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Reconstruction approach to quantum dynamics of bosonic systems
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We propose an approach to analytically solve the quantum dynamics of bosonic systems. The method is based
on reconstructing the quantum state of the system from the moments of its annihilation operators, dynamics of
which is solved in the Heisenberg picture. The proposed dynamical reconstruction method is general in the sense
that it does not require assumptions on the initial conditions of the system such as separability, or the structure of
the system such as linearity. It is an alternative to the standard master-equation approaches, which are analytically
demanding especially for large multipartite quantum systems. To demonstrate the proposed technique, we apply
it to a system consisting of two coupled damped quantum harmonic oscillators.
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I. INTRODUCTION

One of the most intriguing problems in modern physics is
understanding the dynamics of open quantum systems [1]. In
general, the problem is to solve the reduced dynamics of a
small quantum system interacting with a large environment.
Such interaction leads to seemingly irreversible processes,
such as dissipation and decoherence [2]. The control of these
effects is topical; for instance, in quantum information pro-
cessing [3–6], where the control of dissipation [7–11] and
routing of heat flows [12–14] have recently attracted great
experimental interest.

The foundations for the study of dissipation in quantum
systems were laid in the 1960s in terms of the influence
functional formalism [15]. Subsequently, the theory of quan-
tum dynamical semigroups [16] has led to a vast amount of
theoretical work on quantum master equations [1,2,17]. Sev-
eral approaches to solve master equations analytically have
been presented, including algebraic methods [18–21], exact
diagonalization [22,23], series expansions [24], and effective
Hamiltonian approaches [25,26]. However, these techniques
are technically demanding, especially for multipartite quan-
tum systems [20].

Here, we introduce an analytical approach, alternative to
the master-equation techniques, to solve the quantum dynam-
ics of open bosonic quantum systems. The idea in this dy-
namical reconstruction method is to solve the dynamics of the
annihilation operators of the system in the Heisenberg picture,
and to reconstruct the entire quantum state using the normally
ordered moments of these operators. In essence, we obtain
the Schrödinger picture solution while circumventing the need
to neither derive nor solve a master equation for the state of
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the system. The utility of this approach lies in the fact that,
depending on the system under interest, solving the dynamics
of the operators may be more convenient than directly solving
the master equation. Moreover, the required reconstruction
step is straightforward. The method itself does not call for
assumptions on the initial conditions or the structure of the
system.

Although the operator expansion for the quantum state of
a single bosonic mode was presented as early as in 1990 by
Wünsche [27], its applications have mainly been in quan-
tum state tomography [28,29]. Here, we first generalize the
operator expansion to describe a bosonic field consisting of
an arbitrary number of discrete modes, and then employ this
expansion to solve the quantum dynamics of bosonic systems.
Solving the dynamics with the expansion has not previously
been pursued owing to the time-independent form presented
in Ref. [27].

To demonstrate the utilization of the dynamical reconstruc-
tion method, we consider a system of two bilinearly coupled
damped quantum harmonic oscillators. Experimentally, this
system can be realized, for example, as capacitively coupled
coplanar waveguide resonators [30]. Such a system is of cur-
rent interest, for instance, for rapid high-fidelity measurement
of superconducting qubits using Purcell filters [31,32], and for
transferring heat in quantum circuits at maximal rates using
exceptional points [33]. Theoretical work on the system of two
coupled quantum harmonic oscillators has been presented, for
example, in Refs. [34–36]. To the best of our knowledge,
however, the analytical solution for the density operator of the
composite system has not been reported.

II. THE DYNAMICAL RECONSTRUCTION METHOD

In this section, we give a description of the dynamical
reconstruction approach at a general level. The schematic
process chart of the method is given in Fig. 1(a). We consider a
general bosonic system consisting of N discrete modes and M
continua of modes; see Fig. 1(b). In the Schrödinger picture,
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FIG. 1. (a) Schematic process chart of the dynamical reconstruc-
tion method. First, the Schrödinger picture Hamiltonian is trans-
formed into the Heisenberg picture. Subsequently, the Heisenberg
equations of motion for each annihilation operator of the system
are obtained and solved. Finally, the density operator of the reduced
system of the discrete modes is reconstructed by inserting the solu-
tions for the annihilation operators into the dynamical reconstruction
formula, Eqs. (3) and (4). For simplicity, the process chart describes
a single-mode bosonic system. (b) Schematic of a general bosonic
quantum system consisting of N discrete modes and M continua of
modes. The annihilation operators â j label the discrete modes, and
the continuous-mode annihilation operators B̂ j (ω) label the continua
of modes. Schematic illustrations of the energy-level diagrams of the
discrete modes and the spectra of the continua are provided.

we assume that its Hamiltonian is of the form

Ĥ (t ) = Ĥ
[
{â j, â†

j}N
j=1, {B̂ j (ω), B̂†

j (ω)}M
j=1; t

]
, (1)

where Ĥ is polynomial in the system operators, and â j and
B̂ j (ω) are the annihilation operators of the discrete modes and
of the continua of modes, respectively. The discrete-mode op-
erators obey the conventional bosonic commutation relations,
[â j, â†

k] = δ j,k and [â j, âk] = 0, and the continuous-mode op-
erators obey the continuous-mode bosonic commutation rela-
tions, [B̂ j (ω), B̂†

k (η)] = δ j,kδ(ω − η) and [B̂ j (ω), B̂k (η)] = 0.
The continua of bosonic modes are included in the Hamil-
tonian to enable, for instance, first-principles modeling of
dissipation in the system [37].

To solve the dynamics of the annihilation operators of
the system in the Heisenberg picture, the Hamiltonian is
transformed into the Heisenberg picture according to ĤH(t ) =
Û †(t )Ĥ (t )Û (t ), where Û (t ) = T e−i

∫ t
0 dτ Ĥ (τ )/h̄ is the temporal

evolution operator, T is the time-ordering operator, and h̄ is
the reduced Planck constant [1]. Since a true Hamiltonian
is always Hermitian, the corresponding temporal evolution
operator is unitary [38]; that is, Û †(t )Û (t ) = Û (t )Û †(t ) = Î .
Thus, the transformation into the Heisenberg picture is simple:
identity operators can be inserted appropriately into ĤH(t )
such that all the system operators in the Schrödinger picture

Hamiltonian can be substituted by the Heisenberg picture
equivalents.

The Heisenberg equations of motion for the annihilation
operators of the system read

˙̂a j (t ) = − i

h̄

[
â j (t ), ĤH(t )

]
, ∀ j ∈ {1, . . . , N}, (2a)

˙̂Bj (ω, t ) = − i

h̄

[
B̂ j (ω, t ), ĤH(t )

]
, ∀ j ∈ {1, . . . , M}. (2b)

The commutators on the right-hand sides of the above
equations are straightforwardly evaluated with the help of
the bosonic commutation relations. However, the existence of
an explicit analytical solution to the resulting set of N + M
coupled equations of motion depends on the system under
interest. In the following, we assume that an explicit, but not
necessarily analytical, solution to Eqs. (2a) and (2b) exists.

