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Regimes of two-color light bullet formation in a gradient waveguide
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In this paper we concentrate on the remarkable role of a gradient waveguide in two-color light bullet
formation. We study generation of the second harmonic in such an inhomogeneous nonlinear medium, taking into
account diffraction and relatively weak temporal dispersion. Using the averaged Lagrangian method we consider
all possible combinations of the range of group velocities (normal or anomalous dispersion) and waveguide
geometry (focusing or defocusing waveguide). Stability conditions for a propagating two-color light bullet are
derived analytically. We demonstrate the formation of a stable two-component light bullet in a parabolic planar
quadratically nonlinear waveguide either at anomalous or at normal group velocity dispersion. We discuss also
the results of numerical simulation confirming our analytical findings. Besides that, simulation allows us to
expand the scope of the study and to show light bullet propagation at a certain phase mismatching and the
formation of a stable coupled localized structure from a signal at the fundamental frequency as well.
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I. INTRODUCTION

It is well known that medium inhomogeneity influences
greatly the formation and stability of optical solitons [1].
While longitudinal homogeneity manifests itself in photonic
crystals and results in soliton trapping in the forbidden band
gap (gap solitons) [1–5], transverse inhomogeneity plays an
important role for soliton stabilization. This effect is known,
for instance, in Bose-Einstein condensates: waveguides with
both cubic and quadratic nonlinearities [1,6–9]. Introducing
waveguide geometry, we can diversify a range of input pa-
rameters for which solitons may be observed.

If we deal with multidimensional light bullets, we have to
notice that they are highly unstable in a homogeneous medium
with Kerr nonlinearity. However, going to an inhomogeneous
Kerr medium, where the linear part of the refraction index
depends on transverse coordinates, one can prevent wave
collapse. The interplay between dispersion, diffraction, index
inhomogeneity, and Kerr nonlinearity is considered in detail
in [1–10]. Anomalous group velocity dispersion (GVD) and
infrared (IR) range seem to be natural choices for light bullet
generation. At the same time, researchers have been showing
interest in other frequency ranges, where the dispersion is
normal, since the first studies of temporal and spatiotemporal
solitons at the end of the 1990s [1,11]. At normal dispersion
we have to compensate for spatial and temporal spreading.
Nonlinearity may be rather weak; therefore, one should draw
on additional factors which are able to compress the pulse.
Using a waveguide seems to be promising to this end.

Recently we developed a detailed theory of “breathing”
light bullets propagating in a quadratic nonlinear medium
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with anomalous dispersion [12,13]. Provided that the phase-
and group-matching conditions hold and the second harmonic
GVD coefficient is twice as large as the GVD coefficient
for the fundamental wave, the averaged Lagrangian (AL)
method allowed us to obtain an analytical solution in the form
of a two-component spatiotemporal soliton. It was demon-
strated that the above conditions can be fulfilled simultane-
ously in a microdispersive (granulated) medium in the THz
range.

Continuing our investigations with microdispersive media
[12,13], we initiated studies of light bullets in a planar waveg-
uide at quadratic nonlinearity [14]. In the last of the mentioned
works we developed a model of the second harmonic gen-
eration (SHG) in a gradient waveguide, taking into account
diffraction and relatively weak temporal dispersion. Using
a “slowly varying envelope approximation” and neglecting
the dispersion of the nonlinear part of the response of the
medium, we introduced a system of parabolic equations for
the envelopes of both harmonics. We also derived integrals
of motion of this system. To solve it numerically we con-
structed a nonlinear finite-difference scheme based on the
Crank-Nicolson method preserving the integrals. Considering
a parabolic waveguide profile, we demonstrated a competition
between nonlinearity, dispersion, diffraction, and waveguide
properties in numerical experiments. The most remarkable
result concerns the observation of a stable two-component
light bullet at normal dispersion. At the same time a lack
of analytical criteria did not allow us to find out the limits
of the bullet’s existence. In the present work we deal with
the model introduced in [14]. Similarly to [12,13], we apply
the AL method and examine both anomalous and normal
dispersion influence. We reveal analytically different regimes
of spatial-temporal pulse propagation in a waveguide with
quadratic nonlinearity.
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Following the approach of [12], we derive a dynamic
(z-dependent) solution in the form of a spatiotemporal soliton
at the phase- and group-matching conditions. Moreover, we
obtain stability conditions and periods of small oscillations of
light bullet parameters depending on waveguide geometry and
dispersion type (normal or anomalous). Numerical simulation
shows the robust propagation of the analytically predicted
wave with a period of intensity oscillations close to that theo-
retically derived. We also numerically study the dynamics of
a two-color spatiotemporal soliton forming at SHG when the
phase- and group-velocity-matching conditions are broken.

