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Counterpropagating continuous-variable entangled states in lossy coupled-cavity optical waveguides
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We present an integrated source of counterpropagating entangled states based on a coupled resonator optical
waveguide that is pumped by a classical pulsed source incident from above the waveguide. We investigate
theoretically the generation and propagation of continuous-variable entangled states in this coupled-cavity
system in the presence of intrinsic loss. Using a tight-binding approximation, we derive analytic time-dependent
expressions for the number of photons in each cavity, as well as for the correlation variance between the photons
in different pairs of cavities, to evaluate the degree of quantum entanglement. We also derive simple approximate
expressions for these quantities that can be used to guide the design of such systems, and discuss how pumping
configurations and physical properties of the system affect the photon statistics and the degree of quantum
correlation.
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I. INTRODUCTION

Entangled quantum states have potential applications in
quantum teleportation [1,2], quantum computation, and quan-
tum information [3,4]. They can either involve discrete vari-
ables (DVs), such as the polarization of a photon, or contin-
uous variables (CVs), such as the quadratures of a beam of
light. Although DV systems provide high-fidelity operations,
photonic-based DV entanglement is currently limited by the
difficulties of single-photon generation and detection, and by
high sensitivity to optical losses. In contrast, CV entanglement
is more robust to loss, and can be more efficiently created
and used for the implementation of quantum protocols [5–9].
Spontaneous parametric down conversion (SPDC), a second-
order nonlinear process in which a pump photon is converted
into a signal and an idler photon, is one of the processes that
can be used to generate quantum correlated states [10–12].
It has been implemented in both bulk media and integrated
photonic structures. However, as the size and complexity of
quantum information processing systems increase, the lim-
itations in achieving stability, precision, and small physical
size with bulk optical systems become significant. Systems
for on-chip SPDC, which are integrable with other photonic
elements and could be used to generate CV entangled states
involving two spatially separated sites, are therefore very
promising [13–15].

One such platform involves the use of waveguides made
of materials with a large second-order nonlinear optical re-
sponse, such as AlGaAs, to generate counterpropagating,
quantum correlated photons [16,17]. The particular system
we consider here is the coupled-resonator optical waveguide
(CROW), in which the waveguide consists of optical cavities
weakly coupled in one dimension. By adjusting the nature of
the cavities and the coupling between them, the dispersive
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properties of the propagating modes can be controlled [18].
Loss, which can destroy the nonclassical properties of light
[19–23], can also be controlled to some extent, allowing at
least a partial optimization for particular applications. CROW
structures have been shown to have potential in generating
CV entangled states between two side cavities coupled to the
CROW, and as well between spatially separated sites [13]. It
is the latter application we study here.

Our integrated source of entangled states is schematically
shown in Fig. 1. A pump pulse is incident on a set of central
cavities from above. Consequently, in order for the phase
matching condition to be fulfilled, the generated signal and
idler modes propagate in opposite directions in the CROW
structure. An important advantage of such a configuration
is the absence of the pump mode in the guided direction.
Moreover, it has also been shown that the properties of the
counterpropagating guided signal and idler modes can be
tuned using the spectral and spatial properties of the pump
[17,24,25].

The tight-binding (TB) method [26,27], which uses local-
ized single-cavity modes as a basis, can be applied to model
the evolution of light in such a coupled structure. Assuming
that all the cavities are identical and support the same mode
with complex frequency ω̃F , it has been shown [28] that in
the nearest-neighbor tight-binding (NNTB) approximation the
dispersion relation can be written as

ω̃Fk ≈ ω̃F [1 − β̃1 cos(kD)]

≡ ωFk − iγFk, (1)

where β̃1, D, and k are, respectively, the complex coupling
parameter, the periodicity of the CROW, and the Bloch vector
component. The imaginary part of the complex frequency is
associated with the loss of the Bloch modes in the CROW. It
is clear from Eq. (1) that these modes experience different loss
rates; it has been shown that the rates can differ by an order of
magnitude or more [22,29,30].
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FIG. 1. Schematic picture of the particular CROW structure with
period D formed from defects in a slab photonic crystal with a square
lattice of period d and height h. The blue region shows the region
covered by the pump. The origin of the coordinate system is at the
center of the slab, i.e., the center of the central cavity.

In our previous work we focused on the time evolution
of a state generated in a coupled-cavity system, and studied
the evolution and propagation of squeezing and entanglement
[22]. We presented analytic expressions for a general initial
state, but only presented detailed results for an initial state
that was a squeezed vacuum state in one of the cavities. In
this work we investigate both the generation and propagation
of entangled states in coupled-cavity systems. In addition, we
engineer the pump parameters to produce counterpropagating
pulses of the generated signal and idler modes, which are
entangled but are not individually squeezed. Including the
effects of intrinsic propagation loss, we calculate the number
of photons in each cavity and the CV correlation variance of
photons in different cavities.

Previous approaches for generating counterpropagating en-
tangled states have focused on photon pairs and been based
either on ridge waveguides with vertical pumping [16,17], or
on periodic waveguides with horizontal pumping [31]. The
new approach of using a CROW has a number of advantages.
First, the CROW allows us to control the group velocity and
the frequency at which there is zero group velocity dispersion.
Second, because a CROW can be modeled using a TB method,
we are able to specify and model the effects of intrinsic scat-
tering loss on the generated CV entanglement as a function of
propagation distance, which is important for any application.
Finally, using vertical pumping leads to counterpropagating
entangled states, with no copropagating pump at the outputs.

This paper is organized as follows. In Sec. II we present
the general theory of the generation and the evolution of the
generalized two mode squeezed state in lossy CROWs via
SPDC. In Sec. III we consider the special case of a pump that
is Gaussian in time and space, and derive analytic expressions
for the time dependence of the number of photons and the CV
correlations. In Sec. IV we present our results for a particular
CROW in a slab photonic crystal, and discuss how they might
be affected by the pumping configuration and the physical
properties of the structure. Finally, in Sec. V we present our
conclusions.