It is well known that the expectation value of any moment
of the annihilation operators can be evaluated once the Heisen-
berg equations of motion for the annihilation operators are
solved [18]. We utilize these expectation values to solve the
dynamics of the density operator of a set of bosonic modes.
In Appendix A, we derive the following expansion for the
density operator of an N-mode bosonic field ρ̂(t ) at any time
instant t in terms of the initial normally ordered operators

ρ̂(t ) =
∞∑

k1,l1=0

· · ·
∞∑

kN ,lN =0

〈
ĉk1,l1,...,kN ,lN (t )

〉

× [
â†

1(0)
]k1 âl1

1 (0) · · · [â†
N (0)

]kN âlN
N (0), (3)

where 〈
ĉk1,l1,...,kN ,lN (t )

〉
=
〈

N∏
j=1

1

k j!l j!

∞∑
q j=−min(k j ,l j )

(−1)q j (k j+l j+q j )!

(k j + q j )!(l j + q j )!

× [
â†

j (t )
]l j+q j â

k j+q j

j (t )

〉
, (4)

and 〈Ô(t )〉 = Tr[ρ̂(t )Ô] = Tr[ρ̂(0)Ô(t )] is the expectation
value of the operator Ô. Here, we have used the fact that the
expectation values of operators coincide between the pictures
of quantum mechanics. We refer to Eqs. (3) and (4) as the
dynamical reconstruction formula to distinguish between the
static form presented in Ref. [27] and the time-dependent
form introduced here. The dynamical reconstruction formula
demonstrates that the full information on the quantum dy-
namics of a bosonic system is embedded in the dynamics
of its annihilation operators. In the static case with a single
bosonic mode, N = 1, Eqs. (3) and (4) reduce to the expansion
presented originally in Ref. [27].

Consequently, the insertion of the solutions for the annihi-
lation operators â j (t ) into the expression for the expectation
value, Eq. (4), and insertion into Eq. (3) amounts to the
solution for the complete quantum dynamics of the system
of the discrete bosonic modes. Here, the expectation value
is evaluated with the help of the initial density operator of
the system. Note that the solution is analytical if and only if
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FIG. 2. Schematic of the example system of two coupled damped
quantum harmonic oscillators. The annihilation operators, the fre-
quencies, and the decay rates of the harmonic oscillators are â j , ω j ,
and κ j , respectively, the annihilation operators of the corresponding
heat baths of the harmonic oscillators are B̂ j (ω), and the coupling
strength between the harmonic oscillators is g.

that of â j (t ) is analytical; if â j (t ) is obtained numerically, the
solution is semi-analytical.

A more convenient representation of the density operator
may be given in the number basis, where the elements of the
density operator assume the form (see Appendix A)

ρn1,m1,...,nN ,mN (t ) =
min(n1,m1 )∑

k1=0

· · ·
min(nN ,mN )∑

kN =0

√
n1!m1! · · · nN !mN !

k1! · · · kN !

× 〈
ĉn1−k1,m1−k1,...,nN −kN ,mN −kN (t )

〉
. (5)

Thus, we have reduced the problem of solving the quantum
dynamics of the system into that of solving a set of coupled
differential equations (2a) and (2b).

III. EXAMPLE: TWO COUPLED DAMPED HARMONIC
OSCILLATORS

Here, we consider a case of N = M = 2, that is, a system
consisting of two discrete bosonic modes, labeled M1 and M2,
and two continua of modes, labeled B1 and B2. Specifically,
the discrete modes are damped quantum harmonic oscillators
which are coupled to each other, as depicted in Fig. 2. The
detailed derivations of the results presented in this section are
given in Appendix B.

We model the dissipation of the discrete modes to corre-
sponding environments by using the Gardiner–Collett Hamil-
tonian [39]. Within the Markovian approximation, where the
coupling between a mode and the corresponding environment
does not depend on frequency, the Hamiltonian of the entire
system reads

Ĥ/h̄ =
2∑

j=1

{
ω j â

†
j â j + √

κ j/(2π )
∫

dω
[
â†

j B̂ j (ω) + H.c.
]

+
∫

dω ωB̂†
j (ω)B̂ j (ω)

}
+ (

gâ†
1â2 + H.c.

)
, (6)

where ω j are the frequencies, κ j are the energy decay rates,
B̂ j (ω) are the annihilation operators of the corresponding
environments of the modes, and g is the coupling strength
between the modes.

The temporal evolution operator of the full system is
unitary since the Hamiltonian, Eq. (6), is Hermitian. Thus,
the Heisenberg picture Hamiltonian has exactly the same
form as Eq. (6), and the Schrödinger picture operators are

replaced with the Heisenberg picture equivalents, as ar-
gued in the previous section. Consequently, the Heisenberg
equations of motion for the annihilation operators are readily
obtained as

˙̂a1(t ) = −iω1â1(t ) − igâ2(t ) − i

√
κ1

2π

∫
dωB̂1(ω, t ), (7a)

˙̂a2(t ) = −iω2â2(t ) − igâ1(t ) − i

√
κ2

2π

∫
dωB̂2(ω, t ), (7b)

˙̂B1(ω, t ) = −iωB̂1(ω, t ) − i

√
κ1

2π
â1(t ), (7c)

˙̂B2(ω, t ) = −iωB̂2(ω, t ) − i

√
κ2

2π
â2(t ). (7d)

The analytical solution to this set of equations of motion for
the annihilation operator of M1 reads

â1(t ) = Ĉ1e
−
(
λ++

√
λ2−−g2

)
t + Ĉ2e

−
(
λ+−

√
λ2−−g2

)
t

+ Ĉ3
[
B̂1(ω, 0), B̂2(ω, 0); t

]
, (8)

where

λ± = κ1 ± κ2

4
+ i

ω1 ± ω2

2
, (9a)

Ĉj = â1(0)

2

⎛
⎝1 − (−1) j λ−√

λ2− − g2

⎞
⎠

− (−1) j i
gâ2(0) +

√
κ1
2π

∫∞
−∞ dωB̂1(ω, 0)

2
√

λ2− − g2
, (9b)

∀ j ∈ {1, 2}, and Ĉ3 is given in Appendix B. Due to the
symmetry of the system, Eqs. (8)–(9b) give also the solution
of â2(t ) by substituting 1 → 2 and 2 → 1 in the indices
of κ j , ω j , â j (0), and B̂ j (ω, 0). As expected, Eq. (8) shows
that there are two hybridized modes in the system which
decay at finite dissipation rates. The excess operator Ĉ3

ensures that the bosonic equal-time commutation relations
hold, [â j (t ), â†

k (t )] = δ j,k and [â j (t ), âk (t )] = 0, and is the
only term that contributes to the asymptotic behavior of â1(t )
and â2(t ) in the case of finite decay rates. Consequently, the
asymptotic behavior depends only on the initial properties of
the baths through B̂1(ω, 0) and B̂2(ω, 0).

