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Multifaceted dynamics and gap solitons in PT -symmetric periodic structures
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We report the role of PT symmetry in switching characteristics of a highly nonlinear fiber Bragg grating
(FBG) with cubic-quintic-septimal nonlinearities. We demonstrate that the device shows bistable (multistable)
states in the broken regime as a direct consequence of the shift in the photonic band gap influenced by both
PT symmetry and higher-order nonlinearities. We also numerically depict that such FBGs provide a productive
test bed where the broken PT -symmetric regime can be exploited to set up all-optical applications such as
binary switches, multilevel signal processing, and optical computing. Unlike optical bistability (OB) in the
traditional and unbroken PT -symmetric FBG, it exhibits many peculiar features such as flat-top stable states and
ramplike input-output characteristics before the onset of OB phenomenon in the broken regime. The gain-loss
parameter plays a dual role in controlling the switching intensities between the stable states which are facilitated
by reversing the direction of light incidence. We also find that the gain-loss parameter tailors the formation of gap
solitons pertaining to transmission resonances which clearly indicate that it can be employed to set up optical
storage devices. Moreover, the interplay between gain and loss and higher-order nonlinearities brings notable
changes in the nonlinear reflection spectra of the system under constant pump powers. The influence of each
control parameter on the switching operation is also presented in a nutshell to validate that FBG offers more
degrees of freedom in controlling light with light.
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I. INTRODUCTION

In the era of high-speed information exchange, all-optical
switches and logic devices are versatile components in all-
optical communication systems which have led to widespread
research across different devices such as couplers [1,2], Bragg
gratings [3], ring resonators [4], and so on. Among these
devices, fiber Bragg gratings (FBGs) have engrossed an ever-
mounting attention as they afford a larger degree of free-
dom and flexibility to engineer any spectral characteristics
of interest [5] and are potential candidates for provision-
ing, protection, packet switching, and external modulation
applications [6] in addition to sensing, dispersion compen-
sation, and filtering functionalities [7]. Since the bandwidth
of the device is very narrow, a small change in refractive
index introduced into the system via an external signal is
sufficient enough to detune the in-built photonic band gap
from its resonance wavelength. Thus, the structure allows
light transmission at the wavelengths which were inhibited to
transmit previously. This gives the comprehensive picture of
the underlying mechanism to realize all these functionalities
including optical switching [8].

Optical bistability (OB) is a ubiquitous phenomenon in
the framework of nonlinear feedback systems such as Bragg
gratings [8], nonlinear Fabry-Pérot cavity [9], ring resonators
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[10], and even in the case of nonlinear directional couplers
with the aid of metamaterials [11,12]. As the name suggests,
any nonlinear variation in input intensity results in two or
more stable states [optical multistability (OM)] for the given
incident intensity. Apart from its conventional application in
the form of optical switches or memory devices where the two
stable states can be customized as binary logic, researchers
have also exploited the possibility to build all-optical tran-
sistors, limiters, inverters [13], and signal processing devices
[14]. In principle, optical bistability emanates itself as a result
of light-dependent refractive index changes or absorption
changes inside the structure upon which they are categorized
as dispersive or absorptive optical bistability [15]. Ever since
the breakthrough work by Winful et al. [16], the studies on
optical bistability in nonlinear feedback structures primarily
focused on understanding the underlying physics behind its
operation at various conditions [8,17] which in turn aided
the possibility to realize various nonlinear applications [13].
These studies indicate that the bistable curve or the hysteresis
loop can be manipulated at will with the aid of any control
parameter originating from the device such as device length,
detuning parameter, the strength of modulation [3], or via
an external control in the form of probe and pump pulse
parameters [13]. Some of these factors will be discussed in
detail in this paper in later sections.

A suitable choice of materials is an essential ingredient to
realize an all-optical switch with low threshold and high figure
of merit (FOM) [18,19]. In this regard, optical properties of
many nonlinear glasses have been reported in the literature
from both theoretical [20] as well as experimental [18,19]
perspectives. Particularly, chalcogenide glass that accounts
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for both cubic-quintic and septimal nonlinearities has been
subjected to intense investigations [18–25]. The nonlinear
coefficient of chalcogenide is quite larger than silica and is
of the order of 103. Thus, it can reduce the threshold level
considerably [26]. Yosia et al. have reported the formation of
nonoverlapping bistable states influenced by a phase-shifted
cubic-quintic grating [27]. It is noteworthy to mention that
unlike Kerr nonlinearity driven bistability, it offered two com-
pletely different approaches to switch into the high state [28].
Recently, Yosefi et al. have demonstrated the soliton switching
in nonlinear FBG with higher-order nonlinearity [14]. These
kinds of studies ensure that higher-order nonlinearities when
properly exploited can play a remarkable role in the next-
generation signal processing devices.

Having discussed concisely the general aspects of the de-
vice, we now wish to stress the importance of PT symmetry
in the current generation optical devices. In the context of
optics, the practicality of inherent loss in any functional device
was not considered by the scientific community for many
years [29]. But, with the advent of parity-time-symmetry
(PT ) concept, these losses are no longer considered to be
detrimental by virtue of the delicate balance between am-
plification and attenuation [30,31] in the system as in the
case of PT -symmetric couplers [32,33], PT metamaterials
[34], PT microring laser [35], PT gratings [36,37], PT laser
cavities [38,39], etc. Although this notion traces its origin to
the field of quantum mechanics way back in 1998 [40], the
translation of the concept on to photonic platform paved the
way for its major theoretical advancements [31,41,42] and the
first experimental realization by Rütter et al. on a LiNbO3

waveguide [43]. PT -symmetric photonics is regarded as the
booming field in the last decade or so thanks to some uncon-
ventional features possessed by these devices ranging from
broadband unidirectional invisibility [41], coherent perfect
absorption [39] to coherent amplification [44], controllable
bidirectional laser emission [35], and so forth, which are not
viable in the perspective of existing systems. Driven by the
luxury that refractive index, gain and loss coefficients can
be manipulated at ease [31], there is an increasing number
of contributions in the literature dedicated to potential appli-
cations of PT -symmetric systems, namely, optical isolators,
low-power optical diodes [45], signal processing devices [46],
single-mode lasing cavities [38], soliton switches [32], and
logic devices [46].

To realize a PT -symmetric periodic structure, it is nec-
essary to maintain an equilibrium between generation and
annihilation of photons so that it offers no net amplification.
In a nutshell, the complex refractive index should satisfy the
condition n(z) = n∗(−z). In analogy to its quantum counter-
part, optical PT -symmetric media exhibit phase transition at
the so-called exceptional point. Hence, the operation of the
PT -symmetric grating is stable below a critical amount of
gain and loss and when it is violated, the grating exhibits
exponential energy growth or lasing behavior [46].

Surprisingly, the inclusion of loss to the traditional struc-
tures had an affirmative role in its functionality [29]. For
instance, contemporary work by Govindarajan et al. on steer-
ing dynamics of PT -symmetric coupled waveguides [32]
has marked an immense reduction in the power requirement
for switching and huge amplification of pulse power. The

interplay between nonlinearity and PT symmetry has im-
pacted in a fall in intensity of the bistable threshold as reported
by Phang et al. [37,46,47]. They have also reported a switch-
ing time of 2.5 ps in one of their works, which hints that these
systems are well suited to exploit switching and logic oper-
ations [37]. It is worthwhile to mention that PT -symmetric
optical devices are undoubtedly far more competent than
systems exhibiting no loss or systems with only gain [29].
As of now, the switching characteristics in PT -symmetric
fiber Bragg gratings is briefly studied only with conventional
silica grating with third-order nonlinearity [48]. Following
these works, we here study the role of defocusing quintic
nonlinearity combined with self-focusing cubic and septimal
nonlinearities on switching of PT -symmetric fiber Bragg
gratings. We highlight the role of every individual parameter
in dictating the bistable and multistable phenomena in both
the unbroken as well as broken PT -symmetric regimes. The
study also includes the formation of gap solitons correspond-
ing to the resonance peaks of transmission curves in the
presence of higher-order nonlinearities and PT symmetry.
We have also investigated the effects of nonlinearities and
PT symmetry on the spectra of the system in the presence
of constant pump power.