II. GENERAL THEORY

In order to determine both the generation and evolution
of the entangled squeezed states in the system, we divide the

analysis into two separate tasks. First, we study the creation of
the entangled photons via SPDC using the backward Heisen-
berg method [32], which is intrinsically a lossless approach.
Having determined the initial entangled states created by the
pump, we then include the loss to see how the generated state
evolves in time and how loss affects it. Note that this two-step
approach is valid because, for the parameters considered in
this paper, the pump pulse is short enough that the signal loss
is negligible over its duration.

A. Generation

There are two mode types that are relevant here, the
fundamental modes and the pump modes; we indicate them
by F and S, respectively. In the SPDC process, two photons
are generated in F modes from one pump photon in mode
S. Expanding the full displacement field D(r) in terms of the
modes of interest, we have

D(r) =
(∫

dk

√
h̄ωFk

2
DFk (r)âFk

+
∑

m

∫
dq

√
h̄ωSmq

2
MSmq(r)âSmq

)
+ H.c., (2)

where MSmq, ωSmq, and âSmq are the modes, eigenfrequencies,
and annihilation operators of the pump field, respectively, and
DFk , ωFk , and âFk are the corresponding quantities for the
generated signal and idler fields. Note that the integral over k
in Eq. (2) and in the rest of the paper (except where explicitly
noted) only ranges from −π/D to π/D. The continuous index
q is to identify the different pump modes in three dimensions
(3D) while m identifies the polarization state. The normaliza-
tion conditions for the modes are presented in Appendix A.
Here

[âFk, â†
Smq] = [âFk, âSmq] = 0,

[âSmq, â†
Smq′ ] = δm m′δ(q − q′),

[âFk, â†
Fk′ ] = δ(k − k′). (3)

For convenience we put

âFk → b̂k, âSmq → ĉmq, (4)

and the linear Hamiltonian is then given by

HL =
∫

dk h̄ωFkb̂†
kb̂k +

∑
m

∫
dq h̄ωSmqĉ†

mqĉmq, (5)

where we neglect the zero point energy and use only the
real part of ω̃Fk for the mode frequency. The nonlinear
Hamiltonian that should be added to HL to construct the full
Hamiltonian is [32]

HNL = −
∑

m

∫
dk1dk2dq S(k1, k2, m, q)b̂†

k1
b̂†

k2
ĉmq + H.c.,

(6)
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where S(k1, k2, m, q) is the coupling coefficient, which is
given by

S(k1, k2, m, q) = 1

ε0

√
h̄ωFk1 h̄ωFk2 h̄ωSmq

8

∫
dr χ

i jk
2 (r)

×
[
Di

Fk1
(r)D j

Fk2
(r)

]∗
Mk

Smq(r)

ε0n2(r; ωFk1 )n2(r; ωFk2 )n2(r; ωSmq)
,

(7)

where n(r; ω) is a real, position and frequency-dependent
refractive index and χ

i jk
2 (r) is the position-dependent second-

order nonlinear susceptibility.
We take the pump to be a classical pulse incident on the

slab, which we can expand as a superposition of the pump
modes MSmq(r). We borrow a strategy from Yang et al. [32]
and define asymptotic-in and asymptotic-out states to be,
respectively, the input and output states of the nonlinear region
at t = 0, taking t = 0 to be the time when the pump is centered
on the slab. For the asymptotic-in state |ψin〉 that describes the
classical pump pulse as a coherent state, we have

|ψin〉 = eα
∑

m

∫
dq φP (m,q)ĉ†

mq−H.c.|vac〉, (8)

where α is a complex number, and we normalize the complex
function φP(m, q) according to∑

m

∫
dq |φP(m, q)|2 = 1. (9)

The expectation value of the displacement field of the pump
pulse is then

〈ψin|D(r)|ψin〉 = α
∑

m

∫
dq

√
h̄ωSmq

2
φP(m, q)MSmq(r)

+ c.c. (10)

and since

〈ψin|ĉ†
mqĉmq|ψin〉 = |α|2|φP(m, q)|2 (11)

we can identify |α|2 as the expectation value of the number of
photons in the pump pulse. Following the backward Heisen-
berg picture approach [32], the asymptotic-out state for the
generated photons in the first approximation is then∣∣ψF

out

〉 = e
β√
2

∫
dk1dk2 φ(k1,k2 )b̂†

k1
b̂†

k2
−H.c.|vac〉, (12)

where φ(k1, k2) is the biphoton wave function, which from
Yang et al. [32] is given by

φ(k1, k2) = 2i
√

2πα

β h̄

∑
m

∫
dq φP(m, q)

× S(k1, k2, m, q)δ(ωSmq − ωFk1
− ωFk2

), (13)

where β is a real and positive normalization constant chosen
to ensure that

∫
dk1 dk2 |φ(k1, k2)|2 = 1.

While the biphoton wave function in general obeys the
symmetry φ(k1, k2) = φ(k2, k1), it can sometimes be useful
to work with a function that breaks this symmetry to focus
attention on a particular quadrant of (k1, k2) space. In this
work we will always choose the pump parameters such that
to a very good approximation, φ(k1, k2) is nonzero only when

k1 and k2 have opposite signs, as we detail in Sec. III below.
Then we can write∫ π/D

−π/D
dk1

∫ π/D

−π/D
dk2 φ(k1, k2)b̂†

k1
b̂†

k2

≈
∫ π/D

0
dk1

∫ 0

−π/D
dk2 φ(k1, k2)b̂†

k1
b̂†

k2

+
∫ 0

−π/D
dk1

∫ π/D

0
dk2 φ(k1, k2)b̂†

k1
b̂†

k2

= 2
∫ π/D

0
dk1

∫ 0

−π/D
dk2 φ(k1, k2)b̂†

k1
b̂†

k2
. (14)

We then define

�(k1, k2) ≡
√

2φ(k1, k2)
(k1)
(−k2), (15)

where 
(k) is the Heaviside function, such that we may
rewrite Eq. (12) as∣∣ψF

out

〉 = eβ
∫

dk1dk2 �(k1,k2 )b̂†
k1

b̂†
k2

−H.c.|vac〉. (16)

Employing a Schmidt decomposition [33,34], we have

�(k1, k2) =
∑

λ

√
pλμλ(k1)νλ(k2), (17)

for pλ > 0 with
∑

λ pλ = 1, where the Schmidt functions are
orthonormal,∫

dkμλ(k)μ∗
λ′ (k) =

∫
dkνλ(k)ν∗

λ′ (k) = δλ,λ′ . (18)

We extend the sets of μλ(k) and νλ(k) associated with pλ > 0
to form complete sets with∑

λ

μλ(k)μ∗
λ(k′) =

∑
λ

νλ(k)ν∗
λ (k′) = δ(k − k′), (19)

and with some of the pλ appearing in Eq. (17) then equal to
zero. Using Eqs. (16) and (17), the generated squeezed state
can be written as ∣∣ψF

out

〉 = Ŝ|vac〉, (20)

where the squeezing operator Ŝ can be written as

Ŝ = exp

(
β

∫
dk1dk2

∑
λ

√
pλμλ(k1)νλ(k2)b̂†

k1
b̂†

k2
− H.c.