The complete dynamics of the modes are then recon-
structed by inserting the solutions for the annihilation opera-
tors into Eqs. (4) and (5). Notably, the dynamics are obtained
for arbitrary initial conditions, such as initially correlated
modes and environments. For simplicity, however, we con-
sider below separable initial conditions.
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We suppose that the dissipative environments and mode
M2 are initially in vacuum states; that is, the initial density
operator of the entire system is

ρ̂(0) = ρ̂ (1)(0) ⊗ |0〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈0|, (10)

where the density operators on the right-hand side are those of
M1, M2, B1, and B2, ρ̂ (1)(0) is an arbitrary physical density
operator, and |0〉 is the multimode vacuum state. Insertion of
the solutions for â1(t ) and â2(t ) given by Eq. (8) together with
the initial state, Eq. (10), into the dynamical reconstruction
formula yields

ρn1,m1,n2,m2 (t ) = f n1
1 (t )[ f ∗

1 (t )]m1 f n2
2 (t )[ f ∗

2 (t )]m2

√
n1!m1!n2!m2!

∞∑
k=−min(n1,m2 )

ρ
(1)
n1+n2+k,m1+m2+k (0)

×
√

(n1 + n2 + k)!(m1 + m2 + k)!(n1 + m2 + k)!

(m2 + k)!(n1 + k)!
× [

1 − | f1(t )|2]m2+k[
1 − | f2(t )|2]n1+k

, (11)

where

f1(t ) = e−λ+t

⎡
⎣cosh

(√
λ2− − g2t

)

− λ−√
λ2− − g2

sinh
(√

λ2− − g2t
)⎤⎦, (12a)

f2(t ) = −e−λ+t ig√
λ2− − g2

sinh
(√

λ2− − g2t
)

(12b)

are the sums of the prefactors of â1(0) in Eq. (8) for the
solutions â1(t ) and â2(t ), respectively.

Equation (11) shows that the dynamics of the density-
matrix elements are given as weighted sums over cer-
tain diagonal elements (not necessarily main diagonal ele-
ments) of the initial density matrix of mode M1. Specif-
ically, only the part of the initial state of M1 occupying
the Hilbert space Hn = span{|n〉, |n + 1〉, . . .} where n =
min[max(n2, n1 + n2 − m2), max(m1 − n1 + m2, m1)] affects
the dynamics of the density matrix element ρn1,m1,n2,m2 (t ).
Moreover, the density matrix elements have damped oscil-
latory behavior due to f j (t ) being decaying and oscillating
functions of time, and the decay rates increase with increasing
n1 + m1 and n2 + m2.

The elements of the reduced density matrices of M1 and
M2 can be obtained from Eq. (11) by taking the partial trace
as ρ (1)

n,m = ∑∞
l=0 ρn,m,l,l and ρ (2)

n,m = ∑∞
l=0 ρl,l,n,m, respectively,

resulting in

ρ ( j)
n,m(t ) = f n

j (t )[ f ∗
j (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

×
√

(n + k)!(m + k)!

k!

[
1 − | f j (t )|2]k

. (13)

This equation shows that a swap of any quantum state from
M1 to M2 up to a complex phase arising from the bare
evolution is obtained if the modes are nondecaying and in
resonance, and the interaction time is chosen such that f1(t ) =
0 and | f2(t )| = 1.

For certain initial states of interest, simple solutions are
obtained by using Eq. (13). If the initial state of M1 is
a coherent state |α1(0)〉, the states of both of the modes

remain as coherent states through the temporal evolution. In
Appendix B, we show that the dynamics of their coherent
amplitudes are given by α j (t ) = f j (t )α1(0). Moreover, we
show that if the initial state of M1 is a thermal state with the
scaled inverse temperature β1(0) = h̄ω1/[kBT1(0)], where kB

is the Boltzmann constant; that is,

ρ̂ (1)(0) = [
1 − e−β1(0)] ∞∑

n=0

e−β1(0)n|n〉〈n|, (14)

both of the modes remain in thermal states. The dynamics of
their scaled inverse temperatures β j (t ) = h̄ω j/[kBTj (t )] are
given by

β j (t ) = ln

[ | f j (t )|2 + eβ1(0) − 1

| f j (t )|2
]
. (15)

Finally, we point out that if the modes are decoupled, g =
0, Eq. (13) reduces to the result for a single damped harmonic
oscillator,

ρn,m(t ) = e−(n+m)κt/2−i(n−m)ω1t

√
n!m!

∞∑
k=0

ρn+k,m+k (0)

×
√

(n + k)!(m + k)!

k!

(
1 − e−κt

)k
, (16)

presented, for example, in Ref. [25].

IV. CONCLUSIONS

In summary, we have introduced an approach to analyti-
cally solve the quantum dynamics of bosonic systems. The
essence of the method is in reconstructing the quantum state of
the system under interest using the normally ordered moments
of its annihilation operators, the dynamics of which is solved
in the Heisenberg picture. The method itself does not pose
requirements for the initial conditions nor for the structure of
the system. Moreover, the proposed dynamical reconstruction
method is particularly practical for obtaining exact solutions
for such quantum systems for which the dynamics of the
operators of the system are more convenient to solve than that
of the state of the system. To demonstrate the utilization of
the method, we have applied it to a system consisting of two
coupled damped quantum harmonic oscillators.

In the future, the generality of the method enables it to
be applied to various bosonic quantum systems. In particular,
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it may shed light on the effects of an initial entanglement
between a system of interest and its environment, out of
the reach of the conventional master-equation approaches
[40]. Furthermore, we expect the method to inspire future
studies on novel techniques to conveniently solve the dy-
namics of the operators for nonlinear systems. The results
of the presented two-mode example may possibly be applied
to studies on launching states of a microwave resonator to
propagating waves by using the so-called Schrödinger cat-
apult [41]. Finally, our work may inspire developments of
approximative schemes for the dynamics of normally ordered
powers of annihilation operators, which can expand the spec-

trum of practical applications of the dynamical reconstruction
method.

ACKNOWLEDGMENTS

This research was financially supported by European
Research Council under Consolidator Grant No. 681311
(QUESS), Academy of Finland under its Centre of Excel-
lence Program Grant No. 312300, the European Union via
the Quantum Flagship project QMiCS (Grant No. 820505),
Finnish Cultural Foundation, the Jane and Aatos Erkko Foun-
dation, the Vilho, Yrjö and Kalle Väisälä Foundation, and the
Technology Industries of Finland Centennial Foundation.

APPENDIX A: THE DYNAMICAL RECONSTRUCTION FORMULA FOR MULTIMODE BOSONIC FIELD

In this section, we derive the normally ordered operator expansion of the density operator of an N-mode bosonic field, and
the corresponding expression for the elements of the density matrix in the number basis.