The paper is organized as follows. In Sec. II we apply the
AL method to the system of equations describing SHG in a
planar parabolic waveguide and obtain a soliton solution in the
form of a light bullet at both fundamental and second frequen-
cies. Analytical solutions and stability analysis are given in
Sec. III. Results of direct numerical simulation are discussed
in Sec. IV. We demonstrate a robust propagation of the derived
solution in different regimes. Then, we show a possibility
of two-component soliton formation when launching only
the fundamental pulse into the medium, and we discuss the
physical situation in which the phase matching conditions are
violated. Section V contains the conclusions arising from the
study.

II. METHOD OF AVERAGED LAGRANGIAN AND
MODIFIED GROSS-PITAEVSKII EQUATION

As mentioned above, recently we developed a governing
system of equations for SHG in a bulk waveguide with trans-
verse inhomogeneity [14]. In this paper, we confine ourselves
to an analysis of the propagation of a quasimonochromatic
pulse in a planar waveguide. For a planar waveguide with
arbitrary profile of the refractive index, the resulting system
for the envelopes of the fundamental and second harmonics,
taking into account the mutual influence of nonlinearity, pla-
nar diffraction, and weak temporal dispersion, is written as

i

(
∂�1

∂z
+ δ

∂�1

∂τ

)
= ωq1�1 − βω

2

∂2�1

∂τ 2

+αω�∗
1�2ei(2k1−k2 )z + c

2ωn(0)
ω

∂2�1

∂x2
,

i

(
∂�2

∂z
− δ

∂�2

∂τ

)
= 2ωq2�2 − β2ω

2

∂2�2

∂τ 2

+α2ω�2
1e−i(2k1−k2 )z + c

4ωn(0)
2ω

∂2�2

∂x2
.

(1)

In (1) �1 and �2 are the slowly varying envelopes of both
harmonics, ω is the fundamental carrier frequency of the
input pulse, k1 = k(ω) and k2 = k(2ω) are the wave numbers,
corresponding to the fundamental frequency ω and second
harmonic 2ω, respectively, and

q1 = 2π

cn(0)
ω

χ (0)
ω fω, q2 = 2π

cn(0)
2ω

χ
(0)
2ω f2ω. (2)

c is the speed of light in vacuum and χ
(0)
ω,2ω are the linear

susceptibilities of the medium at the center of the waveguide

cross section. fω(x) and f2ω(x) are the dimensionless func-
tions satisfying the condition fω(0) = f2ω(0) = 0. n(0)

ω,2ω =√
1 + 4πχ

(0)
ω,2ω are the refractive indices of the frequencies

ω and 2ω at the center of the waveguide cross section, and
δ = 1

2 ((v(ω)
g )−1 − (v(2ω)

g )−1) is the mismatch of group veloc-

ities, where the group velocities v(ω,2ω)
g at the center of the

waveguide are defined as follows:

1

v
(ω,2ω)
g

= ∂k

∂ω
= 1

c

(
n(0)

ω,2ω + ω
∂n(0)

ω,2ω

∂ω

)
.

