of
graph isomorphism problems when compared to noninteract-
ing walkers [25]. However, to the best of our knowledge,
there is no diagnosis of the presence or dynamical creation
of other quantum resources during a quantum walk. Such a
resource overview may lead to different perspectives for the
use and generation of quantum resources in the fields where
the quantum walks apply.

This work aims at advancing the above-delineated frame-
work by dissecting a given two-particle quantum walk with
respect to its potentialities in producing several types of quan-
tumness, in particular quantum nonlocality, general quantum
correlations, and violations of realism. We analytically assess
the behaviors (over time and asymptotically) of some well-
established notions, such as entanglement and genuine multi-
partite entanglement [26], quantum discord [27,28], symmet-
rical quantum discord [29], Einstein-Podolsky-Rosen (EPR)
steering [30,31], Bell nonlocality [32,33], realism-based non-
locality [34], and irreality [35]. While the global state evolves
unitarily, thus conserving its initial degree of purity, we find
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that most of the aforementioned nonclassical features de-
crease with time between the bipartitions of the system, with
some eventual occurrences of sudden deaths. On the other
hand, some aspects of quantum irreality—the antithesis of
classical realism (full definiteness of all physical quantities)—
are shown to persist even when the walkers are arbitrarily
far apart from each other and some noise is introduced in
the initial two-spin state. This implies that all the involved
degrees of freedom remain quantumly linked throughout the
time evolution, so that no individual element of reality can be
claimed to exist.

This paper is organized as follows. In Sec. II, we present
a brief review on quantum walks and introduce a simplified
model which proves crucial for our purposes. This model
offers considerable analytical power for the treatment of the
problem as it avoids the implementation of recursive codes
to treat matrices whose dimension increases with time as
16(t + σ0)2. In Sec. III we show that genuine fourpartite
entanglement increases over time in the global state, thus
“conserving” the total amount of resource furnished initially.
Section IV provides an exhaustive study of the nonclassical
features dynamics associated with the two-spin state, thus
regarding the spatial degrees of freedom as an external noisy
channel. Concluding remarks are reserved to Sec. V.

II. SIMPLIFIED GAUSSIAN MODEL

A. One walker

The state of a one-dimensional quantum walker belongs
to a Hilbert space H = HS ⊗HX , where HS , spanned by
{|↑〉 , |↓〉}, refers to a spin S = 1/2 space state (h̄ = 1) and
HX , spanned by a discrete basis {|x〉 : x ∈ Z}, denotes the
space state associated with the dimensionless discrete position
X . Let

|ψ0〉 =
(

cos
α

2
|↑〉 + sin

α

2
|↓〉

)
⊗

∞∑
x=−∞

f (x) |x〉 (1)

be the initial state such that α ∈ [0, π ] and f is the initial
probability amplitude for the walker position. The single-step
unitary evolution is determined by the operator

U = D (C ⊗ 1X ), (2)

where D is the conditional displacement operator,

D =
∑

x

(|↑〉 〈↑| ⊗ |x + 1〉 〈x| + |↓〉 〈↓| ⊗ |x − 1〉 〈x|), (3)

and C is the so-called quantum coin, a SU(2) matrix which
here is chosen to be the Hadamard one:

C
·= 1√

2

(
1 1
1 −1

)
. (4)

The class of spin states indicated in Eq. (1) represents a circle
in the xz plane of the Bloch sphere, that is, states with no phase
difference between |↑〉 and |↓〉. Some studies have shown that,
when employed along with the Hadamard coin, such class of
states is sufficiently general, in the sense that they can yield
every possible production rate of spin-position entanglement
[36], as well as every possible dispersion [37]. Still, there
is some lack of generality because only one combination

FIG. 1. Numerical probability distributions | 〈x|ψt 〉|2 of quan-
tum walks with α = 3π/4 [see Eq. (1)] for local (σ0 = 0.2) and
broad (σ0 = 5) Gaussian states, at t = 100, as a function of the
dimensionless position x. The greater the initial dispersion, the more
effective the maintenance of the Gaussian shape over time.

of features—entanglement and dispersion—can be simulated
through this approach [37].

The walker state after t steps can be written as

|ψt 〉 = Ut |ψ0〉 =
∑

x

[at (α, x) |↑〉 + bt (α, x) |↓〉] ⊗ |x〉 ,

(5)

with normalization condition
∑

x[|at (α, x)|2 + |bt (α, x)|2] =
1 and a dimensionless time t ∈ N. If the initial distribution
| f (x)|2 is sharply localized, the spin amplitudes at (α, x) and
bt (α, x) evolve according to a highly oscillatory pattern, a
well-known characteristic of local states (see Fig. 1). Fourier
analysis combined with the stationary phase method [38]
define a largely applied scheme to achieve analytical results,
such as those reported for long-time dispersion rates [39–41]
and asymptotic entanglement [16,36,42,43]. This approach,
however, is not appropriate for our purposes because we are
interested in looking at the whole dynamics of quantumness
quantifiers. To this end, we adopt throughout this work a
model according to which the initial distribution is given by
the Gaussian function

f (x) = 1√
K

exp

(
− x2

4σ 2
0

)
, K =

∑
x

exp

(
− x2

2σ 2
0

)
, (6)

where σ0 is the dimensionless dispersion and K is the nor-
malization constant. This choice is rather convenient, for it
is known that, whenever σ0 is sufficiently large, such state
preserves not only its Gaussianity over time [44] but also the
interesting properties of ballistic spreading and entanglement
creation. Figure 1 gives a comparison of the probability dis-
tributions |〈x|ψt 〉|2 at t = 100 for quantum walkers initially
prepared in a local (σ0 = 0.2) and in a broad (σ0 = 5) Gaus-
sian state.