We begin by expressing the density operator of an N-mode bosonic field in the number basis as

ρ̂ =
∞∑

k1 = 0
. . .

kN = 0

∞∑
l1 = 0

. . .

lN = 0

ρk1,l1,...,kN ,lN |k1, . . . , kN 〉〈l1, . . . , lN |, (A1)

where |k1, . . . , kN 〉 = ⊗N
j=1|k j〉 j is the multimode number state with k j excitations in mode j. In Ref. [27], it is shown that the

single-mode projector, |k j〉 j j〈l j |, can be expanded in terms of the normally ordered operators as

|k j〉 j j〈l j | = 1√
k j!l j!

∞∑
s j=0

(−1)s j

s j!

(
â†

j

)k j+s j â
l j+s j

j , (A2)

where â j (â†
j ) is the annihilation (creation) operator of mode j. Note that the density matrix elements in Eq. (A1) are defined as

ρk1,l1,...,kN ,lN = Tr[ρ̂
⊗N

j=1 |l j〉 j j〈k j |] and recall that the trace operator is linear. Consequently, employing Eq. (A2) for both the
density matrix elements and the projectors, we may rewrite Eq. (A1) as

ρ̂ =
∞∑

k1 = 0
. . .

kN = 0

∞∑
l1 = 0

. . .

lN = 0

Tr

⎡
⎣ρ̂

N∏
β=1

∞∑
sβ=0

(−1)sβ

sβ!
√

lβ!kβ!

(
â†

β

)lβ+sβ âkβ+sβ

β

⎤
⎦ N∏

α=1

∞∑
rα=0

(−1)rα

rα!
√

kα!lα!

(
â†

α

)kα+rα âlα+rα

α

=
∞∑

k1 = 0
. . .

kN = 0

∞∑
l1 = 0

. . .

lN = 0

∞∑
s1 = 0

. . .

sN = 0

N∏
α=1

(−1)sα

sα!
√

lα!kα!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)lβ+sβ âkβ+sβ

β

⎤
⎦ ∞∑

r1 = 0
. . .

rN = 0

N∏
α=1

(−1)rα

rα!
√

kα!lα!

(
â†

α

)kα+rα âlα+rα

α

=
∞∑

s1 = 0
. . .

sN = 0

∞∑
r1 = 0

. . .

rN = 0

∞∑
k1 = 0

. . .

kN = 0

∞∑
l1 = 0

. . .

lN = 0

N∏
α=1

(−1)sα+rα

sα!rα!kα!lα!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)lβ+sβ âkβ+sβ

β

⎤
⎦ N∏

α=1

(
â†

α

)kα+rα âlα+rα

α

=
∞∑

s1 = 0
. . .

sN = 0

∞∑
r1 = 0

. . .

rN = 0

∞∑
k′

1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

N∏
α=1

(−1)sα+rα

sα!rα!
(
k′
α − rα

)
!
(
l ′
α − rα

)
!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β−rβ+sβ â
k′
β−rβ+sβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

s1 = 0
. . .

sN = 0

∞∑
k′

1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

min(k′
1, l ′1 )

. . .

min
(
k′

N , l ′N
)∑

r1 = 0
. . .

rN = 0

N∏
α=1

(−1)sα+rα

sα!rα!
(
k′
α − rα

)
!
(
l ′
α − rα

)
!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β−rβ+sβ â
k′
β−rβ+sβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α ,
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where in the third step, we have changed the variables as k′
α = kα + rα and l ′

α = lα + rα . Changing the variables as pα = sα − rα

yields

ρ̂ =
∞∑

s1 = 0
. . .

sN = 0

∞∑
k′

1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

s1
. . .

sN∑
p1 = s1 − min(k′

1, l ′1 )
. . .

pN = s1 − min(k′
N , l ′N )

N∏
α=1

(−1)pα

sα!
(
sα − pα

)
!
(
k′
α − sα + pα

)
!
(
l ′
α − sα + pα

)
!

× Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

k′
1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

∞∑
p1 = −min(k′

1, l ′1 )
. . .

pN = −min(k′
N , l ′N )

p1 + min(k′
1, l ′1 )

. . .

pN + min(k′
N , l ′N )∑

s1 = max(p1, 0)
. . .

sN = max(pN , 0)

N∏
α=1

(−1)pα

sα!
(
sα − pα

)
!
(
k′
α − sα + pα

)
!
(
l ′
α − sα + pα

)
!

× Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

k′
1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

∞∑
p1 = −min(k′

1, l ′1 )
. . .

pN = −min(k′
N , l ′N )

min(k′
1, l ′1 ) + min(p1, 0)

. . .

min(k′
N , l ′N ) + min(p1, 0)∑

s′
1 = 0
. . .

s′
N = 0

N∏
α=1

(−1)pα[
s′
α + max(pα, 0)

]
!
[
s′
α − min(pα, 0)

]
!

× 1[
k′
α − s′

α + min(pα, 0)
]
!
[
l ′
α − s′

α + min(pα, 0)
]
!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α ,

where we have changed the variables as s′
α = sα − max(pα, 0). Using Vandermonde’s identity [42],

d∑
c=0

1

c!(d − c)!(b − c)![a − d − (b − c)]!
= a!

b!d!(a − b)!(a − d )!
, (A3)

with the substitutions a → k′
α + l ′

α + pα , b → max(k′
α, l ′

α ) + min(pα, 0), c → s′
α , and d → min(k′

α, l ′
α ) + min(pα, 0), we obtain

ρ̂ =
∞∑

k′
1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

∞∑
p1 = −min(k′

1, l ′1 )
. . .

pN = −min(k′
N , l ′N )

N∏
α=1

(−1)pα
(
k′
α + l ′

α + pα

)
!

k′
α!l ′

α!
(
k′
α + pα

)
!
(
l ′
α + pα

)
!
Tr

⎡
⎣ρ̂

N∏
β=1

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

k′
1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

Tr

⎡
⎢⎢⎢⎢⎢⎣ρ̂

∞∑
p1 = −min(k′

1, l ′1 )
. . .

pN = −min(k′
N , l ′N )

N∏
α=1

(−1)pα
(
k′
α + l ′

α + pα

)
!

k′
α!l ′

α!
(
k′
α + pα

)
!
(
l ′
α + pα

)
!

N∏
β=1

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎥⎥⎥⎥⎥⎦

N∏
α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

k′
1 = 0
. . .

k′
N = 0

∞∑
l ′1 = 0

. . .

l ′N = 0

Tr

⎡
⎣ρ̂

N∏
β=1

∞∑
pβ=−min(k′

β ,l ′β )

(−1)pβ
(
k′
β + l ′

β + pβ

)
!

k′
β!l ′

β!
(
k′
β + pβ

)
!
(
l ′
β + pβ

)
!