In (1) we also denote the parameters of GVD as

βω = ∂2k1

∂ω2
= 1

c

∂2

∂ω2
(nωω)

= 4π

cn(0)
ω

[
∂χ (0)

ω

∂ω
+ ω

2

∂2χ (0)
ω

∂ω2
− ω

4π

(
∂n(0)

ω

∂ω

)2
]
,

β2ω = ∂2k2

∂ (2ω)2
= (βω1 )ω1=2ω.

αω = 2πωχ (2)(2ω,−ω)/(cn(0)
ω ) and α2ω = 4πχ (2)(ω,ω)ω/

(cn(0)
2ω ) are the nonlinear parameters, and χ (2) is the nonlin-

ear temporal susceptibility. Since the dispersion is relatively
weak, we assumed in the right-hand side of the first equation
in (1) that v ≈ v(ω)

g ≈ c/n(0)
ω , and in the right-hand side of the

second equation that v ≈ v(2ω)
g ≈ c/n(0)

2ω . The first and second
terms in the right-hand sides of Eqs. (1) describe the effect
of the waveguide (transverse inhomogeneity) on the phase
and group velocities of the harmonics, respectively. Since we
consider quasimonochromatic signals, we do not include the
terms iq1,2

∂�1,2

∂τ
in (1). The latter can be done because we deal

with pulses having about 100 oscillations under the envelope;
thus, the coefficients of the terms corresponding to iq1,2

∂�1,2

∂τ

are small in comparison with those corresponding to the terms
ωq1,2�1,2.

Let the phase and group velocity matching conditions be
satisfied, i.e., k2 = 2k1 (n(0)

ω = n(0)
2ω = n) and v(ω)

g = v(2ω)
g =

vg. Then the system (1) takes the form

i
∂�1

∂z
+ βω

2

∂2�1

∂τ 2
− αω�∗

1�2 = ωq1�1 + c

2nω

∂2�1

∂x2
,

i
∂�2

∂z
+ β2ω

2

∂2�2

∂τ 2
− α2ω�2

1 = 2ωq2�2 + c

4nω

∂2�2

∂x2
.

(3)

If the waveguide is focusing, then the functions fω(x)
and f2ω(x) decrease from the center to the periphery. In the
opposite case, the waveguide is defocusing. In the case of an
axially symmetric waveguide, the profiles of its functions are
conveniently chosen, for example, in the parabolic form

fω(r⊥) = εw

x2

a2
ω

, f2ω(r⊥) = εw

x2

a2
2ω

. (4)

Here aω,2ω are the waveguide widths, x is the distance from
the center of the waveguide to a current point in the transver-
sal direction, εw = 1 for the defocusing waveguides at both
frequencies, and εw = −1 for the focusing ones.
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We proceed, seeking an approximate analytical solitonlike
solution of the system (4) using the AL method [12,15–17].
First, we suppose in (4) that fω = f2ω = 0 and the envelopes
�1 and �2 are independent of x. In this case, under the
condition

β2ω = 2βω = 2β, (5)

this system has a solution in the form of a one-dimensional
(temporal) soliton [18]:

�1 = ± 3β

2
√

2αωα2ωτ 2
p

exp

(
i

β

2τ 2
p

z

)
sech2

(
τ

2τp

)
,

�2 = − 3β

4αωτ 2
p

exp

(
i
β

τ 2
p

z

)
sech2

(
τ

2τp

)
. (6)

Here τp is a free parameter meaning the temporal duration of
the soliton.