The plan of the paper is as follows. Section II describes
the necessary mathematical formulation for the system of
interest. Sections III and IV give brief explanations of the
switching characteristics in the unbroken and broken PT -
symmetric regimes, respectively. Section V reveals the gap
soliton formation at resonance peaks. Section VI elucidates
the switching characteristics of the system in the presence
of constant pump power. Finally, in Sec. VII we discuss the
significance of the results.

II. THEORETICAL MODEL

We consider a PT -symmetric fiber Bragg grating of period
� inscribed on the core of a fiber of refractive index n0 and
length L. The nonlinearity of the fiber is not merely restricted
to cubic nonlinearity, but it also takes account of the quintic
and septimal nonlinearities. The complex refractive index
distribution [n(z)] profile that describes such a PT -symmetric
system is mathematically written as [49]

n(z) = n0 + n1R cos

(
2π

�
z

)
+ in1I sin

(
2π

�
z

)

+ n2|E |2 + n4|E |4 + n6|E |6. (1)

The strength of modulation parameter is defined by (n1),
which has both real (n1R) and imaginary parts (n1I ) and the
imaginary term stands for gain (+n1I ) or loss (−n1I ) dictated
by the so-called PT -symmetric potential, and the last three
terms signify self-focusing (n2, n6 > 0) and self-defocusing
(n4 < 0) nonlinearities. The transverse electric field E (z, t )
inside the FBG is the superposition of two counterpropagating
modulated modes which can be written mathematically as

E (z, t ) = E f (z, t ) exp[i(β0z − ω0t )]

+ Eb(z, t ) exp[−i(β0z − ω0t )], (2)

where the envelope functions E f (z, t ) and Eb(z, t ) that are
used to describe the electric fields in the forward and
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backward directions obey the slowly varying envelope (parax-
ial) approximation (SVEA). The propagation constant of the
fiber without grating is given by β0 = 2πn0/λ0, where λ0 is
the free-space wavelength. The Bragg wavelength of the grat-
ing is expressed as λb = 2n0�. Practically, the Bragg wave-
length is taken in the telecommunication regime, which lies at

1.55 μm. But, it can be chosen anywhere from visible region
to infrared by suitably altering the grating period (�). Note
that the typical values of � for a short FBG can vary from
200 to 800 nm.

The coupled mode equations, which describe the light
propagation in the proposed system, are given by [27,50]

+i

(
∂E f

∂z
+ n0

c

∂E f

∂t

)
+ (k0 + g0) exp(−i2δ0z)Eb + γ0(|E f |2 + 2|Eb|2)E f − Γ0(|E f |4 + 6|E f |2|Eb|2 + 3|Eb|4)E f

+ σ0(|E f |6 + 12|E f |4|Eb|2 + 18|Eb|4|E f |2 + 4|Eb|6)E f = 0, (3)

−i

(
∂Eb

∂z
− n0

c

∂Eb

∂t

)
+ (k0 − g0) exp(+i2δ0z)E f + γ0(|Eb|2 + 2|E f |2)Eb − Γ0(|Eb|4 + 6|E f |2|Eb|2 + 3|E f |4)Eb

+ σ0(|Eb|6 + 12|Eb|4|E f |2 + 18|E f |4|Eb|2 + 4|E f |6)Eb = 0. (4)

We adopt the well-known transformation E f ,b = A f ,b exp(∓δ0z) and further consider the synchronous approximation (SVEA)
to obtain the time-independent equations [16]. Hence, the governing equations for the propagation of continuous waves (CW)
become

+i
dA f

dz
+ δ0A f + (k0 + g0)Ab + γ0(|A f |2 + 2|Ab|2)A f − Γ0(|A f |4 + 6|A f |2|Ab|2 + 3|Ab|4)A f

+ σ0(|A f |6 + 12|A f |4|Ab|2 + 18|Ab|4|A f |2 + 4|Ab|6)A f = 0, (5)

−i
dAb

dz
+ δ0Ab + (k0 − g0)Ab + γ0(|Ab|2 + 2|A f |2)Ab − Γ0(|Ab|4 + 6|Ab|2|A f |2 + 3|A f |4)Ab

+ σ0(|Ab|6 + 12|Ab|4|A f |2 + 18|A f |4|Ab|2 + 4|A f |6)Ab = 0. (6)

The detuning parameter in the coupled equation is given by δ0 = (2πn0)( 1
λo

− 1
λb

). The stop band of the grating is expressed
as |δ0| � k0, where k0 is the strength of coupling between the oppositely traveling fields. Within this band, no propagating modes
are supported by the grating and so the light transmission is prohibited [5]. The coefficients of coupling, gain-loss, cubic, quintic,
and septimal nonlinearities are given by [27,50]

κ0 = πn1R/λ0, g0 = πn1I/λ0, γ0 = 2πn2/λ0, 
0 = 2πn4/λ0, σ0 = 2πn6/λ0. (7)

From the fundamentals of PT symmetry, it is well known that the system is said to be in the unbroken regime if k0 > g0. On the
other hand, if g0 > k0 the system is set to operate in the broken regime. The condition in which k0 = g0 is called singularity or
the exceptional point. The following transformation is adapted [49] to obtain normalized coupled mode equations

ζ = z

z0
, u = A f√

P(0)
, v = Ab√

P(0)
, (8)

where P(0) = |u0|2 is the intensity of the input laser pulse. The normalized coupled mode equations are given by

+i
du

dζ
+ δu + (k + g)v + γ (|u|2 + 2|v|2)u − Γ (|u|4 + 6|u|2|v|2 + 3|v|4)u

+ σ (|u|6 + 12|u|4|v|2 + 18|v|4|u|2 + 4|v|6)u = 0, (9)

−i
dv

dζ
+ δv + (k − g)u + γ (|v|2 + 2|u|2)v − Γ (|v|4 + 6|u|2|v|2 + 3|u|4)v

+ σ (|v|6 + 12|u|2|v|4 + 18|v|2|u|4 + 4|u|6)v = 0. (10)

The normalized parameters are given by

δ = δ0z0, k = k0z0, g = g0z0,

γ = γ0P(0)z0, Γ = Γ0P(0)z0, σ = σ0P(0)z0. (11)

Further output intensity can be defined as P1(L) = |u(L)|2.
These coupled mode equations (9) and (10) are solved by
implicit Runge-Kutta fourth-order method with the following

boundary conditions [26]:

u(0) = u0,

v(L) = 0. (12)

Before proceeding to analyze the switching characteristics
in detail, we now investigate the role of nonlinearity and the
gain-loss coefficient on the photonic band gap of the device.
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FIG. 1. Nonlinear dispersion curves plotted at J = 2.5 for a FBG with k = 4. The top panels represent the relation between q and δ

in the presence of cubic-quintic nonlinearities (γ = 2, 
 = 4, σ = 0) and the bottom panels correspond to q vs δ curve in the presence
of cubic-quintic-septimal nonlinearities (γ = 2, 
 = 4, σ = 2). (a), (h) Illustrate the existence of photonic band gap in the absence of PT
symmetry. (b), (g) Depict the narrowing of band gap in the unbroken PT -symmetric regime (g = 2). (c), (f) Plotted at the exceptional point
(g = 4). (d), (e) Show the dispersion curves in the broken PT -symmetric regime (g = 5).