(
â†

β

)l ′β+pβ â
k′
β+pβ

β

⎤
⎦ N∏

α=1

(
â†

α

)k′
α âl ′α

α

=
∞∑

k1,l1,...,kN ,lN =0

〈
ĉk1,l1,...,kN ,lN

〉 N∏
j=1

(
â†

j

)k j â
l j

j , (A4)
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where 〈
ĉk1,l1,...,kN ,lN

〉 =
〈

N∏
j=1

∞∑
p j=−min(k j ,l j )

(−1)p j (k j + l j + p j )!

k j!l j!(k j + p j )!(l j + p j )!

(
â†

j

)l j+p j â
k j+p j

j

〉
, (A5)

and 〈Ô〉 = Tr[ρ̂Ô]. Since any density operator of an N-mode bosonic system can be expanded according to Eqs. (A4) and (A5),
one may expand the density operator at the time instant t as

ρ̂(t ) =
∞∑

k1,l1,...,kN ,lN =0

Tr
[
ĉk1,l1,...,kN ,lN (0)ρ̂(t )

] N∏
j=1

[
â†

j (0)
]k j â

l j

j (0)

=
∞∑

k1,l1,...,kN ,lN =0

Tr
[
ĉk1,l1,...,kN ,lN (t )ρ̂(0)

] N∏
j=1

[
â†

j (0)
]k j â

l j

j (0), (A6)

where we have chosen to expand the density operator in the initial operators, noted that the Schrödinger picture operators
correspond to the initial Heisenberg picture operators, and noted that the expectation values coincide between the pictures of
quantum mechanics. Thus, we are led to Eqs. (3) and (4) of the main text.

The density matrix elements are obtained from Eq. (A4) as

ρn1,m1,...,nN ,mN = 〈n1, . . . , nN |ρ̂|m1, . . . , mN 〉

=
∞∑

k1,l1=0

· · ·
∞∑

kN ,lN =0

〈
ĉk1,l1,...,kN ,lN

〉
1〈n1|

(
â†

1

)k1 âl1
1 |m1〉1 · · · N〈nN |(â†

N

)kN âlN
N |mN 〉N

=
n1∑

k1=0

m1∑
l1=0

· · ·
nN∑

kN =0

mN∑
lN =0

〈
ĉk1,l1,...,kN ,lN

〉√ n1!m1!

(n1 − k1)!(m1 − l1)!
· · ·

√
nN !mN !

(nN − kN )!(mN − lN )!

× 1〈n1 − k1|m1 − l1〉1 · · · N〈nN − kN |mN − lN 〉N

=
n1∑

k1=max(0,n1−m1 )

· · ·
nN∑

kN =max(0,nN −mN )

〈
ĉk1,k1+m1−n1,...,kN ,kN +mN −nN

〉 √
n1!m1! · · · nN !mN !

(n1 − k1)! · · · (nN − kN )!

=
min(n1,m1 )∑

k1=0

· · ·
min(nN ,mN )∑

kN =0

〈
ĉn1−k1,m1−k1,...,nN −kN ,mN −kN

〉√n1!m1! · · · nN !mN !

k1! · · · kN !
. (A7)

APPENDIX B: TWO COUPLED DAMPED QUANTUM HARMONIC OSCILLATORS

In this section, we consider a system consisting of two discrete modes and two continua of modes. Specifically, the system
consists of two bilinearly coupled damped quantum harmonic oscillators, labeled M1 and M2. We model the dissipation in each
harmonic oscillator (mode) as coupling to a bath of harmonic oscillators, labeled B1 and B2, by using the Gardiner–Collett
Hamiltonian [39]. Within the Markovian approximation, i.e., frequency-independent coupling strength between the system and
the environmental modes, the Hamiltonian reads

Ĥ/h̄ =
2∑

j=1

{
ω j â

†
j â j + √

κ j/(2π )
∫

dω
[
â†

j B̂ j (ω) + B̂†
j (ω)â j

]
+
∫

dω ωB̂†
j (ω)B̂ j (ω)

}
+ gâ†

1â2 + g∗â†
2â1, (B1)

where h̄ is the reduced Planck constant, g is the coupling strength between the modes, and ω j , κ j , â j , and B̂ j (ω) are the frequency,
the decay rate, the annihilation operator and the annihilation operator of the corresponding bath of the mode M j.

We begin this section by solving the dynamics of the annihilation operators of the system. Then, we solve the complete
quantum dynamics of the dissipative modes supposing that initially the heat baths are in zero temperature and only one of the
modes is in an arbitrary state. Finally, we consider certain initial states of interest of the nonvacuum mode.

1. Dynamics of the annihilation operators

The temporal evolution operator of the system, Û (t ) = T e−i
∫ t

0 dτ Ĥ (τ )/h̄, is unitary; that is, Û †(t )Û (t ) = Û (t )Û †(t ) = I , since
the Hamiltonian is Hermitian. Thus, inserting identity operators I = Û †(t )Û (t ) suitably into Eq. (B1), the Heisenberg picture
Hamiltonian ĤH(t ) = Û †(t )ĤÛ (t ) obtains the form

ĤH(t )/h̄ =
2∑

j=1

{
ω j â

†
j (t )â j (t ) + √

κ j/(2π )
∫

dω
[
â†

j (t )B̂ j (ω, t ) + B̂†
j (ω, t )â j (t )

]
+
∫

dω ωB̂†
j (ω, t )B̂ j (ω, t )

}

+ gâ†
1(t )â2(t ) + g∗â†

2(t )â1(t ), (B2)
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where â j (t ) and B̂ j (ω, t ) are the annihilation operators in the Heisenberg picture. The Heisenberg equation of motion for â1(t )
reads

˙̂a1(t ) = − i

h̄

[
â1(t ), ĤH(t )

]
= −iω1

[
â1(t ), â†

1(t )â1(t )
] − i

√
κ1/(2π )

∫
dω

[
â1(t ), â†

1(t )
]
B̂1(ω, t ) − ig

[
â1(t ), â†

1(t )
]
â2(t )

= −iω1â1(t ) − igâ2(t ) − i
√

κ1/(2π )
∫

dωB̂1(ω, t ). (B3)

Similarly, the Heisenberg equations of motion for the remaining annihilation operators of the system can be derived to result
in Eqs. (7b)–(7d) of the main text. Transforming each operator into a frame corotating with the corresponding operator as
â′

j (t ) = â j (t )eiω j t and B̂′
j (ω, t ) = B̂ j (ω, t )eiωt , the set of equations is simplified to

˙̂a′
1(t ) = −igâ′

2(t )e−i�t − i

√
κ1

2π

∫
dωB̂′

1(ω, t )e−i�1t , (B4a)

˙̂a′
2(t ) = −igâ′

1(t )ei�t − i

√
κ2

2π

∫
dωB̂′

2(ω, t )e−i�2t , (B4b)

˙̂B′
1(ω, t ) = −i

√
κ1

2π
â′

1(t )ei�1t , (B4c)