)

= exp

(∑
λ

rλB̂†
λĈ†

λ −
∑

λ

r∗
λB̂λĈλ

)
, (21)

where rλ = β
√

pλ is the squeezing parameter,

B̂λ ≡
∫

μ∗
λ(k)b̂kdk, (22)

and

Ĉλ ≡
∫

ν∗
λ (k)b̂kdk. (23)

Using Eq. (19), it can be shown that [B̂λ, B̂†
λ′ ] = [Ĉλ, Ĉ†

λ′ ] =
δλ,λ′ and [B̂λ, Ĉ†

λ′ ] = [B̂λ, B̂λ′ ] = [Ĉλ, Ĉλ′ ] = [B̂λ, Ĉλ′ ] = 0.
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The importance of the Schmidt decomposition and the
operator transformation is that it enables us to express the
generated state as a generalized two-mode squeezed state,
where the modes are no longer the Bloch modes. As we shall
see in the next section, this will enable us to easily determine
the evolution of the state in the presence of loss.

B. Evolution

As mentioned earlier, we have assumed that the loss during
the generation process is negligible. However, the effect of
loss cannot be ignored when calculating the evolution of the
generated pulses down the CROW.

Following the formalism presented in our previous work
[22] on lossy coupled-cavity systems, the individual single-
mode cavity annihilation operator for the pth cavity, âp, can
be written in terms of the kth mode annihilation operator of
the coupled-cavity system b̂k as

âp(t ) =
√

D

2π

∫
b̂k (t )eikpDdk. (24)

The time evolution of the full coupled-cavity annihilation
operator can also be found by solving the adjoint master
equation for this open, lossy system [35]. We have previously
shown that the time dependence of the individual annihilation
operators is given by

b̂k (t ) = b̂ke−iω̃Fkt , (25)

where b̂k = b̂k (0) is the corresponding operator in the
Schrödinger representation [36]. Using Eqs. (24), (25), and
their complex conjugates, the time-dependent average photon
number in the pth cavity can be written as

〈â†
p(t )âp(t )〉 = D

2π

∫∫
dkdk′〈b̂†

kb̂k′ 〉e−i(k−k′ )pD

× (eiω̃∗
F [1−β̃∗

1 cos(kD)]t e−iω̃F [1−β̃1 cos(k′D)]t ), (26)

where we have used the lossy dispersion relation of the
CROW structure [Eq. (1)]. To facilitate the evaluation of
〈b̂†

kb̂k′ 〉, we introduce the restricted operators,

b̂k,+ ≡ 
(k)b̂k,

b̂k,− ≡ 
(−k)b̂k . (27)

Using these operators, we can write

〈b̂†
kb̂k′ 〉 = 〈b̂†

k,+b̂k′,− + b̂†
k,−b̂k′,−+b̂†

k,+b̂k′,++b̂†
k,−b̂k′,+〉. (28)

To evaluate each of these terms, we use the following Bogoli-
ubov transformations:

Ŝ†b̂k,+Ŝ = Ŝ†
∑

λ

μλ(k)B̂λŜ

=
∑

λ

μλ(k)[B̂λ cosh(rλ) − Ĉ†
λ sinh(rλ)], (29)

Ŝ†b̂k,−Ŝ = Ŝ†
∑

λ

νλ(k)ĈλŜ

=
∑

λ

νλ(k)[Ĉλ cosh(rλ) − B̂†
λ sinh(rλ)]. (30)

Using these in Eq. (28), we obtain

〈b̂†
kb̂k′ 〉 =

∑
λ

[μ∗
λ(k)μλ(k′) + ν∗

λ (k)νλ(k′)] sinh2(rλ). (31)

To study the degree of entanglement between the photons in
cavities p and p′ in a CROW, we use the correlation variance,
which is defined as

�2
p,p′ = 〈[�(X̂p − X̂p′ )]2〉 + 〈[�(Ŷp + Ŷp′ )]2〉, (32)

where

X̂p ≡ âp + â†
p,

Ŷp ≡ −i(âp − â†
p). (33)

It has been shown that �2
p,p′ < 4 can be considered as

the inseparability criterion for entanglement [37–40]. Using
Eq. (33) in Eq. (32), the time-dependent correlation variance
can be written as

�2
pp′ = 4 + 4(〈â†

pâp〉 + 〈â†
p′ âp′ 〉 − 〈âpâp′ 〉 − 〈â†

pâ†
p′ 〉). (34)

Following a procedure similar to that used to arrive at
Eqs. (26) and (31), one can derive the other expectation values
that are needed to evaluate the variances of the quadrature
operators and the correlation variance in the CROW structure.
Note that the inseparability criterion considered here, which is
based on the sum of the variances, is one of several different
sufficient criteria that have been employed to investigate CV
entanglement [41–43]. For instance, one can use the CV
inseparability criterion of Mancini et al. [41], which is given
in terms of the product of the same variances:

�
2
p,p′ = 〈[�(X̂p − X̂p′ )]2〉〈[�(Ŷp + Ŷp′ )]2〉 < 4. (35)

As we discuss in Appendix B, these two criteria give quali-
tatively similar results for the times over which entanglement
is observed in our system. Since the criterion of Duan et al.
gives a simpler final expression, we employ it throughout this
work.