The existence of such a gap is a typical characteristic of any
feedback structure and it is already discussed in the context
of conventional FBG and PT -symmetric cubic FBG in the
literature [21,49,50]. The mathematical expressions for the
dispersion relation of a highly nonlinear PT -symmetric FBG
can be found by substituting the continuous wave solution into
the normalized coupled equations given by (9) and (10). The
wave solutions represent u and v in terms of forward and back-
ward wave amplitudes ψ1,2 along the length of propagation of
the incident field inside the grating and they are given by

u = ψ1 expiqζ , v = ψ2 expiqζ . (13)

Here, ψ1 and ψ2 are assumed to be real constants. The ratio
of ψ2/ψ1 is assumed as a new parameter f . The sum of ψ2

1
and ψ2

2 gives the total power (J) of the propagating wave. The
relation between ψ1,2 and J is written as

ψ1 =
√

J

1 + f 2
, ψ2 =

√
J

1 + f 2
f . (14)

Hence, one obtains the nonlinear dispersion relation between
q and δ by using Eqs. (13) and (14) in (9) and (10) as

q = − k

2 f
(1 − f 2) + g

2 f
(1 + f 2) − γ J

2

(
1 − f 2

1 + f 2

)

+
J2

(
1 − f 2

1 + f 2

)
− 3σJ3

2

(
1 − f 6 + 2 f 2 − 2 f 4

(1 + f 2)3

)
, (15)

δ = − k

2 f
(1 + f 2) + g

2 f
(1 − f 2) − 3γ J

2

+ 2
J2

(
1 + f 2

(1 + f 2)2

)
− 5σJ3

2

(
1 + 3 f 2

(1 + f 2)2

)
. (16)

From Figs. 1(a)–1(h), one can visualize two branches in the
dispersion curve admitted by Eqs. (15) and (16). These two
branches correspond to the normal dispersion regime ( f > 0)
and the anomalous dispersion regime ( f < 0). It should be
noted that the dispersion curve pertaining to linear and cubic
nonlinearity has already been discussed in Refs. [49,50] and
so we here focus only on quintic and septimal nonlinearities.
In the presence of quintic nonlinearity, a loop is formed at
the lower branch of the q vs δ curve. Any increase in the
value of 
 increases the size of the loop and vice versa. The
loop disappears at lower values of 
 as a result of perfect
balance between self-focusing cubic nonlinearity and self-
defocusing quintic nonlinearity. In the unbroken PT regime,
with increase in g, the shape remains the same as in the case
of conventional FBG [cf. Figs. 1(a) and 1(b)]. As we increase
the value of g, the loop in the lower branch is shifted toward
higher value of q as shown in Fig. 1(b). At the exceptional
point (g = k), the band gap vanishes and the formation of
loop in the lower branch still persists. Hence, one can control
the formation of loop in the dispersion curves by dictating
the strength of the nonlinearity. In the broken PT -symmetric
regime, we get two curves on the left and right of the center
wavelength instead of distinguishable curves on the upper
and lower branches [50,51]. The two curves merge and form
a closed dispersion curve as seen in Fig. 1(d). The overlap
region grows as the value of 
 gets higher. In other words,
instead of forming a loop in the lower branch, the intersection
of two curves occurs at the center and it expands with increase
in the value of 
 in the PT -symmetric broken regime.

In the presence of septimal nonlinearity, a loop is formed
at the upper branch of the curve in contrast to the quintic non-
linearity case as seen in Fig. 1(h). Also, the entire dispersion
curve is shifted toward lower values of δ. This is because
of the additional focusing effect introduced by the septimal
nonlinearity. Thus, the formation of loops in the upper or
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lower branch is decided by the nature of nonlinearity whether
it is self-focusing or self-defocusing, respectively, even in the
presence of PT symmetry. Similar to the previous case, any
increase in the value of septimal nonlinearity increases the
size of the loop in the upper branch. Likewise, any increase
in the value of g in the unbroken PT -symmetric regime shifts
the loop toward lower value of q as observed in Fig. 1(g). The
plot in Fig. 1(f) also confirms that, at the exceptional point,
the band gap closes in the septimal nonlinear regime quite
similar to the quintic case, with the difference is being that
the loop is now formed in the upper branch. The variations
illustrated in Fig. 1(d) hold true for Fig. 1(e) also, except the
shift in the curves toward negative values of δ and the increase
in the area of the intersection between the two curves. It is
worthwhile to mention that all these variations occurring in
the photonic band gap of the device are the direct consequence
of change in refractive index of the medium induced by
interplay between PT -symmetric potential and higher-order
nonlinearities. Having elucidated the necessary mathematical
description of the system, we now look into the switching
characteristics of the proposed system.

III. TRANSMISSION PROPERTIES IN UNBROKEN
PT -SYMMETRIC REGIME

The switching characteristics of the PT -symmetric FBG
has been investigated in the recent work by Liu et al. which
reveals that with an increase in gain and loss coefficient, the
threshold of switching gets higher [48]. Even though this
outcome is an undesired one, additional degrees of freedom
offered by the inclusion of PT symmetry should not be taken
lightly. The additional features of PT symmetry need to be
retained but not at the cost of the threshold. On the other
hand, we find that the inclusion of higher-order nonlinearities
in the conventional FBG aids in the reduction of the threshold.
This is the factor that drove us to study the switching char-
acteristics of a highly nonlinear FBG under PT -symmetric
notion. Before we proceed to study the individual effects in
detail, we portray the combined effects of PT symmetry
with cubic-quintic-septimal nonlinearities on the switching
threshold. To do so, numerical simulations were carried out
with device parameters L = 1, k = 3, g = 1.5, and δ = 0 [41].
The switch-up intensities of cubic, quintic, and septimal non-
linearities were found to be descending in the order 2.6, 1.77,
1.13 [see Fig. 2(b)] and the corresponding values of switch-
down intensities are 1.09, 0.49, 0.32, respectively. Such a
dramatic decrease in the switch-up intensity and the threshold
is provided by the inclusion of higher-order nonlinearities
alongside the PT symmetry. Thus, our system can uniquely
combine the pros of the individual systems without imposing
any impairments.

A. Effect of length and coupling coefficient

To understand the role of length of the fiber grating and
the strength of coupling coefficient, we first consider a simple
case in which only the cubic nonlinearity is present (
 =
σ = 0). Figure 3(a) shows the input-output characteristics
at g = 1.5, k = 3, δ = 0 for three different values of the
device length L = 1, 1.25, and 1.5. When the length is shorter

UP

B

C
D

E

A F
DOWN

 =  = 1,  = 0
 =  =  = 1

 = 1,  =  = 0

FIG. 2. (a) Schematic sketch showing different branches of a
typical bistable curve with their switch-up (marked as B) and
switch-down intensities (marked as E). Here, the two stable states
are indicated by curves AB and DE and the unstable branch is
indicated by BE. (b) Comparison of optical bistable (multistable)
characteristics of the unbroken PT -symmetric FBG device under
different nonlinear regimes for L = 1, k = 3, g = 1.5, and δ = 0.

(L = 1), the effective feedback to the system gets reduced and
therefore we observe only two stable states in the output with a
switch-up intensity of 2.603 for L = 1. Below this length, the
feedback is not sufficient to observe bistability when k = 3.
The switch-up intensity between the three curves featured
a slim difference but an increase in L severely influences
the hysteresis width. The differences between the switch-up
and switch-down intensities for the three different lengths
are 1.51, 1.99, 2.28 (approximately). The upper stable branch
gets flatter at higher values of length. The strength of the
coupling also influences the shape and width of the hysteresis
curve. At the given length (L = 1), the lower values of k
result in insufficient feedback to create a bistable state. In
the simulations, we fix L = 1, g = 1.5, δ = 0 and for three
different values of k the bistability curves are plotted in
Fig. 3(b). When k = 2.5, the switch-up intensity increases to
2.12 and further it goes to 2.603 at k = 3. From this, it is very
clear that k not only intensifies the switch-up intensity value
but it has a combined influence alongside the device length in
increasing the feedback to the system. Hereafter, throughout
this paper, the length and the strength of the coupling are fixed
at L = 2, k = 4 as it is practically feasible to tune the values of
gain and loss coefficient and the detuning parameter with an
external control rather than the device length and the inherent
coupling coefficient. Note that in view of practical realization,
the value of coupling parameter k (which can be in the range
of 1 to 10 cm−1) goes hand in hand with the length of the

FIG. 3. Role of (a) device length, and (b) the strength of coupling
coefficient in the optical bistability phenomenon of an unbroken PT -
symmetric FBG.
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 = -1
 = -0.5
 = 0
 = 0.5
 = 0.75

 = 1
 = 1.2
 = 1.4

FIG. 4. Output intensity P1(L) as a function of input intensity
P(0) in the unbroken PT -symmetric cubic regime (
 = σ = 0) of
the FBG at fixed values of g = 3.75. (a) Plotted for five different
values of detuning parameter at γ = 1. (b) Simulated for three
different values of cubic nonlinear coefficient at δ = 0.

grating varying from 1 mm to 10 cm and the optimum value
of kL can attain the values from 1 to 10 [52].