The region wherein the walker is likely to be found in-
creases with time as 2(t + σ0) and the analytical treatment of
the problem for long times remains unfeasible even for Gaus-
sian states. We now introduce the fundamental ingredients of
our model. First, we employ the approximation

K =
∞∑

x=−∞
exp

(
− x2

2σ 2
0

)
= ϑ3

(
0, e−1/2σ 2

0
) ∼=

√
2πσ 2

0 , (7)
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where ϑ3(z, q) = ∑∞
x=−∞ qx2

e2kiz is the Jacobi theta function.
This approximation fails only for σ0 < 1, a domain that will
henceforth be out of scope. Second, for the description of
the long-time Gaussian distributions illustrated in Fig. 1, we
propose the ansatz

at (α, x) = q+
a (α) g+

t (x) + q−
a (α) g−

t (x), (8a)

bt (α, x) = q+
b (α) g+

t (x) + q−
b (α) g−

t (x), (8b)

where

g±
t (x) = (±1)t(

2πσ 2
0

)1/4 exp

(
− (x ∓ t/

√
2)2

4σ 2
0

)
(8c)

and

q±
u (α) = 1

4

(
c±u cos

α

2
+ s±

u sin
α

2

)
, (8d)

with c±u and s±
u (u = a, b) being the coefficients that will

adjust our model to the exact numerical results. The above
formulas were derived with basis on preliminary numerical
studies. Note that the amplitudes g±

t (x) move with speed
1/

√
2 (a hallmark of the Hadamard walk). The oscillatory

form proposed for q±
u (α) is naturally induced by the structure

of the initial state (1). After an extensive numerical analysis,
involving many different values of α, σ0, and t , we have found

c±a ∼= 2 ±
√

2, s±
a

∼= ±
√

2, (9a)

c±b ∼= ±
√

2, s±
b

∼= 2 ∓
√

2. (9b)

Equations (1)–(9) define our quantum-walk simplified model.
The quality of this model was tested via evaluation of the
fidelity |〈ψ sim

t |ψt 〉|2 of the state |ψt 〉, computed with our
simplified model, with respect to the state |ψ sim

t 〉, derived via
numerical simulation. For sufficiently broad states (σ0 � 5)
and several values of {σ0, α, t} the fidelity was never less
than 99.8%. Also noteworthy is the fact that in Eq. (8c) we
have tacitly assumed that the dispersion of each Gaussian
maintains its initial value σ0, which proved to be a rather good
approximation whenever σ0 � 1. For future convenience, we
note that for α = 0 and α = π , which imply the initial states

|↑〉 ⊗
∑

x

f (x)|x〉 ≡ |ψ↑
0 〉, (10a)

|↓〉 ⊗
∑

x

f (x)|x〉 ≡ |ψ↓
0 〉, (10b)

the above model leads to the respective solutions:∑
x

[at (0, x)|↑〉 + bt (0, x)|↓〉] ⊗ |x〉 ≡ |ψ↑
t 〉, (11a)

∑
x

[at (π, x)|↑〉 + bt (π, x)|↓〉] ⊗ |x〉 ≡ |ψ↓
t 〉. (11b)

Since the global state is pure, the entanglement ESX (|ψt 〉)
between the spin S and the walker position X can be computed
via the linear entropyL(ρS ) = 1 − Tr(ρ2

S ) of the reduced state

ρS = TrX (|ψt 〉〈ψt |) ·=
⎛
⎝

∑
x a2

t

∑
x at bt∑

x at bt
∑

x b2
t

⎞
⎠. (12)

Simple calculations then show that

ESX (|ψt 〉) := L(ρS ) = 1 − sin 2α

4
(1 − Et ), (13)

where Et = exp[−t2/(2σ 2
0 )]. We see that maximum (mini-

mum) entanglement production will be attained during the
walk when α = 3π/4 (α = π/4). The factor Et , which will
be ubiquitous in our model, controls the production of entan-
glement in a way such that the sharper the initial distribution
the faster the entanglement production.

B. Two walkers

Consider now two walkers, named 1 and 2, whose state
vector lies in the Hilbert space H = HS1 ⊗HS2 ⊗HX1 ⊗
HX2 . In our model, we consider a scenario where the spins
S1,2 are initially prepared in a maximally entangled state (the
singlet state), while the positions X1,2 of the walkers are
described by Gaussian distributions centered at the origins of
their (distinct) coordinate systems. The joint state reads

|�0〉 = |↑↓〉 − |↓↑〉√
2

⊗
∑
x1,x2

f (x1) f (x2)|x1, x2〉, (14)

with f given by Eq. (6). Moreover, we assume that the walkers
do not interact with each other and with the external universe.
Concretely, we can conceive an instance such that, after get-
ting their spins correlated, the particles are put to walk in dis-
tinct laboratories, which can be arbitrarily separated in space.
Each walker is governed by its own unitary dynamics and
the eventual emergence of any quantumness between initially
independent degrees of freedom (S1 and X2, for example) must
be accomplished thanks to the only quantum resource encoded
in the joint state, namely, two-qubit entanglement.

To obtain the time-evolved state vector, we should first re-
alize that the state (14) can be spanned in terms of the kets (10)
as |�0〉 = 1√

2
(|ψ↑

0 〉|ψ↓
0 〉 − |ψ↓

0 〉|ψ↑
0 〉). Linearity immediately

allows us to use the solutions (11) to write

|�t 〉 = 1√
2

(|ψ↑
t 〉|ψ↓

t 〉 − |ψ↓
t 〉|ψ↑

t 〉), (15)

which can be more explicitly written as

|�t 〉 =
∑
x1,x2

exp
(− 2t2+4x2

cm+x2
r

8σ 2
0

)
√

2πσ 2
0

|st (xr )〉 ⊗ |x1, x2〉, (16)

where we have introduced, for the sake of notational sim-
plicity, xcm = (x1 + x2)/2 (the center-of-mass position), xr =
x2 − x1 (the relative position), the nonnormalized state