III. RESULTS FOR A GAUSSIAN PUMP PULSE

The results of the previous sections are general and inde-
pendent of the temporal and spatial form of the pump pulse, as
long as φ(k1, k2) is nonzero only when k1 and k2 have opposite
signs. However, in this section we consider the special case of
a Gaussian pump pulse incident on the slab, and brought to a
Gaussian focus there.

We assume that the slab does not have a significant effect
on the pump pulse, and so take the pump modes to be plane
waves in free space and set n(r, ωSmq) = 1 in Eq. (7). Thus
we have

MSmq(r) =
√

ε0em,q

(2π )3/2
eiq·r, (36)

where em,q is the polarization unit vector. In what follows,
we assume that in the vicinity of the CROW, the pump is
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polarized in the y direction. Thus we obtain

φP(m, q) = δmyϕ(qx )F (qy, qz ), (37)

where

F (qy, qz ) = 1

2π

∫
dydz f (y, z)e−i(qyy+qzz) (38)

is the Fourier transform of the transverse profile

f (y, z) =
√

2√
πWS

e
− y2+z2

W 2
S eiqP

y2+z2

2RP , (39)

and qP is the value of qx at which φ(qx ) peaks. Here RP

and WS are the radius of curvature and spot size, respec-
tively, evaluated at x = 0 and qx = qP. We have assumed the
Rayleigh range to be much larger than the slab thickness,
which justifies the neglect of the Gouy phase. The prefactors
have been chosen so that the normalization condition Eq. (9)
becomes ∫

dqx|ϕ(qx )|2 = 1. (40)

Neglecting the dependence of the indices of refraction and
the frequencies under the square root on k1, k2, and q,
based on the small frequency range of the input pump pulse
and the limited range of the signal and idler photons in
the CROW, we can rewrite the biphoton wave function of
Eq. (15) as

�(k1, k2) = iα
√

π

β h̄
√

ε0

√
(h̄ωF )2h̄ωSy

∫
dqxϕ(qx )

×
∫

dr χ
i jy
2 (r)

[
Di

Fk1
(r)D j

Fk2
(r)

]∗
f (y, z)eiqxx

ε0n4(r; ωF )

× δ
(
cqx − ωFk1

− ωFk2

)

(k1)
(−k2). (41)

Because we have made the approximation that the transverse
profile of the pump does not depend on frequency (for the
frequencies of interest) in Eq. (41) we set ωSyq = cqx in the
Dirac delta function.

We now employ the nearest-neighbor tight-binding ap-
proximation [27] and expand the Di

Fk (r) modes in terms of
the single-cavity quasimodes Ni

F p(r) as

Di
Fk (r) =

√
D

2π

∑
p

Ni
F p(r)eikpD, (42)

which leads to the lossy frequency dispersion given in Eq. (1).
The single-cavity quasimodes and frequencies are calculated
in the standard way using finite difference time domain
calculations [27]. Assuming that the cavity modes are well

localized [44], we obtain

�(k1, k2) = iαD

2β h̄
√

ε0π

√
(h̄ωF )2h̄ωS

∫
dqxϕ(qx )

×
∑

p

∫
dr χ

i jy
2 (r)

[
Ni

F p(r)N j
F p(r)

]∗
f (y, z)eiqxx

ε0n4(r; ωF )

× e−i(k1+k2 )pDδ(cqx − ωFk1
− ωFk2

)
(k1)
(−k2).

(43)

We define

ϕ(q) =
√

WT /
√

2π exp

[
−

(
(q − qP )WT

2

)2
]
, (44)

and, because and spatial extent of the single-cavity quasi-
modes is small relative to that of the pump field, in the integral
in Eq. (43) we replace f (y, z) by

f (y = 0, z = pD) ≈
√

2√
πWS

e
− p2D2

W 2
S (45)

to obtain the approximate expression

�(k1, k2) = iαχ̄2

β

√
h̄ω2

F ωSWT

ε0(2π )3/2
e

−(k1+k2 )2W 2
S

4

∫
dqx e− (qx−qP )2W 2

T
4

× δ
(
ωSqx − ωFk1 − ωFk2

)

(k1)
(−k2), (46)

where

χ̄2 ≡
∫

dr χ
i jy
2 (r)

[
Ni

F0(r)N j
F0(r)

]∗

ε0n4(r; ωF )
eiqPx (47)

is the effective second-order susceptibility for the system [45]
(see Appendix C for more details). Note that there are two
ways in which phase matching appears in the expression for
the biphoton wave function. First, it appears as the Gaussian
factor containing WS in Eq. (46), which accounts for phase
matching along the waveguide. This is what provides the
constraint that the wave vectors of the two photons must
be of opposite sign. Second, it appears in the mode overlap
in the expression for the effective susceptibility [Eq. (47)],
where the factor of eiqPx will result in a degradation of the
generation rate if the slab is thick relative to 1/qP. As is
discussed in Refs. [16,17], one can reduce this degradation
by working with a layered photonic crystal slab to provide
quasiphasematching in the vertical (x) direction. However,
as this is not the focus of this work, we do not pursue this
here.

For ωFk ≡ ωF [1 − β1 cos(kD)], which we consider to be a
real quantity at this point, Eq. (46) can be rewritten as

�(k1, k2) = Q0

∫
dqx e

−(k1+k2 )2W 2
S

4 e− (qx−qP )2W 2
T

4 δ

{
qx − 1

c

[
ωFk1 + ωFk2

]}

(k1)
(−k2)

= Q0 exp

(−(k1 + k2)2W 2
S

4

)
exp

{
−

(
2ωF − β1ωF [cos (k1D) + cos (k2D)] − ωP

2c

)2

W 2
T

}

(k1)
(−k2), (48)
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FIG. 2. Biphoton wave function of Eq. (48) for three different pumping configurations: (a) σ+ D = σ− D = 0.47, (b) σ+ D = σ− D = 0.28,
and (c) σ+ D = 0.14, σ− D = 0.28. In all these three cases we consider k0 = π/2D.

where

Q0 ≡ iαχ̄2

βc

√
h̄ω2

F ωSWT

ε0(2π )3/2
. (49)

In order to derive analytic expressions for the photon num-
ber and correlation variance as a function of cavity index p, we
need to place further restrictions on the pump pulse. From the
first exponential in Eq. (48), we see that the biphoton wave
function will only be non-negligible if k2 is approximately
equal to −k1. Thus we set

k1 → k0 + δ1, k2 → −k0 + δ2, (50)

where the δi are small relative to WS , where k0 is determined
by the central frequency of the pump, through the equation