B. Role of Kerr (cubic) nonlinearity and detuning parameter

With a clear-cut idea on the role of length and strength of
the coupling obtained from the previous section, we directly
proceed to study the effect of cubic nonlinearity at a given
value of gain and loss coefficient and other device constraints.
The importance of the detuning parameter (δ) on the bistable
phenomenon is pointed out graphically in Fig. 4(a). If the
signal wavelength is away from the Bragg wavelength, it is
said to be detuned and depending on whether it is longer or
shorter than the Bragg wavelength, it is designated as negative
or positive detuning, respectively. Compared to the operation
at the synchronized wavelength (refer the plot when δ = 0),
detuning in the shorter wavelength reduces the threshold and
width of the hysteresis whereas the negative detuning in-
creases the threshold and width of the hysteresis. The switch-
up intensities for different values of δ = −1, −0.5, 0, 0.5,
and 0.75 at g = 3.75 are given by 3.041, 2.413, 1.777, 1.145,
and 0.8422, respectively. The series of values in descending
order representing the switching intensities look deceiving
that one may intend to reduce the threshold by increasing the
detuning further. But, this will detune the system outside the
band edges and hence results in insufficient feedback to create
any bistable feature.

The nonlinear parameter of the fiber purely depends on
the concentration of the dopant added to the intrinsic one.
Hence, we can have a variety of silica fibers possessing
different values of third-order nonlinearity. To elucidate the
role of nonlinearity numerically, we set the parameters as
g = 3.75 and δ = 0 and vary γ from 1 in steps of 0.2. As
expected, the higher the value of nonlinearity, the lesser the
intensity required to switch between the stable states. In
Fig. 4(b), the corresponding values of switch-up intensity
for γ = 1, 1.2, 1.4 are measured as 1.777, 1.481, and 1.269,
respectively. Their corresponding switch-down intensities are
found to be 0.612, 0.509, and 0.436.

C. Combined effects of cubic-quintic nonlinearities

To illustrate the effect of cubic-quintic nonlinearity on the
switching, we set g = 2, δ = 0, and γ = 1 [see Fig. 5(a)].

 = 0.6
 = 1
 = 1.4

 = -1.5
 = 0
 = 1.5

 = 0.6
 = 0.8
 = 1.2
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FIG. 5. Illustrations of the variations in the output intensity P1(L)
against input intensity P(0) of an unbroken PT -symmetric FBG.
The top panels correspond to the cubic-quintic nonlinear regime
γ = 
 = 1, σ = 0, while the lower panel features FBG with cubic-
quintic-septimal nonlinearities (γ = 
 = σ = 1). (a), (b) Show the
variation with respect to 
 and δ, respectively. The bottom panels
represent the same for the septimal case. The figures on the left and
right are plotted at g = 2 and 3.5, respectively.

When 
 = 0.6, the switch-up intensity is very high at 2.76
and the hysteresis width is quite large. When 
 is increased
to unity, the intensity reduces to 2 with a slim reduction
in switch-down intensity from 0.41 to 0.29. The other key
difference between the two curves is that, at 
 = 1, there
are more stable branches than at 
 = 0.6. The switching
intensities between the adjacent stable branches also get re-
duced. More stable states are visible in Fig. 5(a) when 
 is
increased to 1.4. The reduction in the switch-up intensity, as
well as hysteresis width, is analogous to the cubic nonlinearity
case and so the thumb rule to reduce the switch-up intensity
is straightforward to pronounce, that is, choose a material
with higher nonlinearity regardless of the regime in which
it is operated. But, the detuning has a dissimilar influence
on switch-up intensity compared to the cubic effect. In the
presence of cubic nonlinearity alone, the intensity falls off in
the positive detuning regime whereas in the presence of an
additional defocusing (quintic) nonlinearity, the intensity de-
creases when operated in the negative detuning regime as seen
from Fig. 5(b). The values of switch-up intensities between
second and third stable states for δ = 1.5, 0, −1.5 are 2.45,
2.059, and 1.539, respectively. These values are measured
at g = 3.5 and γ = 
 = 1. Interpretation of these outcomes
implies that when we include the higher-order nonlinearities
to the system without imposing any changes to the other
parameters, multistable states are observed in its input-output
characteristics. These multistable states can be employed in
n-level pulse amplitude modulation (PAM) scheme to improve
the quality of reconstructed signal provided that the inten-
sity of the regenerated signal is stationed in one of these
stable states [53]. Compared to binary modulation scheme,
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PAM-4 offers two times larger transmission capacity. Hence,
FBG with higher-order nonlinearities in the PT -symmetric
unbroken regime can be used in the all-optical short-haul
communication networks.

D. Effect of cubic-quintic-septimal nonlinearities

The number of stable states and the threshold of switch-
ing in our system can be controlled with ease by carefully
adjusting the system parameters. Theoretically, higher-order
(2n) modulation schemes (n > 3) can further improve the
transmission capacity in short-haul communication network.
If such schemes are commercially feasible in the near future,
then chalcogenide-based FBG with septimal nonlinearity can
play a key role to setup n-PAM signal regenerators since it
admits more number of stable states. The thumb rule stated
in the previous section holds good even in the presence of
septimal nonlinearity, i.e., the higher the septimal nonlinear
coefficient, the lower the switch-up intensity required for
switching and the width of the hysteresis also decreases with
increase in σ as shown in Fig. 5(c). The switch-up powers
between the first stable branch and the second branch for
three different values of σ = 0.6, 0.8, and 1.2 are measured
as 1.598, 1.393, and 1.167, respectively. The increase in the
number of stable branches at larger nonlinear coefficients is
also similar to the cubic-quintic case. There is no big differ-
ence between the switch-down power between the first and
second branches when σ is varied. But, the difference keeps
mounting for the succeeding branches on the top of the first
bistable curve at higher values of σ as evident from Fig. 5(c).
In Fig. 5(d) the switch-up intensity at δ = 0 is measured as
1.384. Since the septimal nonlinearity is a focusing effect,
operating the device in the positive detuning regime decreases
the switch-up intensity (0.6848 at δ = 1.5), whereas in the
negative detuning regime the switch-up intensity is increased
(1.7 at δ = −1.5). So, we conclude that the role of detuning in
power reduction merely depends on the nature of the higher-
order nonlinearities whether it is self-focusing or -defocusing.

E. Role of gain-loss parameter on various nonlinearities

It has been reported that any increase in the value of gain
and loss coefficient (g) increases the intensity levels required
to switch between the stable states in the presence of cubic
nonlinearity [41,48,51]. But, this is true only for a certain
range of g values. For the values of g, closer to the value of
k it results in the decrease of the switching intensities as in
Fig. 6(a). Next, we look into the effect of g in the presence
of higher-order nonlinearities. When g is increased gradually
in the presence of quintic nonlinearities without violating the
unbroken PT -symmetric conditions, the switch-up intensity
builds up to 2.058 (g = 2.25) via 1.933 (g = 1.75), and 1.702
(g = 1) as seen in Fig. 6(b). It does not return to the lower
branch at the same intensity when the input intensity is de-
creased. It sustains in the same branch until the input intensity
is reduced below 0.332, 0.26, and 0.19, respectively, for the
above-mentioned values of g. There is a marginal decrease
in the switch-up intensity between the first and second stable
branches in the above-mentioned values.