Let us briefly discuss a possibility of satisfying the equality
(5) and the phase and group matching conditions as well.
According to Sellmeier’s formula [19], for the susceptibility
χω = (χ0)/(1 − ω2/ω2

0 ), where χ0 is the static susceptibility
of the medium, ω0 is the characteristic frequency of the
resonant absorption. In the low-frequency limit ω2/ω2

0 � 1
we have χω = χ0(1 + ω2/ω2

0 ). Then the refractive index

nω =
√

1 + 4πχω =
√

n2
0 + 4πχ0ω2

ω2
0

≈ n0 + 2πχ0ω
2

n0ω
2
0

, (7)

where n0 = √
1 + 4πχ0. Relative smallness of the second

term in (7) corresponds to a weak dispersion. Therefore, we
can assume that k ≈ n0ω/c with an accurate approximation.
Then k2 = k(2ω) = 2k1 = 2k(ω). From here we also come to
the equality v(ω)

g ≈ v(2ω)
g ≈ c/n0. In addition, we find from

(7) that βω = 1
c

∂2

∂ω2 (nωω) = 12πχ0ω/(cn0ω
2
0 ). Equality (5)

automatically follows from the latter.
Thus, the phase and group matching conditions and the

equality (5) can be approximately satisfied in the area of
frequencies lying well below the frequencies of the resonant
absorption. In this case βω > 0. An analogous situation for
βω < 0 can be realized in the presence of spatial dispersion
[20].

To take into account transverse perturbations due to the
right-hand sides in (4), we use the solution (7). Now we
assume that the soliton duration in (7) depends on the coor-
dinates x and z. In addition, we suppose that the imaginary
exponents are unknown coordinate-dependent functions. In
this case, it is necessary to take into account modulation
[21–23] and snake [23–26] instabilities that can affect one-
dimensional solitons (7). Thus, we choose trial solutions in
the form

�1 = ± 3β

2
√

2αωα2ω

ρ2/3 exp

(
− i

[
nω

c
ϕ + η(τ + ξ )

])

× sech2

(
ρ1/3 τ + ξ

2

)
,

�2 = − 3β

4αω

ρ2/3 exp

(
− 2i

[
nω

c
ϕ + η(τ + ξ )

])

× sech2

(
ρ1/3 τ + ξ

2

)
, (8)

where ρ, ϕ, η, and ξ are coordinate-dependent functions to be
determined.

The functions ρ and ϕ describe the modulation instability.
At the same time, the functions η and ξ describe the snake
instability. In the one-dimensional case we have

ρ = ρ0 = 1

τ 3
p

, ϕ = ϕ0 = − c

nω

β

2τ 2
p

z, η = ξ = 0. (9)

The parameter η has the meaning of small fluctuations in
the carrier frequency of the fundamental component of the
pulse. These fluctuations, in turn, due to dispersion give rise
to fluctuations in the linear group velocity. As a result, the
dynamic variable ξ becomes nonzero. Random curvatures of
the wave fronts of the pulses are also inevitable. This leads to
a local curvature of the phase and group stripes of solitons.

We note that the system (4) corresponds to the Lagrangian

L = L1 + αω

2α2ω

L2 + Lint,

where

L1 = i

2
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�∗
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− �1
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1
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)
− ωq1|�1|2

−βω

2

∣∣∣∣∂�1

∂τ
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2

+ c

2nω

∣∣∣∣∂�1

∂x

∣∣∣∣
2

,

L2 = i

2

(
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2
∂�2

∂z
− �2

∂�∗
2

∂z

)
− 2ωq2|�2|2

−β2ω

2

∣∣∣∣∂�2

∂τ

∣∣∣∣
2

+ c

4nω

∣∣∣∣∂�2

∂x

∣∣∣∣
2

,

Lint = −α2ω

(
�∗2

1 �2 + �2
1�

∗
2

)
.