|st (xr )〉 = sinh

(
txr

2
√

2 σ 2
0

)
|β23〉 + cosh

(
txr

2
√

2 σ 2
0

)
|B4〉,

(17)
and the Bell basis

|B1〉 = |↑↑〉 + |↓↓〉√
2

, |B2〉 = |↑↑〉 − |↓↓〉√
2

,

|B3〉 = |↑↓〉 + |↓↑〉√
2

, |B4〉 = |↑↓〉 − |↓↑〉√
2

, (18)

which allowed us to write |β23〉 ≡ (|B2〉 − |B3〉)/
√

2.
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It is clear from the result (16) that none of the original
degrees of freedom {S1, S2, X1, X2} factorizes for t > 0. On
the other hand, the two-spin state (17) depends only on the
relative coordinate, so that the state associated with the center
of mass must factorize. This can be proved as follows. Let us
replace laboratory positions {x1, x2} with center-of-mass and
relative coordinates {xcm, xr} through the usual map |x1〉 ⊗
|x2〉 �→ |x2 − x1〉r ⊗ | x1+x2

2 〉cm [45,46], which links every state
inH1 ⊗H2 with a counterpart inHcm ⊗Hr (assuming walk-
ers with equal masses). Using this map and changing dummy
variables in summations, we rewrite the state (16) in an
explicitly separable form, |�t 〉 = |
〉cm ⊗ |�t 〉r , where

|
〉cm =
∑
xcm

exp
(− x2

cm

2σ 2
0

)
(
πσ 2

0

)1/4 |xcm〉, (19a)

|�t 〉r =
∑

xr

exp
(− 2t2+x2

r

8σ 2
0

)
(
4πσ 2

0

)1/4 |st (xr )〉 ⊗ |xr〉. (19b)

This completes the proof. An interesting observation can now
be made for the spins. By separating the summation for xr in
parcels with xr < 0, xr = 0, and xr > 0, we can compute the
asymptotic state |�∞〉 = (|φ+

∞〉 ⊗ |S+〉 − |φ−
∞〉 ⊗ |S−〉)/

√
2,

where

|φ±
t 〉 =

∑
xr>0

exp
(− (t−xr/

√
2)2

4σ 2
0

)
(
4πσ 2

0

)1/4 |±xr〉, |S±〉= |β23〉 ± |B4〉√
2

,

(20)

and φ±
∞ = limt→∞ |φ±

t 〉. We see, therefore, that by measuring
the sign of the relative coordinate, one makes the two-spin
state collapse to either |S+〉 or |S−〉, which constitute peculiar
coherent superpositions of Bell states.

Now we show that correlations develop between walkers’
positions. The probability pt (x1, x2)=Tr(
t |x1, x2〉〈x1, x2|)
of finding them at the respective locations (x1, x2), at time t ,
given the state 
t = |�t 〉〈�t |, results in

pt (x1, x2) = e
− x2

cm
σ2

0

4πσ 2
0

(
e
− (t−xr /

√
2)2

2σ2
0 + e

− (t+xr /
√

2)2

2σ2
0

)
, (21)

whose maximum value occurs for xcm = 0 and xr = ± t
√

2,
that is, x1 = −x2 = ±t/

√
2. This implies a notorious spatial

anticorrelation for walkers’ positions. Such effect is not ob-
served, for instance, when the joint state is given by |ψ↑

t 〉|ψ↓
t 〉

[see Eqs. (11)]—a scenario where the walkers start in a
fully uncorrelated state and evolve without any interaction.
We immediately conclude, therefore, that it is the presence
of the initial correlations between the spins that induces
the development of spatial correlations (similar results have
been reported for local states [17]). Figure 2 illustrates this
result. While the walkers are more likely to be found at the
anticorrelated locations x1 = −x2 = ±20/

√
2 at the instant

t = 20 when the spins start in the singlet state [Fig. 2(a)], such
strong correlation does not appear when the spins are prepared
in |↑↓〉 [Fig. 2(b)]. Even though the space-time is modeled
as discrete, numerical simulations are throughout presented
with continuous variables, which render the results easier to
appreciate.

FIG. 2. Probability distribution pt (x1, x2) at t = 20 of two
quantum walkers with initial states (a) |�0〉 [see Eq. (14)] and
(b) |ψ↑

0 〉|ψ↓
0 〉 [see Eqs. (10)], both with σ0 = 5. A correlated two-spin

state is more effective in producing strong spatial anticorrelations.

The reliability of our Gaussian model was again checked
via direct comparisons with simulations. To this end we
evaluate the fidelity |�sim

t |�t |2 between the state �sim
t , com-

puted via numerical simulations, and the state �t , derived
with our Gaussian model. Some typical results are presented
in Table I. We see that the Gaussian model is fairly good for
sufficiently broad states (σ0 � 3) and performs better for small
times, since in this regime the spreading of the wave packets
(not implemented in our model) is less significant. Similar
behaviors for the fidelity were observed for generic spin states,
thus indicating the broad adequacy of our model.

In possession of solution (16), we are ready to conduct a
thorough study of several nonclassical features that develop
over time in the two-body quantum walk under scrutiny. Basi-
cally, we divide the presentation into two parts. In the first, we
show that genuine fourpartite entanglement is monotonically
generated during the walk. In the second, we consider a Bell
scenario where the spatial degrees of freedom constitute noisy
channels for the spins and then investigate the time evolution
of several quantumness quantifiers.

III. GENUINE FOURPARTITE ENTANGLEMENT

We have seen above that the initial entanglement between
the spins induces the development of (presumably quantum)
spatial correlations; after all, the walkers do not interact with
each other. Naturally, one may ask whether entanglement can
also be created among some other degrees of freedom, as for
instance between X1(2) and S2(1), or even among all degrees of
freedom in an inextricable way. Now we show that the latter
type of entanglement does indeed take place.