FIG. 6. Plot of the variation in the input-output characteristics of
the unbroken PT -symmetric FBG at different values of g with δ = 0
for the left light incidence. The variations are plotted in the presence
of (a) cubic nonlinearity alone (γ = 1, 
 = σ = 0), (b) cubic-quintic
nonlinearities (γ = 
 = 1, σ = 0), and (c) combination of cubic-
quintic-septimal nonlinearities (γ = 
 = σ = 1).

Figure 6(c) exemplifies the role of gain-loss parameter on
the system that incorporates all the higher-order nonlinearities
(γ = 
 = σ = 1) at the Bragg wavelength for three different
values of g = 1, 2, and 2.25. The switch-up intensity starts
to ascend in the order 1.087, 1.261, and 1.435 and the corre-
sponding values of switch-down intensities are measured to be
0.1154, 0.1776, and 0.26. It is very obvious from these studies
in the unbroken regime that the desired bistable or multistable
curves can be manipulated at ease by judiciously adjusting the
imaginary part of the complex refractive index.

The phase-shifted gratings are well known for exhibiting
low-intensity switching behaviors compared to other grating
structures [8,54]. The PT -symmetric FBGs can exhibit such
a low-intensity switching if the direction of incidence of the
input pulse is reversed which is not at all feasible in a conven-
tional FBG since it exhibits the same bistable and multistable
behaviors in both directions. Thus, the switching phenomenon
in a PT -symmetric FBG can be termed as nonreciprocal
switching in the sense that it can have an entirely different
switching dynamics for left and right incidences.

It is noteworthy to mention at this juncture that the param-
eter g has a dual role in controlling the switching intensities
of the system. By dual role we mean that the device exhibits
distinguishable OB and OM curves for the same value of g
and other system parameters except for left and right light
incidence directions. For instance, there is a weak bistable
curve formation at g = 3.75 in Fig. 7(a) for the right inci-
dence. Moreover, the switching intensities decrease with an
increase in g for the right incidence in contrast to the left
light incidence. This sort of dual nature of parameter g on the
switching intensities persists even in the presence of quintic
nonlinearity as shown in Fig. 7(b) and we can observe more
than two stable states for input powers less than unity. Such a
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FIG. 7. Plots illustrating the same dynamics with the same sys-
tem parameter as in Fig. 6 when the light is launched from the right
input surface of the FBG.

formation of low-power multistable states was not observed
in Fig. 6(a). This kind of inverse relationship between the
parameter g and the switching intensities and the formation of
multistable states at low value of input intensities lasts even
with the addition of septimal nonlinearity to the system as
seen in Fig. 7(b). The reason for such a behavior is apparent
from the fact that the increase in g suppresses the absorption of
the forward field intensity for right incidence and vice versa.

IV. BROKEN PT -SYMMETRIC REGIME

A. Influence of gain-loss parameter

We recently became aware of a work which claims that the
OB-OM curves cannot occur in the broken PT -symmetric
regime [51]. Nevertheless, it has been recently revealed that
the broken PT -symmetric regime supports an alternative
type of gap solitons which was further termed as dark-gap
solitons along with exhibiting an alternative type of optical
bistability [55]. Hence, to analyze the issue further, we look
at the switching characteristics of the PT -symmetric FBGs
with higher-order nonlinearities for the left light incidence. To
demonstrate the role of g in the broken regime, the detuning
parameter is fixed at δ = 0 and in the first case we neglect
the higher-order nonlinearities for the sake of simplicity so
that only the cubic nonlinearity has a significant role. When
g = 5.2 and γ = 1.5, the system admits a desirable bistable
curve with the switch-up intensity around 0.7443 and the cor-
responding switch-down intensity is measured to be 0.5924
[see Fig. 8(a)]. If the value of g is reduced with no changes
to the other settings, a significant amount of increase in the
switch-up intensity is observed. In the broken (cubic) PT -
symmetric regime, if the value of g is far from the singularity
condition, the gain of the system is enhanced rather than
absorption within the medium and it must be stressed that this
is the much anticipated outcome in the context of any PT -
symmetric optical system. Also, from Fig. 8(a), we observe

FIG. 8. Plots depicting the optical bistability in a broken PT -
symmetric FBG for different values of g at δ = 0 for left incidence.
Here, the output and the input intensities of the system are repre-
sented by the variables P1(L) and P(0), respectively. (a) Simulated
in the presence of cubic nonlinearity alone (γ = 1, 
 = σ = 0). (b),
(c) Represent the role of g in the presence of cubic-quintic nonlin-
earities (γ = 
 = 1, σ = 0). (d) Plotted in the presence of cubic-
quintic-septimal nonlinearities (γ = 
 = 1, σ = 0.6), respectively.

that the value of gain and loss coefficient plays a vital role
in deciding the range of intensities over which output state
should remain either in the upper branch or the lower branch
of the bistability curve. When g is closer to k (g = 4.7), the
output state remains in the lower branch for a larger range of
input intensity. However, if the gain and loss coefficient value
is far away from k (g = 5.2), it switches to the upper stable
state at relatively lower intensities. With a further reduction
in the value of gain-loss parameter (g), the system admits
multistability at the same input power. This gives an overview
of the optimum choice of g parameter to get the desired
bistability or multistability.

We further portray the effect of variation of parameter g
when the quintic nonlinearity is added to the system. Unlike
the previous case, the system exhibits more than two stable
states even at higher values of gain and loss coefficient. A
decrease in g at a given set of values of nonlinearities γ = 1
and 
 = 1 brings about notable changes in the switch-up and
switch-down power levels. The number of stable states in the
input-output characteristics of the device decreases with an
increase in the value of g. Thus, g serves as an additional
degree of freedom to control the number of stable states for
a given set of device parameters. A phenomenal outcome of
the system is that it admits a ramplike first stable output state
for certain values of g as seen in Fig. 8(b). This is yet another
critical outcome of our investigation. These kinds of ramplike
bistable states are already observed in plasmon resonance
structures [56,57], graphene-based structures [58,59], silicon
waveguide resonators [60], and plexcitonic systems [61]. But,
such a OB-OM is observed in a PT -symmetric FBG device,
thanks to the judicious balance between the gain and loss.
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Analyzing Fig. 8(b) further, one can observe that the range
of input intensities over which this ramp behavior is observed
decreases when g is reduced. When operated at g = 4.7, 5.65,
and 6.85 the system concedes a steplike response after a
sharp transition from its initial value [see Fig. 8(c)]. It is
important to note that such a mix of stable states resembling
a ramp and step has previously been observed in a complex
nanodimer with a semiconductor quantum dot [61]. These
kinds of bistable states with flat slopes can be explored in the
construction of signal regenerators [3]. Also, the difference
between the two power levels keeps mounting with increase
in g which inherently means that the value of g plays a central
role in dictating the width of the hysteresis loop. This implies
that the same device can be exploited for building applications
like switching with low hysteresis width or all optical memo-
ries with larger widths, simply by tuning the value of g which
is very much feasible compared to other device parameters.
The effect of g on the switch-up and switch-down powers
persists even at higher values of quintic nonlinearity but the
only difference being the increase in the number of stable
states as an effect of dominant self-defocusing nonlinearity
over the focusing one.