ωP = 2ωFk0 = 2ωF − 2β1ωF cos(k0D). (51)

In order to obtain a biphoton wave function for which there
is an analytic Schmidt decomposition, we take k0 = π/(2D)
and choose the frequency width parameter WT of the pulse to
satisfy c/WT 
 �, where � = 2ωF β1. Now, expanding the
cosines in Eq. (48) to first order in δ1 and δ2, the biphoton
wave function can be rewritten as

�(k0 + δ1,−k0 + δ2)

=
√

2

πσ+σ−
exp

(
− (δ1 + δ2)2

2σ 2+

)
exp

(
− (δ1 − δ2)2

2σ 2−

)
,

(52)

where

σ+ ≡
√

2

WS
(53)

and

σ− ≡
√

2c

WT β1ωF D sin(|k0|D)
. (54)

Strictly speaking, the biphoton wave function of Eq. (52) does
not satisfy the restriction that it is zero unless k1 > 0 and
k2 < 0. However, as long as σ+ and σ− are chosen to be
small enough, then these conditions are satisfied to a very
high degree. In what follows, we shall only consider situations
where this is the case. Using the normalization condition

∫
dk1 dk2|�(k1, k2)|2 = 1, it can be shown that

Q0 =
√

2

πσ+σ−
. (55)

In Fig. 2 we plot three sample biphoton wave functions of the
form given in Eq. (52) for different σ+ and σ− for k0 = π/2D.

To graphically illustrate the validity of the assumptions
made to obtain Eq. (52), in Fig. 3 we plot the dispersion of
our CROW. The physical parameters of the CROW are from
Ref. [27]. It consists of a dielectric slab of refractive index
n = 3.4 having a square array of cylindrical air voids of radius
a = 0.4d , height h = 0.8d , and lattice vectors a1 = d x̂ and
a2 = d ŷ, where d is the period. The cavities are point defects
formed by periodically removing air voids in a line with D =
2d (see Fig. 1). The complex frequency ω̃F and the complex
coupling parameter β̃1 of the structure are (0.305 − i7.71 ×
10−6)4πc/D, and 9.87 × 10−3 − i1.97 × 10−5, respectively.
To visualize the biphoton wave function superimposed on

0 0.5 1.0

kD/π

0.303

0.305

0.307

ω
D

/4
π
c

k0

ωP/2

FIG. 3. The CROW dispersion relation and biphoton wave func-
tion. The solid black line shows the frequency as a function of the
Bloch vector for the CROW structure. The dashed horizontal line
gives the pump frequency divided by two. The dashed green line
gives the function �(k, −k) for k0 = π/(2D). The two vertical solid
blue lines indicate the FWHM in k, while the shaded blue region
indicates the FWHM in frequency, both of which can be found from
Eq. (48) for σ+D = σ−D = 0.47.
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FIG. 4. Maximum number of Schmidt modes required to be
considered in � as a function of σ+/σ− to ensure Err < 0.1%.

the CROW dispersion, we plot �(k,−k) for WS = 3D and
σ+ = σ− in Fig. 3 as well. As can be seen, the first-order
expansion of cos(k1D) and cos(k2D) about k0 and −k0 is
accurate as the dispersion within this range is very close to
linear. In order for our Schmidt decomposition to be valid for
this structure, σ+D and σ−D cannot be increased significantly
beyond the chosen value of 0.47 otherwise the biphoton wave
function will not be confined to the quadrant where k1 > 0 and
k2 < 0. Note that increasing the pump width to higher values,
WS > 3D, increases the accuracy of our approximation, as
is evident from Figs. 2(b) and 2(c) where WS is 5.05D and
10.10D, respectively.

Before employing a Schmidt decomposition, we present
the relation between σ± and the temporal and spatial full width
at half maximum (FWHM) of the pump pulse. Using Eqs. (39)
and (54), the temporal FWHM of the pump can be written as

�tFWHM = 2
√

ln 2τ

σ−D
, (56)

where τ ≡ 1/Re(ω̃F β̃1) is the time for a pulse with Bloch
vector k = k0 = π/(2D) to travel one period. Similarly, using
Eqs. (44) and (53), the spatial FWHM of the pump is found
to be

�rFWHM = 2
√

ln 2

σ+
. (57)

Using these two equations, one can obtain a clear un-
derstanding of the necessary pumping conditions. For in-
stance, the quantities considered in Fig. 2(a) correspond to
a pump with 3.54τ and 3.54D as the temporal and spatial

FWHM, respectively. As we show later, for our CROW, the
propagation loss in the system is very small while the
squeezed light is being generated, which validates the neglect
of loss during the generation process.

The special form of the biphoton wave function, Eq. (52),
allows us to perform a Schmidt decomposition analytically
[46–48] for σ− � σ+ as√

2

πσ+σ−
exp

(
− (δ1 + δ2)2

2σ 2+

)
exp

(
− (δ1 − δ2)2

2σ 2−

)

=
∑

λ

√
pλψλ(δ1)ψλ(δ2), (58)

where

pλ = 4σ+σ−
(σ+ − σ−)2λ

(σ+ + σ−)2(λ+1) , (59)

ψλ(δ) = (−i)λ

√ √
2

2λλ!
√

πσ+σ−

× exp

(
− δ2

σ+σ−

)
Hλ

( √
2δ√

σ+σ−

)
, (60)

and the Hλ(x) are Hermite polynomials of order λ. Note that
the Schmidt number is given by [49]

K = 1∑
λ p2

λ

= σ 2
+ + σ 2

−
2σ+σ−

. (61)

Using Eq. (59) for the special case where σ− = σ+ = σ ,
it can be shown that the only nonzero term in Eq. (64) is for
λ = 0. However, in general, one needs to include several of
the Schmidt modes (up to λ = λmax) to accurately represent
the biphoton wave function. To quantify the accuracy of the
Schmidt decomposition used in our calculations, we define an
error function as

Err =
√∫

dk1 dk2 |�(k1, k2) − �App(k1, k2)|2∫
dk1 dk2 |�(k1, k2)|2 , (62)

where � and �App are the exact and approximate expressions,
respectively, given by Eq. (52) and

�App(k0 + δ1,−k0 + δ2) =
λmax∑
λ=0

√
pλψλ(δ1)ψλ(δ2). (63)

In Fig. 4 we plot the index of the maximum Schmidt mode
needed to be included in �App, in order to ensure Err < 0.1%.
For example, as can be seen, when σ− = 2σ+, one needs to
include six terms (λmax = 6) to achieve the desired accuracy.