Our analysis is based on the measure of genuine multipar-
tite entanglement (GME) introduced by Ma et al. in Ref. [47].
This quantifier is very convenient to our purposes because it

TABLE I. Fidelity |〈�sim
t |�t 〉|2 of the state |�t 〉, derived through

our simplified Gaussian model, with the numerical simulation |�sim
t 〉,

for two noninteracting quantum walkers, at times t = 50 and 100, for
different values of σ0 and the initial state (14).

σ0 1 2 3 5 10

t = 50 0.3284 0.9098 0.9802 0.9947 0.9987
t = 100 0.1709 0.7973 0.9641 0.9939 0.9987
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assumes a simple computational form for multipartite pure
states. Given a pure state |�〉 ∈ ⊗n

i=1Hi, the authors defined
the GME concurrence of |�〉 as

CGME(|�〉) := min
γi∈γ

√
2L(ργi ), (22)

where L(ρ) is the linear entropy of ρ and γ = {γi} is the
set of all possible parts defining the bipartitions of the state.
According to this definition, GME will be present only if the
state is nonseparable in every bipartition, that is, if the reduced
states ργi of |�〉 are all nonpure. In our system, two examples
of parts γi are X1 (for the bipartition X1|X2S1S2) and X2S1 (for
X2S1|X1S2), for which one finds the respective reduced states
ρX1 = TrX2S1S2
t and ρX2S1 = TrX1S2
t , with 
t = |�t 〉〈�t |.
Using the state (16) we computed all possible reduced states1

ργi . For instance, for the two-spin state we found

ρS = 1 − Et

2
|β23〉〈β23| + 1 + Et

2
|B4〉〈B4|, (23)

with S = S1S2. Analytical expressions were then obtained for
the respective linear entropies, the results being

L(ρS j ) = 1
2 , L(ρXj ) = 1

2 (1 − Et ), (24a)

L(ρS j Xk ) = 1
2 , L(ρS ) = L(ρX ) = 1

2

(
1 − E2

t

)
, (24b)

with j, k ∈ {1, 2} and X = X1X2. From these relations and the
definition (22), one finds

CGME(|�t 〉) =
√

1 − Et , (25)

which is a monotonically increasing function of time and
can also be written as monotonic functions of the bipartite
entanglement quantifiers L(ρXj ) and L(ρX ). These results
indicate that even though each walker evolves independently,
the presence of entanglement between the spins at the be-
ginning of the walk allows the global state of the walkers to
develop genuine fourpartite entanglement over time. Later on,
this interpretation will be corroborated by further evidence.
Finally, note that all bipartitions will be equally entangled as
t → ∞.

IV. QUANTUMNESS DYNAMICS BETWEEN SPINS

In this section, we confine our attention to the spins only.
This leads us to special Bell scenarios where information
about the spins of the particles are encoded, via quantum
correlations, on spatial degrees of freedom—a mechanism
that tends to degrade the resources present in the two-spin
state. As a materialization of such scenarios, we can envisage
instances similar to those recently proposed for witnessing
aspects of quantum gravity [48,49], where the spin value
defines the path to be taken by the particle (as also happens
in a Stern-Gerlach experiment) and then each specific path
couples with the gravitation source in a particular manner. In

1For all practical purposes, the summations over positions, which
emerge in the partial trace, can be safely substituted by integrals.
This has been checked for Gaussian states with σ0 = 5, in which case
the difference between a discrete sum over a closed two-dimensional
box of width 200 + 2t and an integral over the whole R2 was never
greater than 10−15.

this framework, the spatial degrees of freedom are expected
to play the role of a noisy channel, whose effect over the
two-spin state varies during the motion of the walkers. We
now investigate how several nonclassical features present in
the two-state spin vary with time under the aforementioned
noisy channel.

To give more generality to our study, we consider that the
spins are initially prepared in the Werner state

ρW
ε = (1 − ε)14 + ε|B4〉〈B4|, (26)

with ε ∈ [0, 1]. This formulation considers a white noise
of amplitude 1 − ε over the singlet state |B4〉. Assuming
Gaussian amplitudes for the positions, as in Eq. (14), the
initial state of the two-walker model becomes ρ0 = ρW

ε ⊗
|ϕ1, ϕ2〉〈ϕ1, ϕ2|, where |ϕi〉 = ∑

xi
f (xi )|xi〉. Applying the

time evolution operator Ut
1Ut

2 [see Eq. (2)] and tracing over
the positions yield

ρε
t = (1 − ε)14 + ε ρS, (27)

with ρS being the time-dependent density operator (23). From
now on, we restore the time dependence in the notation. The
purity of the two-spin state ρε

t reads

P
(
ρε

t

) = Tr
[(

ρε
t

)2] = 1
4

[
1 + ε2(1 + 2E2

t

)]
, (28)

which monotonically decreases with time (and with the noise
amplitude 1 − ε) towards the asymptotic value (1 + ε2)/4.
This shows that the spatial variables indeed get more corre-
lated with the spins as the walk takes place. Moreover, the
decoherence and the whole dynamics of the two-spin state
are controlled by the decay factor Et which, by its turn,
is determined by the initial dispersion σ0 of the Gaussian
amplitudes. The broader the spatial distributions, the larger the
time scale within which the two-spin state keeps its coherence.
Accordingly, a completely delocalized walker (σ0 → ∞) will
never have its position correlated with its spin during the walk.
This is reasonable since, in this case, it is difficult to defend
that, being everywhere, the walker really walks.