We next consider a condition where all the nonlinearities
are taken into account (γ = 
 = 1, σ = 0.6) and g is varied
to find its impact on the switching operation. Similar to the
previous case, the system exhibits multiple stable branches
for any value of g in this regime. One can easily visualize that
the g parameter has a central role in deciding the intensity
at which the system switches between the first stable state
and the second one shown in Fig. 8(d). At higher values
of gain-loss parameter (g = 5.2), the second stable state is
preceded by a ramplike stable state. On the other hand, if the
value of g is fixed at 4.6 and the intensity is tuned from zero,
there is a sharp increase in the output intensity from zero to
an intensity slightly greater than unity. Following the sharp
transmission, the output intensity is steady over a large range
of input intensities. In the plot we observe that multiple stable
branches start to emanate at higher intensities. The width of
each stable branch is lower than the previous one and the
first stable branch is characterized by larger hysteresis width.
The bistability plots in this regime thus give a conclusive
evidence that the value of the switching intensity is inversely
proportional to the value of g. It is clear that at two different
sets of values of g, there is a drastic change in the behavior
of the system which confirms the fact that the system is quite
sensitive to smaller variations of gain and loss.

It is noteworthy to mention that the low-intensity switching
phenomenon for the right incidence can happen even in the
broken PT -symmetric regime. To do so, we simulate the
system with the same set of parameters as in Fig. 8 for the
right incidence. The hysteresis curve in Fig. 9(a) looks more or
similar to the one that we observed in Fig. 8(a). Nevertheless,
the OB phenomenon is observed at very low input intensities.
The switch-up intensities for different values of g = 4.7, 5,
and 5.2 are measured to be 0.23, 0.152, and 0.08, respectively.
With the addition of quintic nonlinearity into the system,
the device can exhibit both ramplike and steplike first stable
states [see Figs. 9(b) and 9(c)], resembling the curves obtained
in Figs. 8(b) and 8(c), respectively. For P0 < 1, there is no
formation of multistable states as seen in Figs. 8(b) and 8(c),

FIG. 9. Plots depicting the same dynamics with the same system
parameters as in Fig. 8 for the right light incidence.

whereas we obtain multiple stable states with very low switch-
ing intensities in Figs. 9(b) and 9(c) for the same value of
P0. The same explanation holds good with the inclusion of
septimal nonlinearity too as observed in Fig. 9(d). The study
of OB-OM curves in the broken PT -symmetric regime for the
right incidence thus opens a new avenue for fabricating all-
optical switches and memory devices which require ultralow
switching intensities with different launching conditions.

B. Effect of variation of detuning parameter

In the previous sections, the effect of variation of parameter
g under various nonlinear regimes and the effect of nonlinear-
ity at fixed g were examined by setting the detuning parameter
value to zero which implies that the signal wavelength must
be synchronized with the Bragg wavelength. But, there is
a strong correlation between the switching intensities (both
up and down) and finite detuning values [3,8]. To illustrate
the effect of detuning parameter, the value of g is fixed at
g = 5. Similar to the last section, first we study the effect
of detuning in the absence of higher-order nonlinearities. If
the device is operated at δ = −0.25, we get a wide bistable
curve with switch-up power of 1.371 and switch-down power
of 0.9397 and if the same system is operated at δ = 0 the
switch-up intensity reduces to 1.173 as seen in Fig. 10(a).
This confirms that operating in the negative detuning regime
increases the hysteresis width as well as the intensity required
to switch between the two stable states. If one intends to
reduce the threshold, the device should be operated closer
to the band gap or in the positive detuning regime. For
instance, if the detuning value is assigned to be δ = 0.25, the
intensity to switch between first stable state and second stable
state reduces to 0.9741. This intensity value further reduces
to 0.7939 for δ = 0.5 with a simultaneous reduction in the
hysteresis width. Thus, negative detuning regime favors the
device’s preference to remain in the first stable branch for a
larger range of input intensities, whereas the positive detuning
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FIG. 10. Effect of varying the detuning parameter δ on the input-
output characteristics of a broken PT -symmetric FBG at g = 5.
Here, the output and input powers are represented by P1(L) and
P(0), respectively. (a) Plotted in the presence of cubic nonlinearity
alone (γ = 1.5, 
 = σ = 0). (b) Represents the simulated results
in the presence of cubic-quintic nonlinearities (γ = 
 = 1, σ = 0).
(c) Plotted in the presence of cubic-quintic-septimal nonlinearities
(γ = 
 = 1, σ = 0.6).

tends to keep the output intensity in the upper stable branch for
a larger range of input intensities.

To portray the effect of detuning in the presence of both
cubic and quintic nonlinearities, we set γ = 
 = 1 and g =
5. The positive detuning parameter increases the hysteresis
width and reduces the number of stable states in the presence
of quintic nonlinearity. The plots depicted in Fig. 10(b) give
a conclusive evidence that an increase in positive detuning in-
flates the difference between switch-up and -down intensities
which implies that the intensity inside the device is sufficient
enough to keep the output state dormant post the switching
from its previous state. Hence, it is preferable to use this kind
of multistable state in the construction of optical memories
rather than switches. If we look at the same system working
in the negative detuning regime, the switch-up intensity (be-
tween the first two stable states) keeps on deflating and, there-
fore, if one intends to construct switches with a cubic-quintic
FBG in the broken regime, it is preferable to have signal
wavelength longer than the Bragg wavelength provided that
it lies within the stop band. Also, the number of stable states
increases if the device is operated in the negative detuning
regime whereas it decreases when operated in the positive
detuning regime. Physically, the memory operation can be
accomplished by varying the holding-beam input power [62].
As the input intensity varies, the output intensity can stay in
one of the stable branches and not in the unstable branch. The
set can be accomplished by raising the input intensity beyond
the switch-up threshold, whereas the reset operation can be
effected by reducing the input intensity beyond switch-down
intensity. So, the switch-up and -down intensities can serve
as read and write bias pulse for the memory operation [20].

The memory holding width can be altered by changing the
magnitude of the detuning parameter.

In the presence of second focusing (septimal) nonlinearity,
the negative detuning regime shows the growth in the dormant
stable states, whereas in the positive detuning regime the
switch-down intensity decreases in addition to the shrinkage
in the hysteresis loop as seen in Fig. 10(c). Operating at
longer wavelengths has a marginal impact in the reduction
of switch-up intensity, quite similar to those occurring at the
shorter wavelengths in the cubic-quintic case with the only
difference being the number of stable states above the dormant
states is comparably larger and are desirable for multilevel
signal processing applications. Although we present only a
few applications here, the system’s ability to retain its memory
of the past state for longer period can be subjected to detailed
investigation in the future to build new all-optical devices.

C. Impact of nonlinear parameters

The nonlinear parameter purely depends on the type of
glass material used. From the application perspective, re-
searchers are left with many materials offering a wide range
of nonlinearities from very high to low values [20]. The non-
linearity plays a crucial role in deciding the number of stable
states and the intensity required to switch between the stable
branches. To illustrate this, we first consider a simple case
with only cubic nonlinearity. The first bistable curve starts to
emerge at γ = 1.4 in our numerical simulations for g = 5 and
the intensity for up switching is 1.256 which further reduces to
1.099 with an increase in γ (1.6). Any further increase in the
value of γ gives rise to multistable states as a consequence
of increase in the effective feedback to the system as seen
in Fig. 11(a). Earlier in the unbroken regime, we stated a
thumb rule to reduce the switching intensity which demands
the nonlinear coefficient to be high. From our simulations, we
confirm that the rule holds good in the broken regime too.

With the addition of quintic nonlinearity to the above
system, it admits multistable states even at lower input in-
tensities as seen in Fig. 11(b). To comprehend the role of
quintic nonlinearity, we numerically vary 
 at a fixed value
of gain and loss coefficient (g = 5). At 
 = 1, when the input
intensity is slowly varied from zero, there is a linear increase
of output intensity below 1.479 above which it switches to
the second stable state. The output intensity again starts to
vary linearly in the second stable branch for values between
1.479 and 2.396. Above this intensity, the system switches
to the third stable branch. If the intensity is decreased, the
switch-down intensity required to swap from the third branch
to the second is 1.582 and to switch back to its initial state,
the input intensity must be reduced further to 0.6803. When 


is increased further, the switching intensity between various
stable branches tapers off and new stable states appear within
the same input intensity (P0 = 2). For instance, when 
 = 1.5
the switch-up intensity to switch between the first and second
stable states is measured to be 1.093. The switch-up intensity
reduces below unity when the system is operated at 
 = 2.