Using these results in Eqs. (26) and (31), the time-
dependent average photon number in the pth cavity is found
to be

〈â†
p(t )âp(t )〉 = D

2π
e−2Re{iω̃F [1−β̃1 cos(|k0|D)]t} ∑

λ

sinh2(rλ)

√
2σ+σ−π

2λλ!

(
|Hλ(S̃p−)|2e−(

(S̃∗2
p−+S̃2

p− )

2 ) + |Hλ(S̃p+)|2e−(
(S̃∗2

p++S̃2
p+ )

2 )

)
, (64)

where

S̃p± = (ω̃F β̃1D sin(|k0|D)t ± pD)

√
σ+σ−

2
. (65)
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The time-dependent average photon number in the pth cavity when σ+ = σ− can be simplified to

〈â†
p(t )âp(t )〉 = σD√

2π
e−2Re{iω̃F [1−β̃1 cos(|k0|D)]t} sinh2(r0)

(
e−(

(S̃∗2
p−+S̃2

p− )

2 ) + e−(
(S̃∗2

p++S̃2
p+ )

2 )
)
. (66)

We note that using Eq. (66) for a lossless system, one finds that the total number of photons in the CROW is 2 sinh2 (r0),
independent of σ , which agrees with the total number of generated photons in any two-mode squeezed state.

Following a procedure similar to that used to arrive at Eq. (64), one can derive the following expectation value for 〈âp(t )âp′ (t )〉,
which is needed in Eq. (34) to evaluate the variances of the quadrature operators and the correlation variance in the CROW
structure:

〈âp(t )âp′ (t )〉 = D

2π

∑
λ

(−1)λ[cosh(rλ) sinh(rλ)]e−i2ω̃F [1−β̃1 cos(|k0|D)]t

√
2σ+σ−π

2λλ!

×
[

e−i|k0|(p−p′ )DHλ(S̃p+)Hλ(S̃p′−)e−(
(S̃2

p++S̃2
p′− )

2 ) + ei|k0|(p−p′ )DHλ(S̃p−)Hλ(S̃p′+)e−(
(S̃2

p−+S̃2
p′+ )

2 )

]
. (67)

Note that 〈â†
p(t )â†

p′ (t )〉 is simply the complex conjugate of
Eq. (67).

In the next section we will use these equations to determine
the photon number and correlation variance under a variety of
different pump conditions.

IV. RESULTS

Using the expectation values derived in Sec. III, we can
now study the photon evolution and inseparability criteria for
the generalized two-mode squeezed light inside the CROW
structure. In Fig. 5 we plot the average number of photons
in the pth cavity for p = 0, 40 as a function of time for both a
lossy (solid green line) and lossless (dashed gray line) system.
The propagation of light between the coupled cavities and ef-
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t/τ
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2.0

4.0

a
† p
a

p

(c)

p = 40

FIG. 5. Average photon number in the (a) central and (b) 40th
cavities of the CROW as a function of time for σ+ D = σ− D = 0.47
and β = 2.2. (c) The time-dependent average photon number for
σ+ D = 0.14, σ− D = 0.28, and β = 2.2. The dashed gray lines show
the case in which the effect of loss is ignored.

fect of loss on the number of photons in each cavity is evident
in Figs. 5(a) and 5(b), where σ+ D = σ− D = 0.47. Because
the system and pump are spatially symmetric, the results are
identical for p → −p. In Fig. 5(c) we plot the time-dependent
average photon number in the 40th cavity with β = 2.2 still,
but with the σ+ D = 0.14 and σ− D = 0.28. As can be seen,
the pulse width is wider for this smaller σ+, as expected.

Since our input pump state is a coherent state, the number
of pump photons is NP = |α|2. We now examine what the
pump parameters will be for a specific case of interest. We
again consider the case where σ+D = σ−D = 0.47; using
Eqs. (56) and (57) this gives temporal and spatial FWHM for
the pump of 295 fs and 3.3 μm, respectively. We choose the
CROW material to be Al0.35Ga0.65As due to its high nonlinear-
ity and relatively large band gap. In addition, we choose the
pump wavelength to be λS = 775 nm, which not only results
in generating counterpropagating signal and idler photons at
the telecommunication wavelength λF = 1550 nm, but also
ensures operation below the band gap of Al0.35Ga0.65As.
Choosing the periodicity of the CROW structure to yield a
signal central wavelength of 1550 nm, gives D ≈ 0.9 μm.
Using Eq. (47) and the normalization condition given in
Appendix A, χ̄2 for our structure is approximately given
by χ̄2 ≈ χ2/n2(ωF ), where χ2 ≈ 100 pm/V, appropriate for
AlGaAs alloys [12,50,51], and n ≈ 3.4 at ωF . We now seek to
determine the approximate number of pump photons under the
above conditions that will give a squeezing parameter of 2.2.
Employing Eqs. (49) and (55), the average number of photons
in the pump is found to be 7.4 × 1010, which gives a total
pump pulse energy of approximately 19 nJ. We note that all
of the above pump characteristics are easily achievable from
a Ti:sapphire laser.

In Fig. 6 we plot the time-dependent correlation variances
for different sets of lossy and lossless cavities in blue and
gray, respectively. Note that there are fast oscillations that
are not observable on this timescale. The dashed lines in the
insets show the inseparability criteria below which the light
is considered to be entangled. Here we only focus on cases
where the two cavities considered are located the same dis-
tance from the central cavity, as this will yield the maximum
entanglement; however, using Eq. (34) one can explore the
entanglement between any two cavities of the CROW. As can
be seen in Figs. 6(a) and 6(b), due to the loss in the system,
the degree of entanglement decreases as the system evolves in
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FIG. 6. (a) and (b) Correlation variance between different pairs
of cavities in the CROW as a function of time for σ+ D = σ− D =
0.47 and β = 2.2. (c) The time-dependent correlation variance for
σ+ D = 0.14, σ− D = 0.28, and β = 2.2. The results for a lossless
system are shown in gray.

time, whereas for a lossless system (the gray color) the degree
of entanglement does not change as the light propagates.