A. Bell nonlocality

Our analysis starts by considering Bell nonlocality [32,33].
A quantum state is termed Bell nonlocal if its underlying
probability distributions do not admit a local hidden variable
model. In practice, this is signalized by violations of Bell
inequalities. One of particular convenience is the Clauser-
Horne-Shimony-Holt (CHSH) inequality [50]

Bt = |〈A+B+〉 + 〈A−B+〉 + 〈A+B−〉 − 〈A−B−〉| � 2, (29)

where 〈AjBk〉 = Tr[ρε
t A j ⊗ Bk]. Here, A± and B± denote ob-

servables acting onHS1 andHS2 , respectively.
As a first step, it is instructive to look at the nonlocality

induced by ρε
t when there is no white noise (ε = 1 and ρε=1

t =
ρS). It can be directly demonstrated by taking A± and B± in the
form v̂i · �σ , with �σ = (σ1, σ2, σ3) being the vector composed
of Pauli matrices and v̂i ∈ R3 unit vectors. By letting v̂i

assume orthogonal directions ê1 and ê2, for particle 1, and
−(ê1 + ê2)/

√
2 and (−ê1 + ê2)/

√
2, for particle 2, one shows

that Bt = (1 + 3Et )/
√

2, which implies a CHSH-inequality
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FIG. 3. Probability distributions pt (x1) (black line), p↑
t (x1) (dot-

ted red line), and p↓
t (x1) (dashed blue line) of finding particle 1 at

position x1, at position x1 with spin up, and at position x1 with spin
down, respectively, at instants (a) t = 4 and (b) t = 25. The initial
dispersion is σ0 = 5.

violation for

t < σ0

√
2 ln

(
3

2
√

2 − 1

)
∼= 0.995σ0. (30)

This means that for t > σ0 Bell nonlocality will no longer be
detected with those specific measurement directions. This can
be explained as follows. For long times, each walker’s spatial
distribution gets sufficiently correlated with its spin. This
effect is illustrated in Fig. 3, where the probability distribu-
tions pt (x1) = Tr(
t |x1〉〈x1|) and pμ

t (x1) = Tr(
t |x1〉〈x1| ⊗
|μ〉〈μ|) (μ =↑,↓) for the particle 1 (similarly for particle
2) are shown at two different instants: (a) just before the
Bell-nonlocality sudden death and (b) long after this. As a
consequence of the correlations generated between spin and
position (of each walker), the power of the noisy channel
on the two-spin state increases and the nonlocal correlations
degrade.

Instead of simply diagnosing the presence of Bell nonlo-
cality, we now want to quantify it. To this end, we adopt
a usual strategy according to which one takes the maximal
violation of the inequality (29) as a quantifier for the degree
of nonlocality of the state. Here we follow the approach put
forward in Refs. [51,52]. We start with Luo’s result [53],
which ensures that every two-qubit state can be written, up
to local unitary operations, as

ζ = 1

4

(
1 ⊗ 1 + �a · �σ ⊗ 1 + 1 ⊗ �b · �σ +

3∑
i=1

ci σi ⊗ σi

)
,

(31)

where {�a, �b, �c} ∈ R3. For this state, the Bell-nonlocality quan-
tifier proposed in Ref. [51] can be expressed in the form

B(ζ ) = max

⎧⎨
⎩0,

√
�c · �c − c2

min − 1
√

2 − 1

⎫⎬
⎭, (32)

where cmin = min{|c1|, |c2|, |c3|}. Adapted to the form
(31), the state (27) is such that �a = �b = �0 and �c =
(−ε,−ε Et ,−ε Et ), from which we find

B
(
ρε

t

) = (1 +
√

2) max
{
0, ε

√
1 + E2

t − 1
}
. (33)

It follows that Bell nonlocality will be present only for

t < σ0

√
ln

(
ε2

1 − ε2

)
≡ tB. (34)

This shows that for any state ρε
t with ε ∈ (1/

√
2, 1) there will

be a finite critical time tB after which the two-spin state will
become Bell local. Such “sudden-death time” is substantially
postponed as the white noise becomes very small (ε → 1),
in which case Bell nonlocality, as measured by B(ρε

t ), will
vanish only asymptotically [see Fig. 6(a)]. For high levels
of white noise (ε � 1/

√
2), Bell nonlocality never manifests

itself.

B. EPR steering

EPR steering signalizes the capability of an observer to
steer the state of a system in a remote site via local mea-
surements [30]. In scenarios where two measurements are
performed per site on a two-qubit system, EPR steering
becomes identical to Bell nonlocality, as demonstrated by
Costa and Angelo in Ref. [51]. On the other hand, EPR
steering and Bell nonlocality become distinguishable when at
least three measurements are allowed per site, in which case
the following EPR steering quantifier can be derived for the
general two-qubit state (31):

S(ζ ) = max

{
0,

√
�c · �c − 1√

3 − 1

}
. (35)

For the state under scrutiny here, this measure reduces to

S
(
ρε

t

) =
(

1 + √
3

2

)
max {0, ε

√
1 + 2E2

t − 1}, (36)

which indicates the existence of EPR steering as long as

t < σ0

√
ln

(
2ε2

1 − ε2

)
≡ tS. (37)

It follows that a sudden-death time tS will exist for EPR
steering whenever ε ∈ (1/

√
3, 1) and that tS can be made

arbitrarily large for reduced amounts of white noise [see
Fig. 6(a) for an illustration of this behavior]. For ε � 1/

√
3,

ρε
t is nonsteerable.2

C. Entanglement

Related to the degree of inseparability of a quantum state,
entanglement can be computed for a two-qubit state ρ by
means of the concurrence [56]

E (ρ) := max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (38)

2A method based on local hidden states and semidefinite program
has been developed that predicts the presence of steering for ε >

1/2 [54], which agrees with the results of Ref. [30]. The method
employed here is based on linear steering inequalities (see Ref. [51]
and references therein) and, although less powerful, allows for ana-
lytical analysis and is in full agreement with a recently introduced
geometrical quantifier [55].
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where λ1 � λ2 � λ3 � λ4 are the eingenvalues of the opera-
tor ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) and ρ∗ is the complex conjugate of
ρ. A straightforward calculation gives

E
(
ρε

t

) = 1
2 max{0, ε(1 + 2Et ) − 1}, (39)

which predicts entanglement for

t < σ0

√
2 ln

(
2ε

1 − ε

)
≡ tE . (40)

A well defined instant tE will exist for entanglement sudden
death if ε ∈ (1/3, 1). While entanglement will vanish only
asymptotically for reduced values of white noise (ε → 1), as
illustrated in Fig. 6(a), it will not occur if ε � 1/3.