According to the AL method, we substitute the trial solu-
tions (9) in these expressions for the Lagrangian and integrate
the outcome expression with respect to the local time τ .
Taking into account the equality (5), we obtain as a result∫ +∞

−∞
L dτ = 9nω

2c

β2

αωα2ω

�, (10)

where the averaged Lagrangian � looks like

� = ρ
∂ϕ

∂z
+ ρ

2

(
∂ϕ

∂x

)2

+ 3

10

c

nω
βρ5/3 − c

n
qρ

+g2

2

( c

nω

)2 1

ρ

(
∂ρ

∂x

)2

− c

nω
ρη

∂ξ

∂z

− c

nω
βρη2 + 1

2

( c

nω

)2
(

3

20
ρ5/3 + ρη2

)(
∂ξ

∂x

)2

− c

nω
ρη

∂ϕ

∂x

∂ξ

∂x
+ b2

2

( c

nω

)2
ρ1/3

(
∂η

∂x

)2

, (11)

where g2 = 1
6 ( π2

30 + 1)( c
nω

)2, b2 = 2( π2

6 − 1)( c
nω

)2. Taking
into account both (2) and matching conditions (n(0)

ω = n(0)
2ω =

n, χ (0)
ω = χ

(0)
2ω = χ ), we rewrite the expression for q in (11) in

the form

q = 2π

cn
χ f = n2 − 1

2cn
f , f = 2 fω + f2ω

3
. (12)
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Using the Euler-Lagrange equations

∂

∂z

∂�

∂ (∂ϕ/∂z)
+ ∂

∂x

∂�

∂ (∂ϕ/∂x)
= 0,

∂�

∂ρ
− ∂

∂x

∂�

∂ (∂ρ/∂x)
= 0,

(13)
∂

∂z

∂�

∂ (∂ξ/∂z)
+ ∂

∂x

∂�

∂ (∂ξ/∂x)
= 0,

∂�

∂η
− ∂

∂x

∂�

∂ (∂η/∂x)
= 0,

after simple mathematical transformations we come to the set
of equations

∂ρ

∂z
+ ∂

∂x

[
ρ

∂

∂x

(
ϕ + c

nω
ηξ

)]
= 0, (14)

∂ϕ

∂z
+ 1

2

(
∂ϕ

∂x

)2

+ c

2nω
βρ2/3 − c

n
q(x)

= 2g2

√
ρ

∂2√ρ

∂x2
− c

nω
βη2 − b2 η

ρ

∂

∂x

(
ρ1/3 ∂η

∂x

)

+ 1

2

( c

nω

)2
(

η2 − ρ2/3

4

)(
∂ξ

∂x

)2

− 2

9ρ2/3

( c

nω

)2
(

∂η

∂x

)2

, (15)

∂η

∂z
+ ∂η

∂x

∂

∂x

(
ϕ + c

nω
ηξ

)
+ 3

20

c

nω

1

ρ

∂

∂x

(
ρ5/3 ∂ξ

∂x

)
, (16)

∂ξ

∂z
= 2βη + b2 nω

c

1

ρ

∂

∂x

(
ρ1/3 ∂η

∂x

)

−∂ϕ

∂x

∂ξ

∂x
− c

nω
η

(
∂ξ

∂x

)2

. (17)

The parameters of the one-dimensional (1D) soliton are
independent of the transverse coordinate x. From (14) and (16)
in this case we have ∂ρ

∂z = ∂η

∂z = 0. Assuming in accordance
with this ρ = τ−3

p = const, η = 0 [see (9)], from (17) and

(15) under condition q(x) = 0 we have ∂ξ

∂z = 0, ∂ϕ

∂z = − c
nω

β

2τ 2
p
.

These conditions strictly correspond to the equalities (9).
Thus, in the 1D case the trial solutions (9) coincide exactly
with the solutions (7). This circumstance is an important
argument in favor of the AL method.