Finally, we present the effect of septimal nonlinearity in
the presence of both cubic and quintic nonlinearities with
simulation parameters as g = 5, γ = 1.5, 
 = 1 and septimal
nonlinearity (σ ) is varied. A straightforward evidence one can
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FIG. 11. Role of nonlinear coefficients on the optical bistability
(multistability) of a broken PT -symmetric FBG at g = 5 and δ = 0.
Here, the output and input powers are represented by P1(L) and
P(0), respectively. (a) Plotted for different values of cubic nonlinear
coefficient (γ ) at 
 = σ = 0. (b) Represents the simulated results
for different values of quintic nonlinear coefficient (
) at γ = 1.5
and σ = 0. (c) Plotted for different values of septimal nonlinear
coefficient (σ ) at γ = 1.5 and 
 = 1.

get from Fig. 11(c) is that inclusion of the septimal nonlin-
earity cuts down the required intensity to switch between the
stable states and the width of the hysteresis is further reduced
when compared to the system with same simulation param-
eters in its absence. The septimal nonlinearity also boosts
the number of stable states similar to the other nonlinear
effects discussed already. When σ = 0.8, it supports more
than five stable branches with each branch possessing a width
narrower than the previous one. When σ = 0.6, a series of
multistable states appear and the intensities to jump from the
preceding state are 1.44 (1 to 2), 1.809 (2 to 3), and the
respective switch-down intensities are given by 0.9697 and
1.433 as shown in Fig. 11(c). The width of the upper stable
branches drastically reduces. But, with suitable adjustment in
other device parameters, it is possible to increase the visibility
of the upper stable states and hence such bistable states can
lead to the efficient all-optical signal processing by controlling
(output) light with (input) light. Also, a possible experimental
realization of the kind of structure envisaged in this paper is
to identify a suitable material (preferably chalcogenide glass)
which can allow the fabrication of alternate regions of gain
(actively doped by erbium) and loss (no dopant by considering
the intrinsic loss or dopant with high absorption by chromium
element) into it and thereby serving as a PT -symmetric
periodic structure.

V. EXISTENCE OF GAP SOLITONS

Soliton formation is a universal phenomenon that can occur
in any nonlinear optical structures through a delicate interplay
between the group-velocity dispersion and the nonlinearity
of the structure. The former tends to disperse the energy

of the propagating pulse, whereas the latter is supposed to
counterbalance the effect caused by the former by concen-
trating the energy of the pulse [63]. Many types of solitons
are reported theoretically and experimentally in the regular
optical fibers which include dissipative [64], vector [65],
polarization domain wall [66], dispersion managed, Raman,
and paired solitons [63], as well as multisolitons [67], which
rely on the above-mentioned phenomenon. Among them, gap
solitons are a special type of solitons formed in the periodic
structures which possess photonic band gap as a consequence
of periodic variation in the linear dielectric constant. This
periodic variation can often be engineered at ease [68] and,
hence, gap solitons are well suited for applications such as
optical buffering [69], optical delay lines [70], distributed
feedback pulse generator [71], transmission filters [72], and
logic gates [73].

The phenomenon of optical bistability in the feedback
structures goes hand in hand with the formation of gap soli-
ton [71]. To understand the dynamics of gap solitons, it is

necessary to look back at the light transmission (T = | u(L)
u(0) |

2
)

characteristics of the device. In the distributed feedback pe-
riodic structures, the light propagation is portrayed by the
existence of stop bands and pass bands. In a linear FBG, a
wave is reflected if its wavelength falls within this forbidden
band. Then again, a wave whose wavelength falls outside this
stop band can traverse through the structure unhampered [52].
As pointed out by Winful et al. [71], the wave amplitude
falls off exponentially along the propagation direction in this
case. However, in the presence of nonlinearities, the light is
totally transmitted for certain intensities due to the formation
of localized modes or spatial nonlinear resonances within
the stop band. These spatial resonances are coined as gap
solitons simply for two reasons. First, they have the trade-
mark shape of sech2 solitons. Second, they reside within this
photonic band gap. The formation of such gap solitons in the
presence of Kerr effect in the conventional periodic structure
has already been investigated by many authors [11,70,71].
Recently, the formation of gap solitons has been explored
in PT -symmetric periodic structures and some noteworthy
properties were highlighted. In particular, it is shown that
these phenomenological PT -symmetric structures can sup-
port the interesting formation of dark-gap solitons [55]. In
this section, our aim is to show that the gap solitons can
persist even in the presence of higher-order nonlinearities in
such PT -symmetric systems. The first nonlinear resonance
is observed at very low input intensities for a conventional
FBG with L = 1.5, k = 3, γ = 4, 
 = 1, σ = 2, and g = 0
[see Fig. 12(a)]. The plot of forward field intensities against
the propagation distance at the first peaks reveals that a
bright-gap-soliton-like entity corresponding to the resonance
value appears. We can observe that the difference between the
forward and backward field intensity is marginal in Fig. 12(c).
At sufficiently larger input intensities, a second-order-soliton-
like entity is formed at the transmission resonance. The peak
power of the forward field distribution curve is enhanced
whereas the peak power of the backward field distribution
is reduced at the successive transmission peaks as seen in
Fig. 12(d). In both cases, the total power remains constant
throughout the propagation length.
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FIG. 12. Top panels (a) and (b) illustrate the transmission char-
acteristics of conventional and PT -symmetric FBGs, respectively.
Center and bottom panels delineate the stationary gap soliton for-
mation at the different resonance peaks for conventional and PT -
symmetric systems, respectively, when the parameters are kept as
L = 1.5, k = 3, g = 2, δ = 1, γ = 4, 
 = 1, and σ = 2. Here, the
blue solid lined curves indicate the forward field and red lined
curves refer to backward field intensities. The total field intensities
(|u|2 − |v|2) are drawn by black dashed lines.

When PT symmetry is included to the system (g = 1),
these nonlinear resonances can still exist in Fig. 12(b). The
plot also depicts that the PT symmetry plays a significant role
in altering the peak intensities of these nonlinear resonances.
The first and second transmission peaks occur at slightly
larger input intensities when compared to the conventional
case in Fig. 12(c). Similar to the conventional case, the value
of the forward field peak is enhanced and the backward field
peak is reduced at the second transmission peak as seen in
Fig. 12(f). The plot of total intensity [see Figs. 12(e) and 12(f)]
against the propagation distance also shows a bright-soliton-
like entity unlike the conventional case. Motivated by the for-
mation of unique gap soliton obtained in the unbroken regime,
we next intend to examine whether these kinds of nonlinear
resonances can occur in the broken regime too in the presence
of higher-order nonlinearities. Numerical simulations turn out
a surprising outcome of localized modes at the band gap
which resembles a dark soliton in the broken regime as seen
in Fig. 13. The PT symmetry dictates the value of the dip
of the dark-soliton-like entity as in the case of forward field
intensity distribution and total power distribution as seen in
Figs. 13(b) and 13(c). On the other hand, one can observe

FIG. 13. Plots of (a) transmission (b) and (c) dark-gap-soliton
formation in the broken PT -symmetric regime and (d) illustrates
the bright-gap-soliton-like entity in the broken regime. In (d) the
dotted line corresponds to backward field intensity at the first trans-
mission resonance and the solid line indicates the same at the second
transmission resonance. The system parameters are chosen as L = 1,
κ = 2, g = 3, δ = 0 and the values of nonlinear parameters are taken
to be γ = 
 = σ = 1.

that the simultaneous existence of bright-soliton-like entity in
the plot of backward field distribution against the propagation
distance [see Fig. 13(d)], which further can be regarded as the
unique outcome of PT symmetry in such periodic structures.