˙̂B′
2(ω, t ) = −i

√
κ2

2π
â′

2(t )ei�2t , (B4d)

where � = ω2 − ω1, and � j = ω − ω j . To decouple two of these equations of motion, we formally solve Eqs. (B4c) and (B4d)
as B̂′

j (ω, t ) = B̂′
j (ω, 0) − i

√
κ j/(2π )

∫ t
0 dt ′â′

j (t
′)ei� j t ′

, insert the results into Eqs. (B4a) and (B4b), respectively, and obtain

˙̂a′
1(t ) = −igâ′

2(t )e−i�t − i

√
κ1

2π

∫ ∞

−∞
dωe−i�1t

[
B̂′

1(ω, 0) − i

√
κ1

2π

∫ t

0
dt ′â′

1

(
t ′)ei�1t ′

]

= −igâ′
2(t )e−i�t − i

√
κ1

2π

∫ ∞

−∞
dωB̂′

1(ω, 0)e−i�1t − κ1

2
â′

1(t ), (B5a)

˙̂a′
2(t ) = −igâ′

1(t )ei�t − i

√
κ2

2π

∫ ∞

−∞
dωB̂′

2(ω, 0)e−i�2t − κ2

2
â′

2(t ). (B5b)

Solving Eq. (B5a) for â′
2(t ) gives

â′
2(t ) = i

g
˙̂a′

1(t )ei�t −
√

κ1

2π

1

g

∫ ∞

−∞
dωB̂′

1(ω, 0)e−i�2t + i
κ1

2g
â′

1(t )ei�t , (B6)

and the insertion of this into Eq. (B5b) results in

¨̂a′
1(t ) +

(κ1

2
+ κ2

2
+ i�

)
˙̂a′

1(t ) +
[κ1

2

(κ2

2
+ i�

)
+ g2

]
â′

1(t )

= −
√

κ1

2π

∫ ∞

−∞
dω

(
i
κ2

2
+ �2

)
B̂′

1(ω, 0)e−i�1t − g

√
κ2

2π

∫ ∞

−∞
dωB̂′

2(ω, 0)e−i�1t . (B7)

This is a linear operator-valued second-order inhomogeneous ordinary differential equation, which has an analytical solution.
After transforming back to the initial frame as â(t ) = â′(t )e−iω1t , the solution reads

â1(t ) = Ĉ1e−
(
λ++

√
λ2−−g2

)
t + Ĉ2e−

(
λ+−

√
λ2−−g2

)
t + Ĉ3

[
B̂1(ω, 0), B̂2(ω, 0); ω, t

]
, (B8)

where

λ± = κ1 ± κ2

4
+ i

ω1 ± ω2

2
, (B9a)

Ĉ3
[
B̂1(ω, 0), B̂2(ω, 0); ω, t

] =
∫ ∞

−∞
dω

√
κ1
2π

(
i κ2

2 + �2
)
B̂1(ω, 0) + g

√
κ2
2π

B̂2(ω, 0)

2
√

λ2− − g2
(
λ+ +

√
λ2− − g2 − iω

) [
e−iωt − e−

(
λ++

√
λ2−−g2

)
t
]

−
∫ ∞

−∞
dω

√
κ1
2π

(
i κ2

2 + �2
)
B̂1(ω, 0) + g

√
κ2
2π

B̂2(ω, 0)

2
√

λ2− − g2
(
λ+ −

√
λ2− − g2 − iω

) [
e−iωt − e−

(
λ+−

√
λ2−−g2

)
t
]
. (B9b)
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The coefficient operators Ĉ1 and Ĉ2 are found with the help of the initial conditions, â′
1(0) = â1(0) and

˙̂a′
1(0) = −κ1

2
â1(0) − igâ2(0) − i

√
κ1

2π

∫ ∞

−∞
dωB̂1(ω, 0), (B10)

which is obtained from Eq. (B5a) with the substitution t = 0. Explicitly, they are given by

Ĉj = â1(0)

2

⎛
⎝1 − (−1) j λ−√

λ2− − g2

⎞
⎠ − (−1) j i

gâ2(0) +
√

κ1
2π

∫∞
−∞ dωB̂1(ω, 0)

2
√

λ2− − g2
, ∀ j ∈ {1, 2}. (B11)

An alternative expression of Eq. (B8) can be obtained by rearranging terms as

â1(t ) = e−λ+t

⎡
⎣cosh

(√
λ2− − g2t

)
− λ−√

λ2− − g2
sinh

(√
λ2− − g2t

)⎤⎦â1(0)

− e−λ+t ig√
λ2− − g2

sinh
(√

λ2− − g2t
)

â2(0) +
∫ ∞

−∞
dωF1(ω, t )B̂1(ω, 0) +

∫ ∞

−∞
dωH1(ω, t )B̂2(ω, 0) (B12a)

=: f1(t )â1(0) + h1(t )â2(0) +
∫ ∞

−∞
dωF1(ω, t )B̂1(ω, 0) +

∫ ∞

−∞
dωH1(ω, t )B̂2(ω, 0), (B12b)

where F1(ω, t ) and H1(ω, t ) are the complex coefficient functions multiplying B̂ j (ω, 0) in the integrands of Eq. (B8). This form
of the solution is employed in the following section.

Due to the symmetry of the system, â2(t ) is readily obtained from Eq. (B12a) with the substitutions 1 → 2 and 2 → 1 in
the indices of κ j , ω j , â j (t ), and B̂ j (ω, 0). We denote its coefficient functions with the subscript 2. Moreover, we note that the
solutions preserve the conventional bosonic commutation relations, [â j (t ), â†

k (t )] = δ j,k and [â j (t ), âk (t )] = 0 for all t .
The dynamics of the annihilation operators of the bosonic baths, B̂1(ω, t ) and B̂2(ω, t ), can be obtained, for instance, by

integrating Eqs. (B4c) and (B4d) over time, inserting in the solutions for â1(t ) and â2(t ), respectively, and utilizing the identities
â′

j (t ) = â j (t )eiω j t , and B̂′
j (ω, t ) = B̂ j (ω, t )eiωt . However, for brevity, we omit the solutions here.

2. Complete quantum dynamics

Here, we employ the reconstruction formula, Eqs. (A7) and (A5), to obtain the density operator of the system of the two
modes. For simplicity, we assume that the initial state is of the form

ρ̂(0) = ρ̂ (1)(0) ⊗ |0〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈0|, (B13)

where the density operators on the right-hand side refer to those of M1, M2, B1, and B2, respectively. That is, we assume that
initially only M1 is in an arbitrary state.