In Fig. 7 we plot the maximum number of photons for a
lossless and lossy CROW as a function of the cavity index p.
As expected, when loss is included, the number of photons
decreases as we move away from the central cavity. In Fig. 7
we also plot the minimum correlation variance for the lossless
and lossy CROW as a function of cavity index p. As can be
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FIG. 7. Maximum number of photons (left axis) as a function of
the cavity index and minimum correlation variances (right axis) be-
tween different symmetrically displaced pairs of cavities for σ+ D =
σ− D = 0.47 and β = 2.2. The solid black and dashed gray lines
represent the results from Eqs. (69) and (70) with and without
including exp[(VItmax)2 σ 2

2 ], respectively.

seen, due to the reduction in the number of photons in the
lossy case, there is a decrease in the degree of entanglement
as a function of p. For instance, the minimum correlation
variance at the tenth cavity is 0.9 times the corresponding
value at the 100th cavity.

For a general pump, the evolution equations for the photon
number and correlation variance are quite complicated and it
is difficult to discern the general behavior or the effects of loss
from the full equations. However, for the special case where
σ+ = σ− = σ and k0 = π/2D, approximate analytic expres-
sions can be obtained. We begin by defining the complex
quantity Ṽ = VR + iVI = ω̃F β̃1D, which enables us to rewrite
S̃2

p± as

S̃2
p± = [(VR + iVI )t ± pD]2 σ 2

2

= [(VRt ± pD)2 + 2i(VRt ± pD)VIt − (VIt )2]
σ 2

2
. (68)

Considering only the dominant terms in Eq. (66), to a very
good approximation one can show that the time at which the
photon number in the pth cavity peaks in a lossless system
is tmax = pτ ≈ p/ωF β1. As can be seen in Fig. 5, the photon
number peaks at essentially the same time in both lossy and
lossless system. Using tmax, we are able to derive the following
approximate expression for the maximum photon number in
the pth cavity (for p > 0) in a lossy system:

〈a†
pap〉max ≈ σD√

2π
sinh2(r0)e−2γF pτ e(VI pτ )2 σ2

2 . (69)

Following the same procedure and using Eqs. (34) and (67),
one obtains(

�2
p,−p

)
min ≈ 4 + 4

σD√
2π

[2 sinh2(r0) − sinh(2r0)]

× e−2γF pτ e(VI pτ )2 σ2

2 . (70)

We note first that both the photon number and the deviation
of the correlation variance from 4 depend linearly on σ .
Thus, as expected, the separability is largest when the pump
is short in time and narrow in space (for a fixed squeezing
parameter r0). Now, according to Eqs. (69) and (70), under
the above-mentioned pumping conditions the effect of loss on
the maximum number of photons and on the entanglement
as a function of p is given by two exponential factors. The
first factor accounts for the intrinsic loss in an individual
cavity (which is also the intrinsic loss of the Bloch mode with
k = π/2D). The second factor accounts for the loss dispersion
in the CROW, and results in a reduction in the loss. Of course,
these analytic results are only valid when the effect of the
dispersion of the loss is small.

We now consider how well these approximate expressions
reproduce the exact results. In Fig. 7 we plot the results of
Eqs. (69) and (70) with (black solid line) and without (red
solid line) including the factor exp[(VI pτ )2 σ 2

2 ]. As can be
seen, for this CROW the full approximate analytic expressions
very accurately reproduces the exact results. Moreover, to
a very good approximation, one can evaluate Eqs. (69) and
(70) neglecting the loss-dispersion factor exp[(VI pτ )2 σ 2

2 ]. For
example, for σ−D = σ+D = 0.47 and p = 350, the first and
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TABLE I. The maximum number of photons and the deviation
of the minimum of the correlation variance from the inseparability
threshold of 4 in a lossless system for β = 2.2 and different pumping
configurations.

σ−D 0.28 0.28 0.47 0.47 0.47
σ+D 0.14 0.28 0.12 0.28 0.47

〈a†
pap〉max

1.23 2.24 0.77 2.51 3.74

4 − (�2
p,−p)

min
0.38 0.44 0.58 0.65 0.74

the second exponential factors in Eqs. (69) and (70) are
0.18 and 1.10, respectively, showing that loss dispersion only
changes the results by 10%. In general, it can be shown that
in order to have less than 10% error in evaluating the photon
number and the difference of the correlation variance from 4,
the range of p must be limited to p �

√
2/(10VIτσ ).
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FIG. 8. (a) Maximum number of photons and (b) the deviation
of the minimum of the correlation variance from the inseparability
threshold of 4 for a lossy system and selected range of cavities
for β = 2.2 and different pumping configurations. The solid lines
represent the results from data given in Table I and the exponential
factor exp (−2γF pτ ), and the markers show the results from the full
calculations.
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FIG. 9. Relative deviation of the results by the exponential factor
exp (−2γF pτ ) from the results of the full calculation as a function of
σ+/σ− for p = 350 and σ−D = 0.47.

Finally, we now consider the more general cases in which
σ− is not necessarily equal to σ+. Under these conditions, we
cannot derive simple expressions for the maximum photon
number and entanglement as a function of p. We present the
results of the full calculations for a lossless system in Table I
for a number of different pump durations and spatial widths;
all other parameters are the same as in the previous plots. As
can be seen, the maximum entanglement is obtained when the
pump duration is as short as possible and the pump width is as
narrow as possible (i.e., σ+D = σ−D = 0.47 for our system).