Two points are now worth noticing. First, in the regime
of no white noise (ε = 1), we have E (ρε=1

t ) = Et , which
attaches an interesting interpretation to the damping factor.
Moreover, we can revisit Sec. III and write the complemen-
tarity relation

C2
GME(|�t 〉) + E

(
ρε=1

t

) = 1, (41)

which explicitly shows that fourpartite entanglement develops
over time at the expense of the two-spin entanglement. Sec-
ond, in the domain ε ∈ (1/

√
2, 1), wherein the sudden-death

times are all well defined, one has

tB < tS < tE , (42)

which corroborates the current knowledge according to which
Bell nonlocality is the most fragile quantum resource, whereas
entanglement is the least one [30,51,52].

D. Quantum discord

Introduced by Olliver and Zurek [27], and independently
by Henderson and Vedral [28], quantum discord was con-
ceived as the difference between two different ways of quan-
tifying mutual information for quantum states. Later on, Rulli
and Sarandy [29] showed that quantum discord can also be
viewed as the sensitivity of mutual information to minimally
disturbing projective measurements conducted locally, i.e., in
either of the particles. Using their formulation, the quantum
discord of a bipartite state ρ onHA ⊗HB is given by

DB(ρ) := min
B

[I (ρ) − I (�B(ρ))], (43)

where I (ρ) = S(ρA) + S(ρB) − S(ρ) is the mutual informa-
tion, S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy of
ρ, and �B(ρ) = ∑

b (1A ⊗ Bb)ρ(1A ⊗ Bb) is the state after
a measurement of the observable B = ∑

b bBb, with projec-
tors Bb = |b〉〈b| acting on HB. To compute quantum discord
in our model, we consider the observable B = v̂2 · �σ , with
unit vector v̂2(θ2, φ2) = (cos θ2 sin φ2, sin θ2 sin φ2, cos φ2)
and projectors B± = (1 ± v̂2 · �σ )/2. Direct calculations pro-
duce S(TrS1,2ρ

ε
t ) = S(�B(TrS1ρ

ε
t )) = ln 2 and the formal re-

sult DS2 (ρε
t ) = minB[S(�B(ρε

t )) − S(ρε
t )]. Some more alge-

bra gives

S
(
ρε

t

) =
(

1 − ε

2

)
ln 2 +

(
1 + ε

2

)

× H

(
1

2
+ ε Et

1 + ε

)
+ H

(
1 + ε

2

)
, (44)

with the Shannon entropy H (u) = −u ln u − (1 −
u) ln (1 − u). Numerical analyses revealed that (θ2, φ2) =
(0, π

4 ) define the optimal observable B for all times, with
which we have been able to compute minB S(�B(ρε

t )) and
then obtain

DS2

(
ρε

t

) = 1 + ε

2

[
ln 2 − H

(
1

2
+ ε Et

1 + ε

)]
. (45)

In contrast with what we have for Bell nonlocality, EPR
steering, and entanglement, there is no domain of ε for which
the quantum discord of ρε

t suddenly vanishes. In fact, regard-
less of the white-noise level, quantum discord vanishes only
asymptotically (see Fig. 6). By symmetry, one can straightfor-
wardly conclude thatDS1 (ρε

t ) = DS2 (ρε
t ).

We can also quantify the sensitivity of total correlations to
unread measurements conducted separately in both sites. This
information is captured by the so-called symmetrical quantum
discord [29], which for a state ρ is formally written as

D(ρ) := min
A,B

[I (ρ) − I (�AB(ρ))], (46)

where �AB(ρ) = ∑
a,b (Aa ⊗ Bb)ρ(Aa ⊗ Bb), for observables

A = ∑
a aAa and B = ∑

b bBb acting onHS1 andHS2 , respec-
tively. Also in this case we have been able to analytically
conduct all the calculations and prove thatD(ρε

t ) = DS1,2 (ρε
t ).

Hence, hereafter, we make no distinction between quantum
discord and its symmetrical counterpart.

E. Irreality and realism-based nonlocality

Now we discuss aspects of quantum irreality (in opposition
to classical realism) by means of the framework put forward
by Bilobran and Angelo [35]. We start by looking at a quan-
tifier of irreality—a measure that indicates by how much the
hypothesis of realism is violated. From the premise that an
element of reality will exist for A after a measurement of this
observable is realized for a given preparation ρ, these authors
propose to take

IA(ρ) := S(�A(ρ)) − S(ρ) (47)

as a quantifier for the degree of irreality of A. This gives
the entropic amount by which the preparation differs from a
state of reality �A(ρ). Clearly, if the preparation is already
a state of reality for A, then IA(�A(ρ)) = 0, and the clas-
sical notion of realism applies. Interestingly, for any ρ on
HA ⊗HB, one shows that IA(ρ) = IA(ρA) + DA(ρ), where
DA(ρ) = I (ρ) − I (�A(ρ)) is the measurement-dependent dis-
cord. [Note that DA(ρ) = minA DA(ρ).] This decomposition
reveals that irreality actually captures both (i) information
about local coherence and (ii) correlation changes induced by
local measurements. In particular, for the state under scrutiny,
because �S1 = TrS2ρ

ε
t = 1/2 it follows that �A(�S1 ) = �S1 for

all A on HS1 , which implies that IA(�S1 ) = 0. As a conse-
quence, IA(ρε

t ) = DS1 (ρε
t ) and, therefore,

IA
(
ρε

t

)
� D

(
ρε

t

)
. (48)

This relation is important because it establishes a lower bound
for the irreality of all observables A on HS1 . Since for ε >

0 quantum discord vanishes only asymptotically, then it is
guaranteed that no element of reality will exist at short times.
On the other hand, for the regime of maximum white noise
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FIG. 4. (a) Contour plot for the asymptotic irreality IA(ρε=1
∞ ) of

an observable A = v̂1 · �σ on HS1 , in spherical coordinates, for the
no-noise regime (ε = 1). The color scale goes from zero (blue) to
ln 2 (red). (b) Scaled irreality ĨA(ρε=1

t ) (cyan curves) as a function
of the scaled time τ = t/σ0 for 200 randomly chosen measurement
directions v̂1. The scaled discord D̃(ρε=1

t ) (dashed black curve)
defines a tight upper bound [see Eq. (50)]. In the inset, the difference
� := D̃(ρε=1

t ) − ĨA(ρε=1
t ) is plotted for each of the 200 measure-

ment directions, showing results never greater than 0.03.