VI. NONLINEAR REFLECTION SPECTRUM
FOR CONSTANT PUMP POWER

In the previous sections, we elaborated the switching ex-
hibited by the PT -symmetric system under different condi-
tions. But, in all the systems discussed previously, switching
is achieved via optical bistability (multistability) under con-
tinuous variation in the pump power [P(0)]. We can also find
that the FBG exhibits another type of switching mechanism
in the presence of constant pump power [P(0)] as a function
of detuning parameter (δ) in the literature in both linear [5] as
well as nonlinear regimes [3,20]. These studies are restricted
to only conventional FBGs without gain and loss. Hence, we
are interested in studying this kind of switching behavior in
the presence of PT symmetry. To do so, we fix L = 0.5,
k = 2 and vary the other parameters for the unbroken PT -
symmetric regime, whereas we fix L = 1 and k = 2 for the
broken PT -symmetric regime.

A. Effect of variations in the nonlinearity in the unbroken
PT -symmetric regime

In the absence of any nonlinearity, the reflection spectrum
is centered at δ = 0. The spectrum is shifted toward longer
wavelength when a cubic nonlinearity is added to the system.
With further increase in the cubic nonlinearity parameter (γ ),
the spectrum is blueshifted [55]. Since quintic nonlinearity is
a self-defocusing nonlinearity, the spectrum is shifted toward

033838-12



MULTIFACETED DYNAMICS AND GAP SOLITONS IN … PHYSICAL REVIEW A 100, 033838 (2019)
Re
fle
ct
io
n

 = 0
 = 0.5
 = 1
 = 1.5
 = 2

Re
fle
ct
io
n

 = 0
 = 0.5
 = 1
 = 1.5
 = 2

FIG. 14. Role of nonlinear coefficients on the reflection charac-
teristics under constant pump power of an unbroken PT -symmetric
FBG at g = 0.5. (a) Represents the simulated results for different
values of quintic nonlinear coefficient (
) at γ = 2 and σ = 0.
(b) Plotted for different values of septimal nonlinear coefficient (σ )
at γ = 
 = 2.

shorter wavelength with increase in 
. In addition to shifting,
the amount of light which is reflected by the system is reduced
slightly with increase in 
 as seen in Fig. 14(a). The same
kind of phenomenon is observed in the presence of an ad-
ditional self-focusing nonlinearity (septimal) but the shifting
of the spectrum is toward longer wavelength similar to cubic
nonlinearity case [see Fig. 14(b)]. Thus, we can conclude
that the shifting of the spectrum toward longer or shorter
wavelength is dependent upon the nature of nonlinearities.
Note that the effect of nonlinearity on the side lobes of the
spectra (spectrum outside the band edges) is minimal.

B. Effect of variations in the gain or loss in the unbroken
PT -symmetric regime

In the absence of any PT symmetry and nonlinearities,
the reflection is maximum around the Bragg wavelength. The
wavelength at which the peak reflectivity occurs is varied by
the presence of nonlinearities [55]. In Figs. 15(a) and 15(b)
we can observe that the reflection peak is slightly off cen-
tered as a consequence of higher-order nonlinearity in the
system. Any variation in the gain or loss does not shift the
spectrum as in the case of nonlinearity. But, the actual effect
of variation in the parameter g depends on the launching
conditions. The band gap is more or less symmetric about
the center wavelength in the presence of cubic nonlinearity
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FIG. 15. Effect of variation in the gain-loss parameter (g) on the
reflection characteristics under constant pump power of an unbro-
ken PT -symmetric FBG. (a) Represents the simulated results for
different values of g in the presence of cubic-quintic nonlinearities
(γ = 
 = 2, σ = 0). (b) Plotted for different values of g in the
presence of cubic-quintic-septimal nonlinearities (σ ) at γ = 
 = 2.
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FIG. 16. Reflection characteristics under constant pump power
of a broken PT -symmetric FBG. (a)–(c) Plotted at g = 3, 4, 5,
respectively. Throughout the figure the value of cubic nonlinear
coefficient is set to γ = 1. The dotted lines (red) represent the cubic
nonlinear regime (
 = σ = 0). The dashed lines (black) indicate
the quintic nonlinear regime (
 = 2, σ = 0). The solid lines (blue)
represent the septimal nonlinear regime (
 = 2, σ = 1).

alone (γ = 1, 
 = σ = 0). For left incidence, the reflectivity
is suppressed with increase in the gain or loss. When we
look into the system with higher-order nonlinearities, the same
effect persists. Thus, we can conclude that irrespective of the
type of nonlinearity, the amount of light reflected is reduced
by the gain-loss parameter g for the left incidence.

C. Unique spectra in the broken PT -symmetric regime

In the unbroken PT -symmetric regime, the reflection
characteristics are found to be more or less flat within the
stop band. But, in the broken PT -symmetric regime, the
peak of the reflection occurs at a single wavelength instead
of the entire stop band as in the case of Fig. 16(a) which
is simulated at g = 3. Any additional nonlinearities in the
form of quintic nonlinearity or septimal nonlinearity shift
the peak of the reflection toward longer wavelengths. When
g = 4, the reflection spectrum begins to divide into two and
thus we can observe two separate peaks on either side of
δ = 0 [see Fig. 16(b)]. The first peak corresponds to negative
detuning values of δ and the second peak corresponds to
positive detuning values. The reflected power is not the same
in these peaks. More power is accumulated at the peak lying
on the shorter wavelength side compared to its counterpart.
But, closer to δ = 0 the reflection is minimum. This kind of
behavior is unique because in both conventional FBG [5] and
unbroken PT symmetry the reflection is maximum within
the stop band and at the band edges the reflection is mini-
mum. Even more interestingly, when g = 5 the reflection is
completely prohibited in the side lobes unlike the other cases
and the reflection is maximum at a single wavelength rather
than band of wavelengths. Otherwise, this can be called as a
lasinglike behavior, with large reflected intensity at the lasing
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wavelength. Moreover, the presence of quintic nonlinearity
redshifts the spectrum instead of a blueshift in both Figs. 16(b)
and 16(c) unlike the previous cases.

VII. CONCLUSION

In this paper we have presented a detailed study on the
optical bistability and multistability phenomena as well as
nonlinear reflection spectra in a highly nonlinear fiber Bragg
grating influenced by PT -symmetry conditions. We have
reported unique behaviors such as ramplike and steplike sta-
ble states in the broken PT -symmetric regime which were
previously believed to exist only in complex optical structures
involving plasmons, graphene, etc. We affirm that these states
are feasible in a simple FBG device with minimal effort by
having a balance between gain and loss of the system. We have
also found alternative optical bistabilities in the broken PT -
symmetric regime which can pave a new way to the low-power
switches via reversal of the direction of light incidence. This
confirms that FBG offers a fertile ground to unearth unique
nonlinear functionalities in the PT -symmetry broken regime
in addition to the unbroken regime. We have also depicted
the existence of both dark- and bright-soliton-like entities at
the transmission resonances. We would like to leave an end
note that all the numerical experiments presented here deserve
further investigations through practical observations, and this
could open the door for new generation of multifunctional

optical devices including optical switches and memories. To
be regarded as the next-generation multifunctional devices,
any system must address some of the important criteria like
size miniature, reduction in cost, low-power consumption,
design flexibility, and so on, and our ramifications rely on
the last two aspects, i.e., optical switches with low switching
intensities and flexibility to set up the desired application
simply by tuning one of the control parameters. In addition,
our system can play a key role to set up a new generation of
all-optical regenerators employing PAM scheme in the near
future as our system admits a large number of stable states
with low switching intensities, which is an ideal requirement
for any all-optical systems.
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