The expectation value 〈ĉn1−k1,m1−k1,n2−k2,m2−k2 (t )〉 of the reconstruction formula, Eq. (A7), is obtained as〈
ĉn1−k1,m1−k1,n2−k2,m2−k2 (t )

〉
=

∞∑
l=0

〈
l, 0, 0, 0

∣∣ρ̂ (1)(0)ĉn1−k1,m1−k1,n2−k2,m2−k2 (t )
∣∣l, 0, 0, 0

〉

=
∞∑

l=0

〈
l, 0, 0, 0

∣∣ ∞∑
n′

1,m
′
1=0

ρ
(1)
n′

1,m
′
1
(0)

∣∣n′
1

〉
1 1

〈
m′

1

∣∣ĉn1−k1,m1−k1,n2−k2,m2−k2 (t )
∣∣l, 0, 0, 0

〉

=
∞∑

n′
1,m

′
1=0

ρ
(1)
n′

1,m
′
1
(0)

〈
m′

1, 0, 0, 0
∣∣ĉn1−k1,m1−k1,n2−k2,m2−k2 (t )

∣∣n′
1, 0, 0, 0

〉

=
∞∑

n′
1,m

′
1=0

ρ
(1)
n′

1,m
′
1
(0)

〈
m′

1, 0, 0, 0
∣∣ 1

(n1 − k1)!(m1 − k1)!(n2 − k2)!(m2 − k2)!

×
∞∑

q1=−min(n1−k1,m1−k1 )

(−1)q1 (n1 − k1 + m1 − k1 + q1)!

(n1 − k1 + q1)!(m1 − k1 + q1)!

[
â†

1(t )
]m1−k1+q1 ân1−k1+q1

1 (t )

×
∞∑

q2=−min(n2−k2,m2−k2 )

(−1)q2 (n2 − k2 + m2 − k2 + q2)!

(n2 − k2 + q2)!(m2 − k2 + q2)!

[
â†

2(t )
]m2−k2+q2 ân2−k2+q2

2 (t )
∣∣n′

1, 0, 0, 0
〉
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= (−1)k1+k2

(n1 − k1)!(m1 − k1)!(n2 − k2)!(m2 − k2)!

∞∑
n′

1,m
′
1=0

ρ
(1)
n′

1,m
′
1
(0)1

〈
m′

1

∣∣

×
∞∑

q1=−min(n1,m1 )

(−1)q1 (n1 − k1 + m1 + q1)!

(n1 + q1)!(m1 + q1)!

[
f ∗
1 (t )â†

1(0)
]m1+q1

[
f1(t )â1(0)

]n1+q1

×
∞∑

q2=−min(n2,m2 )

(−1)q2 (n2 − k2 + m2 + q2)!

(n2 + q2)!(m2 + q2)!

[
f ∗
2 (t )â†

1(0)
]m2+q2

[
f2(t )â1(0)

]n2+q2
∣∣n′

1

〉
1

= (−1)k1+k2

(n1 − k1)!(m1 − k1)!(n2 − k2)!(m2 − k2)!

×
∞∑

m′
1=max(0,m1−n1 )

m′
1−m1∑

q1=−min(n1,m1 )

m′
1+n1−m1−m2∑

q2=−min(n2,m2 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

× [ f ∗
1 (t )]m1+q1 f n1+q1

1 (t )[ f ∗
2 (t )]m2+q2 f n2+q2

2 (t )
(−1)q1+q2 (n1 − k1 + m1 + q1)!(n2 − k2 + m2 + q2)!

(n1 + q1)!(m1 + q1)!(n2 + q2)!(m2 + q2)!

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

(m′
1 − m1 − q1)!(m′

1 + n1 − m1 − m2 − q2)!
, (B14)

where in the fourth step, we used Eq. (B12b) as âk
j (t )|n, 0, 0, 0〉 = f k

j (t )âk
1(0)|n, 0, 0, 0〉, and in the fifth step, we used the actions

of the bosonic annihilation operators, â|n〉 = √
n|n − 1〉, and the orthonormality of the number states, 〈n|m〉 = δn,m. Insertion

into Eq. (A7) yields the density matrix elements as

ρn1,m1,n2,m2 (t )

=
min(n1,m1 )∑

k1=0

min(n2,m2 )∑
k2=0

√
n1!m1!n2!m2!

k1!k2!

(−1)k1+k2

(n1 − k1)!(m1 − k1)!(n2 − k2)!(m2 − k2)!

×
∞∑

m′
1=max(0,m1−n1 )

m′
1−m1∑

q1=−min(n1,m1 )

m′
1+n1−m1−m2∑

q2=−min(n2,m2 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

× [ f ∗
1 (t )]m1+q1 f n1+q1

1 (t )[ f ∗
2 (t )]m2+q2 f n2+q2

2 (t )
(−1)q1+q2 (n1 − k1 + m1 + q1)!(n2 − k2 + m2 + q2)!

(n1 + q1)!(m1 + q1)!(n2 + q2)!(m2 + q2)!

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

(m′
1 − m1 − q1)!(m′

1 + n1 − m1 − m2 − q2)!

=
√

n1!m1!n2!m2!
∞∑

m′
1=max(0,m1−n1 )

m′
1−m1∑

q1=−min(n1,m1 )

m′
1+n1−m1−m2∑

q2=−min(n2,m2 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

× [ f ∗
1 (t )]m1+q1 f n1+q1

1 (t )[ f ∗
2 (t )]m2+q2 f n2+q2

2 (t )
(−1)q1+q2

(n1 + q1)!(m1 + q1)!(n2 + q2)!(m2 + q2)!

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

(m′
1 − m1 − q1)!(m′

1 + n1 − m1 − m2 − q2)!

×
min(n1,m1 )∑

k1=0

(−1)k1 (n1 − k1 + m1 + q1)!

k1!(n1 − k1)!(m1 − k1)!

min(n2,m2 )∑
k2=0

(−1)k2 (n2 − k2 + m2 + q2)!

k2!(n2 − k2)!(m2 − k2)!

=
√

n1!m1!n2!m2!
∞∑

m′
1=max(0,m1−n1 )

m′
1−m1∑

q1=−min(n1,m1 )

m′
1+n1−m1−m2∑

q2=−min(n2,m2 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

× [ f ∗
1 (t )]m1+q1 f n1+q1

1 (t )[ f ∗
2 (t )]m2+q2 f n2+q2

2 (t )
(−1)q1+q2

(n1 + q1)!(m1 + q1)!(n2 + q2)!(m2 + q2)!

042109-10



RECONSTRUCTION APPROACH TO QUANTUM DYNAMICS … PHYSICAL REVIEW A 100, 042109 (2019)

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

(m′
1 − m1 − q1)!(m′

1 + n1 − m1 − m2 − q2)!

× (n1 + m1 + q1)!

n1!m1!
2F1(−m1,−n1; −n1 − m1 − q1; 1)

(n2 + m2 + q2)!

n2!m2!

× 2F1(−m2,−n2; −n2 − m2 − q2; 1)

= [ f ∗
1 (t )]m1 f n1

1 (t )[ f ∗
2 (t )]m2 f n2

2 (t )√
n1!m1!n2!m2!