(ε = 0), every observable will always be an element of reality,
since ρε=0

t = 1/4 and then IA(ρε=0
t ) = D(ρε=0

t ) = 0.
It is interesting to look also at the no-noise regime. Intro-

ducing the unit vector v̂1(θ1, φ1) to define a generic observable
A = v̂1 · �σ for the spin S1, we find a lengthy and nonenlight-
ening analytical function for IA(ρε

t ) (omitted). For ε = 1,
though, an interesting universal behavior is found. Since in
this case the initial state (the singlet) is rotationally invariant,
any observable is maximally unreal at t = 0. As the Gaussian
packets start to split themselves and get correlated with the
spins, irreality becomes direction dependent and typically
decays with time, eventually reaching the asymptotic value

IA
(
ρε=1

∞
) = H

(
1 + νθ1φ1

2

)
, (49)

where νθφ = (cos φ + cos θ sin φ)/
√

2. A panoramic view of
the asymptotic irreality is presented in Fig. 4(a). First of all, it
is seen that IA(ρε=1

∞ ) = 0 only for two particular observables,
namely, ±(σx + σz )/

√
2 (center of the blue circle and its

antipode), which are directly related to the quantum coin (4)
that we have adopted for the walk. This happens because the
position of each walker correlates with its respective coin,
thus establishing its reality. For any other observable, we
have IA(ρε=1

∞ ) > 0, which reveals a broad scenario of quan-
tum irreality. In particular, since the Shannon entropy H (u)
reaches its maximum for u = 1/2, there is a continuous set of
observables, defined by νθ1φ1 = 0, for which the asymptotic
irreality reaches the maximum value ln 2. This set corresponds
to the center of the red strip. We have checked that, in fact,
these observables remain maximally unreal for every instant
of time.

Interestingly, we also found that the way irreality gets to
the asymptote (49) is nearly direction independent (as long as
we exclude the aforementioned maximal-irreality set). After
some numerical incursions, we have been able to show that

ĨA
(
ρε=1

t

)
:= IA

(
ρε=1

t

) − IA
(
ρε=1

∞
)

IA
(
ρε=1

0

) − IA
(
ρε=1∞

) �
D
(
ρε=1

t

)
D
(
ρε=1

0

) =: D̃
(
ρε=1

t

)
,

(50)

FIG. 5. Behavior of the normalized contextual realism-based
nonlocality ηAB(ρε=1

t )/ ln 2, in the no-noise regime (ε = 1), as a
function of the scaled time τ = t/σ0, for observables A and B
(contexts) obeying the code that follows. In continuous lines, from
top to bottom: A = B = σy (black line), A = B = σz (red line), and
A = B = (σx + σz )/

√
2 (blue line); in dashed lines, from top to

bottom: A = (σx − σz )/
√

2 and B = σy (black line), A = σx and B =
σy (red line), A = σz and B = σx (blue line), and A = (σx + σz )/

√
2

and B = σy (green line).

with IA(ρε=1
0 ) = D(ρε=1

0 ) = ln 2. The cyan curves presented
in Fig. 4(b) illustrate the behavior of the scaled irreality
ĨA(ρε=1

t ) for 200 randomly chosen directions v̂1(θ1, φ1) as
a function of the scaled time τ = t/σ0. Clearly, the curves
do not significantly deviate from each other and are all up-
per bounded by the scaled discord D̃(ρε=1

t ) (black dashed
line). As shown in the inset, 0 � D̃(ρε=1

t ) − ĨA(ρε=1
t ) <

0.03. Hence, to a pretty good accuracy we can state that the
scaled irreality is determined by the scaled discord, which is
observable independent. It follows, therefore, that there is an
approximate class of universality for the irreality behavior,
which is likely to emerge from the fact that the initial state
of the spins is the rotationally invariant singlet.

It is clear from the above that, in contrast with all the other
types of quantumness studied so far, irreality can be preserved
during the quantum walk. Presumably, a similar behavior
can exist for the realism-based nonlocality, a notion that has
shown to be dramatically different from Bell nonlocality [35].
In its contextual version, it is defined as

ηAB(ρ) := IA(ρ) − IA(�B(ρ)), (51)

for ρ on HA ⊗HB. By construction, this measure captures
alterations in the irreality of A induced by measurements of
B conducted in a far remote site B. Using its symmetrical
expansion ηAB(ρ) = S(�A(ρ)) + S(�B(ρ)) − S(�AB(ρ)) −
S(ρ), with �A(�B(ρ)) = �B(�A(ρ)) ≡ �AB(ρ), it can be
verified that irreality is a necessary condition for the ex-
istence of this type of nonlocality, since ηAB(�A(ρ)) =
ηAB(�B(ρ)) = 0. Following the above formulation, we can
compute the contextual realism-based nonlocality ηAB(ρε

t ) for
the context defined by generic observables A = v̂1 · �σ and B =
v̂2 · �σ . For the maximum-noise scenario, we directly obtain
ηAB(ρε=0

t ) = 0, since for the state ρε=0
t = 1/4 all observables

are elements of reality. On the other hand, in the other extreme
(ε = 1), all sorts of behaviors can be found for the contextual
realism-based nonlocality, as is illustrated in Fig. 5. For the
asymptotic values of the contextual realism-based nonlocality

042110-8



NONLOCALITY, QUANTUM CORRELATIONS, AND … PHYSICAL REVIEW A 100, 042110 (2019)

we have found

ηAB
(
ρε=1

∞
) = H

(
1 + νθ1φ1

2

)
+ H

(
1 + νθ2φ2

2

)

− H

(
1 + νθ1φ1νθ2φ2

2

)
. (52)

Therefore, there exists an infinite set of observables, defined
by (νθ1φ1 , νθ2φ2 ) = (0, 0), for which the contextual realism-
based nonlocality will asymptotically reach its maximum
value ln 2.