We have also performed full calculations for the evolution
in the presence of loss for different pump configurations. In
Fig. 8 we compare the results of the full calculations with the
results when the loss is incorporated approximately using only
the exponential factor exp (−2γF pτ ). We plot the maximum
number of photons and the deviation of the minimum of the
correlation variance from the inseparability threshold of 4 for
a lossy system as a function of p for different pumping config-
urations. As can be seen, for short distances from the central
cavity (small p), the effect of loss on the result can, to a very
good approximation, still be explained by only including the
exponential factor exp (−2γF pτ ). However, for the cavities
far from the central cavity (large p), although the general
trends can still be predicted by such an approximation, the dif-
ference between the exact and approximation results becomes
pronounced and the validity of this approximation becomes
questionable. In order to show the difference between exact
and approximate results for large p, in Fig. 9 we plot the rel-
ative difference between the results from the full calculations
and those from approximating the loss in the system by only
considering the exponential factor exp (−2γF pτ ) as a function
of σ+/σ−, for p = 350 and σ−D = 0.47. As expected, when
σ+ = σ−, we obtain a relative error of approximately 5.4%,
which is simply due to the dispersion factor exp[(VI pτ )2 σ 2

2 ].
However, in general, the error depends on σ+/σ−, and is
different for the photon number and correlation variance, due
to the different way in which loss dispersion affects these two
quantities. As can be seen in this specific example, evaluating
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4 − (�2
p,−p)

min
using the approximation method results in a

9% deviation from the results of the full calculations when
σ+ = 0.5σ−, while the relative difference for the maximum
number of photons is always less than 5.4%. It is thus evident
that a simple exponential factor will capture the general effect
of loss on the correlation, but it may not be very accurate
depending on the structure and the pump conditions.

V. CONCLUSION

In this work we studied the generation and propagation of
entangled states in lossy coupled-cavity systems. We applied
the tight-binding method to evaluate the fields and complex
frequencies for the leaky modes of lossy coupled-cavity
system, and presented analytic time-dependent expressions
for the photon number and correlation variance in a lossy
CROW structure. We showed how properties such as the
average number of photons in each cavity and the correlations
between cavities are affected by loss. For the CROW structure
considered in this work, we found that as the light gets far
from the central cavity, the effects of loss become more
significant and cannot be ignored. Moreover, we obtained
simple, approximate analytic expressions for the effects of
loss on the propagation of the generated light in the CROW,
and have shown that they can be used to predict general
trends. However, depending on the details of the pumping
conditions and the CROW structure itself, the accuracy of this
approximation varies, and to get an accurate result, specif-
ically for cavities far from the central cavity, the effect of
loss cannot be well described using a simple exponential
factor that is given by the loss in an individual cavity. Using
full numerical results is suggested for optimization. Yet these
analytic results allow researchers to easily explore the spectral
and spatial pumping configurations needed to generate the
counterpropagating entangled states in a CROW.
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APPENDIX A

In this Appendix we present the normalization condition
for the modes. Considering the refractive index of the material
to be nondispersive within the range of frequency considered
here, following Yang et al. [32], the normalization conditions
can be written as∫

dr
D∗

Fk (r) · DFk′ (r)

ε0n2(r; ωF )
= δ(k − k′) (A1)

and ∫
dr

M∗
Smq(r) · MSm′q′ (r)

ε0n2(r; ωSm)
= δmm′δ(q − q′). (A2)

Using Eq. (42) in Eq. (A1) we obtain the normalization
condition for the single-cavity modes as∫

dr
N∗

F p(r) · NF p′ (r)

ε0n2(r; ωF )
= δpp′ . (A3)

APPENDIX B

In this Appendix we provide a road map on how to evaluate

the CV inseparability criterion of Mancini et al. (�
2
p,p′ < 4) in

our system and then compare it with our results obtained using
the criterion of Duan et al. (�2

p,p′ < 4).

Rewriting the variances within �
2
p,p′ < 4 [Eq. (35)] in

terms of creation and annihilation operators, we find that
its evaluation requires analytic expressions for 〈â†

p(t )âp(t )〉,
〈â†

p′ (t )âp′ (t )〉, 〈âp(t )âp′ (t )〉, 〈â†
p(t )â†

p′ (t )〉, and 〈â†
p(t )âp′ (t )〉,

only the last of which was not evaluated in the main text. Fol-
lowing a procedure similar to that used in deriving Eqs. (64)
and (67), we obtain

〈a†
p(t )ap′ (t )〉

= D

2π
e−2Re{i�̃0[1−β̃1 cos(|k0|D)]t} ∑

λ

sinh2(rλ)

√
2σ+σ−π

2λλ!

×
[

ei|k0|(p−p′ )DHλ(S̃∗
p+)Hλ(S̃p′+)e−(

(S̃∗2
p++S̃2

p′+ )

2 )

+ e−i|k0|(p−p′ )DHλ(S̃∗
p−)Hλ(S̃p′−)e−(

(S̃∗2
p−+S̃2

p′− )

2 )

]
. (B1)

Using this expression, we calculate Mancini’s correlation
variance and compare it to Duan’s for the configuration given
in Fig. 6(b). Comparing the time intervals over which the in-
separability criteria are met [�(t/τ )Ent.], we find that the time
intervals are identical [�(t/τ )Ent. = 37.24] in both cases. In
addition, we find that the temporal FWHM of the deviation of

�
2
p,p′ and �2

p,p′ from 4 are 5.12τ and 4.96τ , respectively. The
very slight difference between the results indicates that there
is no particular advantage to employing Mancini’s criterion.
Thus, in this work, we only use the criterion of Duan et al.
since it provides more straightforward analytical expressions
and is slightly less computationally intensive.

APPENDIX C

In this Appendix we present an accurate approximate
analytic result for the summation in Eq. (43). Starting from
Eq. (43) we have

S =
∑

p

e
− p2D2

W 2
S e−ip(k1+k2 )D. (C1)

Approximating this sum as an integral, we obtain

S ≈
∫

d p e
− p2D2

W 2
S e−ip(k1+k2 )D = 1

D

∫
d p′ e

− p′2
W 2

S e−i2π p′k′
,

(C2)

where p′ = pD and k′ = k1+k2
2π

. Now using∫ ∞

−∞
e−ax2

e−2π ikxdx =
√

π

a
e− π2k2

a , (C3)

we can write

S = WS
√

π

D
exp

[
−

(
(k1 + k2)WS

2

)2
]
. (C4)

One can show numerically that for WS � 2D, the approxima-
tion made here is accurate to within 0.01%.
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