∞∑
m′

1=max(0,m1−n1 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

×
m′

1−m1∑
q1=−min(n1,m1 )

[−| f1(t )|2]q1 (n1 + m1 + q1)!

(n1 + q1)!(m1 + q1)!(m′
1 − m1 − q1)!

2F1(−m1,−n1; −n1 − m1 − q1; 1)

×
m′

1+n1−m1−m2∑
q2=−min(n2,m2 )

[−| f2(t )|2]q2 (n2 + m2 + q2)!

(n2 + q2)!(m2 + q2)!(m′
1 + n1 − m1 − m2 − q2)!

2F1(−m2,−n2; −n2 − m2 − q2; 1)

= [ f ∗
1 (t )]m1 f n1

1 (t )[ f ∗
2 (t )]m2 f n2

2 (t )√
n1!m1!n2!m2!

∞∑
m′

1=max(0,m1−n1 )

ρ
(1)
m′

1+n1+n2−m1−m2,m′
1
(0)

×
√

m′
1!(m′

1 + n1 + n2 − m1 − m2)!(m′
1 + n1 − m1)!

[
1 − | f1(t )|2]m′

1−m1

(m′
1 − m1)!

[
1 − | f2(t )|2]m′

1+n1−m1−m2

(m′
1 + n1 − m1 − m2)!

= f n1
1 (t )[ f ∗

1 (t )]m1 f n2
2 (t )[ f ∗

2 (t )]m2

√
n1!m1!n2!m2!

∞∑
k=−min(n1,m2 )

ρ
(1)
n1+n2+k,m1+m2+k (0)

×
√

(n1 + n2 + k)!(m1 + m2 + k)!(n1 + m2 + k)!

(m2 + k)!(n1 + k)!

[
1 − | f1(t )|2]m2+k[

1 − | f2(t )|2]n1+k
, (B15)

where in the third equality we used the definition of the hypergeometric function 2F1(a, b, c; z) [43], and in the fifth equality we
used 2F1(−m,−n; −n − m − q; 1) = (n + q)!(m + q)!/[q!(n + m + q)!] for all n, m, q ∈ N0.

The reduced density operators of the modes are obtained according to ρ (1)
n,m(t ) = ∑∞

l=0 ρn,m,l,l (t ) and ρ (2)
n,m(t ) =∑∞

l=0 ρl,l,n,m(t ) as

ρ (1)
n,m(t ) = f n

1 (t )[ f ∗
1 (t )]m

√
n!m!

∞∑
l=0

∞∑
k=−min(n−l,0)

ρ
(1)
n+k,m+k (0)

| f2(t )|2l

l!

√
(n + k)!(m + k)!(n + k)!

k!(n − l + k)!

[
1 − | f1(t )|2]k[

1 − | f2(t )|2]n−l+k

= f n
1 (t )[ f ∗

1 (t )]m

√
n!m!

∞∑
k=0

n+k∑
l=0

ρ
(1)
n+k,m+k (0)

| f2(t )|2l

l!

√
(n + k)!(m + k)!(n + k)!

k!(n − l + k)!

[
1 − | f1(t )|2]k[

1 − | f2(t )|2]n−l+k

= f n
1 (t )[ f ∗

1 (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

n+k∑
l=0

| f2(t )|2l (n + k)!

l!(n − l + k)!

[
1 − | f2(t )|2]n−l+k

= f n
1 (t )[ f ∗

1 (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

, (B16a)

ρ (2)
n,m(t ) = f n

2 (t )[ f ∗
2 (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

√
(n + k)!(m + k)!

k!

[
1 − | f2(t )|2]k

. (B16b)

These equations yield Eq. (13) in the main text.
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3. Initial states of interest

Here, we apply the previous results to coherent and thermal states. First, given that the initial state of M1 is a coherent state,
|α1(0)〉; that is,

ρ̂1(0) = e−|α1(0)|2
∞∑

n,m=0

αn
1 (0)[α∗

1 (0)]m

√
n!m!

|n〉〈m|, (B17)

we obtain by using Eqs. (B16a) and (B16b),

ρ (1)
n,m(t ) = f n

1 (t )[ f ∗
1 (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

= e−|α1(0)|2 f n
1 (t )[ f ∗

1 (t )]m

√
n!m!

∞∑
k=0

αn+k
1 (0)[α∗

1 (0)]m+k

√
(n + k)!(m + k)!

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

= e−|α1(0)|2 [ f1(t )α1(0)]n[ f ∗
1 (t )α∗

1 (0)]m

√
n!m!

∞∑
k=0

{|α1(0)|2[1 − | f1(t )|2]}k

k!

= e−| f1(t )α1(0)|2 [ f1(t )α1(0)]n[ f ∗
1 (t )α∗

1 (0)]m

√
n!m!

, (B18a)

ρ (2)
n,m(t ) = e−| f2(t )α1(0)|2 [ f2(t )α1(0)]n[ f ∗

2 (t )α∗
2 (0)]m

√
n!m!

. (B18b)

We observe that the states of both of the modes remain as coherent states through the free evolution of the system, with the
coherent amplitudes α j (t ) = f j (t )α1(0).

Second, supposing that the initial state of M1 is a thermal state with the scaled inverse temperature, β1(0) = h̄ω1/[kBT1(0)],

ρ̂1(0) = [
1 − e−β1(0)

] ∞∑
n=0

e−β1(0)n|n〉〈n|, (B19)

the application of Eqs. (B16a) and (B16b) yields

ρ (1)
n,m(t ) = f n

1 (t )[ f ∗
1 (t )]m

√
n!m!

∞∑
k=0

ρ
(1)
n+k,m+k (0)

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

= [
1 − e−β1(0)

] f n
1 (t )[ f ∗

1 (t )]m

√
n!m!

∞∑
k=0

e−β1(0)(n+k)δn+k,m+k

√
(n + k)!(m + k)!

k!

[
1 − | f1(t )|2]k

= δn,m
[
1 − e−β1(0)] | f1(t )|2n

n!

∞∑
k=0

e−β1(0)(n+k) (n + k)!

k!

[
1 − | f1(t )|2]k

= δn,m
[
1 − e−β1(0)

] | f1(t )|2n

n!

n!eβ1(0)[
eβ1(0) + | f1(0)|2 − 1

]n+1

= δn,m
[
1 − e−β1(t )

]
e−β1(t )n, (B20a)

β1(t ) = ln

[ | f1(t )|2 + eβ1(0) − 1

| f1(t )|2
]
, (B20b)

ρ (2)
n,m(t ) = δn,m

[
1 − e−β2(t )

]
e−β2(t )n, (B20c)

β2(t ) = ln

[ | f2(t )|2 + eβ1(0) − 1

| f2(t )|2
]
. (B20d)

Thus, the states of both of the modes are thermal through the temporal evolution of the system, with the scaled inverse
temperatures given by Eqs. (B20b) and (B20d).
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