It is also interesting to look at the realism-based nonlocality
[34], which makes reference solely to the quantum state, thus
having no link whatsoever with particular contexts:

N(ρ) := max
A,B

ηAB(ρ). (53)

Besides being a sufficient condition for the existence of con-
textual realism-based nonlocality, it has been proved thatN is
nonanomalous [34] and nonincreasing under the action of lo-
cal maps [57]. Even though the maximization over {A, B} im-
plies a hard mathematical problem in general, numerical and
analytical incursions on ηAB(ρε

t ) give us the clues for the ac-
complishment of such a task. For instance, we see from Fig. 5
that the choice A = B = σy is optimal. In fact, we have ver-
ified that parallel direction measurements v̂(θ, φ) satisfying
νθφ = 0, that is, observables in the circle represented by the
red strip in Fig. 4(a), provide the maximization. We then find

N
(
ρε

t

) = D(ρε
t

) + H

(
1 + ε Et

2

)
− H

(
1 + ε

2

)
, (54)

with the symmetrical quantum discord D(ρε
t ) being given

by Eq. (45). Realism-based nonlocality is similar to quantum
discord in that they never experiment sudden death. On the
other hand, while the latter vanishes asymptotically, the
former behaves as N(ρε

∞) = ln 2 − H ( 1+ε
2 ) (see Fig. 6 for an

illustration), which vanishes as t → ∞ only in the maximum
noise regime (ε = 0). In fact, it directly follows from Eq. (54)
that N(ρε

t ) � D(ρε
t ). Therefore, in flagrant contrast with

the other nonclassical features, N(ρε
t ) manifests itself as the

most resilient one, which is in full agreement with previously
conducted studies [57].

V. CONCLUDING REMARKS

Quantum walk studies often demand numerical simula-
tions, which do not always allow for the access of some
refined physical aspects. In this work, by introducing a Gaus-
sian model, which proved to be quite accurate for delocalized
walkers (σ0 � 1), we were able to conduct a profound anal-
ysis of the nonclassical features dynamics in a two-walker
system. Previous studies [36,37,44,58–62] allow us to opti-
mistically speculate upon the applicability of our model even
to scenarios involving more localized states.

Starting with a single quantum walker, we derived an
analytical expression for the entanglement between spin and
position [Eq. (13)]. This result reveals that the production
of entanglement is regulated by a parameter that controls
the initial coherence of the spin state. For the problem of

FIG. 6. All the (observable independent) quantumness quanti-
fiers Q computed in this work for the two-spin state ρε

t as a function
of the scaled times τ = t/σ0 for (a) ε = 1.0 (left panels) and (b) ε =
0.8 (right panels). Q assumes, in upper panels, Bell nonolocality B
(blue lower line), EPR steeringS (red middle line), and entanglement
E (green upper line), and, in bottom panels, normalized (symmet-
rical) quantum discord D/ ln 2 (black lower line) and normalized
realism-based nonlocality N/ ln 2 (purple upper line). The vertical
dashed lines in the upper right panel refer to the sudden-death times
given by Eqs. (34), (37), and (40). Quantumness typically decreases
with both time and the amount 1 − ε of noise, but realism-based
nonlocality survives.

two noninteracting walkers, with spins prepared in the singlet
state, we showed that genuine fourpartite entanglement is cre-
ated throughout the walk, monotonically increasing with time
[Eq. (25)], at the expense of two-spin correlations [Eq. (41)].
This reveals a scenario where the total amount of resource is
conserved. Also, we found that by measuring the sign of the
relative coordinate, the spins can be prepared in superposi-
tions of Bell states.

With respect to nonclassical aspects between the spins,
our results are graphically summarized in Fig. 6, for two
noise regimes, where the quantifiers are separated into two
rows, according to their susceptibility to sudden death. The
panels in the upper row show the behaviors over time of
Bell nonlocality [Eq. (33)], EPR steering [Eq. (36)], and
entanglement [Eq. (39)], while in the lower row simulations
are presented for (symmetrical) quantum discord [Eq. (45)]
and realism-based nonlocality [Eq. (54)]. Besides showing a
clear chronology of deaths, which is formally stated in the
relations (42), our findings corroborate the view according to
which there is a strict hierarchy [57] among the quantifiers,
in such a way that the existence of Bell nonlocality implies
steering, which implies entanglement, which implies quantum
discord, which then implies realism-based nonlocality, while
the converse sequence of implications is false. Moreover, it
is clear that realism-based nonlocality is the only type of
quantumness that survives upon the noisy channels consid-
ered. From such aspect, an urgent demand arises aiming at
characterizing the potential of this quantumness as a useful
quantum resource.

Finally, from a foundational viewpoint, lessons can be
learned with respect to (ir)reality. According to the relation
(48), since quantum discord vanishes only asymptotically,
generic spin variables cannot be elements of reality. In fact,
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given the presence of fourpartite quantum correlations, the
positions cannot be either. There are only two specific spin
observables that asymptotically behave as elements of reality,
and these are closely related with the quantum coin. Alto-
gether, our findings reinforce the potential of quantum walks
as a rich arena for studies involving information-theoretic and
foundational issues, such as the interconversion of bipartite to
multipartite entanglement and the dynamics of further non-
classical aspects, from nonlocality to (multipartite) quantum
correlations and violations of classical realism.
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