As can be seen from the system (14)–(17), the dynamic
variables describing modulation and snake instabilities are
connected with each other. To simplify the procedure for
further studies, we consider the small perturbations of the
parameters of a one-dimensional soliton, assuming

ρ = 1

τ 3
p

+ ρ1, ϕ = − c

nω

β

2τ 2
p

z + ϕ1. (18)

By means of a linearization of the system (14)–(17) with
respect to the variables ρ1, ϕ1, η, and ξ we obtain

∂ρ1

∂z
= − 1

τ 3
p

∂2ϕ1

∂x2
, (19)

∂ϕ1

∂z
= −cβτp

3nω
ρ1 + c

n
q(x) + g2τ 3

p

∂2ρ1

∂x2
, (20)

∂η

∂z
= − 3

20τ 2
p

c

nω

∂2ξ

∂x2
, (21)

∂ξ

∂z
= 2βη + b2 nω

c
τ 2

p

∂2η

∂x2
. (22)

Thus, in the linear approximation, the dynamic parameters
corresponding to the modulation and snake instabilities are
independent of each other. Note that a similar situation occurs
in the case of these instabilities for a soliton of the nonlinear
Schrödinger equation propagating in a gradient waveguide
[27].

Excluding the variable ϕ1 from the system (19), (20), we
obtain

∂2ρ1

∂z2
= cβ

3nωτ 2
p

∂2ρ1

∂x2
− c

nτ 3
p

d2q

dx2
− g2 ∂4ρ1

∂x4
. (23)

In the case of a parabolic profile of the linear refractive
index determined by the expressions (2) and (4), we have
d2q/dx2 = const. Then Eq. (23) can be written as

∂2ρ̃

∂z2
= εd

2

3ld

c

nω

∂2ρ̃

∂x2
− g2 ∂4ρ̃

∂x4
, (24)

where ld = 2τ 2
p

|β| is the dispersion length, ρ̃ = ρ1 −
3
2

εd
τ 3

p
ωld q(x); εd = sgnβ, i.e., if GVD is normal, εd = +1,

otherwise for anomalous GVD εd = −1.
From (19) and (20) it is easy to get Eq. (24) for ϕ1.
From (21) and (22) we find

∂2η

∂z2
= −εd

3

5ld

c

nω

∂2η

∂x2
− 3

20
b2 ∂4η

∂x4
. (25)

The dynamic parameter ξ obeys the same equation.
Assuming in (24) and (25) that ρ̃ ∼ e�mz cos kx, η ∼

e�sz cos kx, we obtain the expressions for the increments of
modulation �m and snake �s instabilities:

�2
m = −2

3
εd

c

nωld
k2 − g2k4, (26)

�2
s = 3

5
εd

c

nωld
k2 − 3

20
b2k4. (27)

Let GVD be anomalous, i.e., εd = −1. Then, as can be
seen from (26), the modulation instability develops under

condition k < km = 1.73
√

nω
cld

. In this case a snake instability

does not occur.
If GVD is normal (εd = +1), the situation is opposite:

under the condition k < ks = 1.76
√

nω
cld

[see (27)], the snake

instability develops, and a modulation instability does not
occur.

These conclusions qualitatively coincide with the results
obtained previously for solitons in media with Kerr nonlinear-
ity [22].

Under the condition k > ks, km both instabilities are sup-
pressed at both normal and anomalous dispersion. Putting k ∼
1/R0, where R0 is a characteristic transverse size (aperture) of
the soliton, we find that both instabilities can be suppressed
under the condition lD < ld . Here lD = nω

c R2
0 is the diffraction

length. In this case, it can be assumed that the localization of
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the pulse in the transverse directions occurs mainly due to the
focusing waveguide effect.

It was shown in [27] that a gradient focusing waveguide
suppresses snake instability in a medium with Kerr non-
linearity. Formulas (26) and (27), up to coefficients, coin-
cide with similar formulas obtained in the case of the Kerr
nonlinearity [22,24]. Therefore, we assume in advance that
the snake instability in our case is also suppressed by the
focusing waveguide effect under normal GVD. Below we will
consider only the modulation instability, which, together with
a focusing waveguide under conditions of anomalous GVD,
creates the localization effect of pulses of the fundamental
frequency and second harmonic. Under this assumption, in
the case of normal GVD, the transverse localization effect
is created solely due to the waveguide effect. We emphasize
in advance that this assumption is confirmed by numerical
experiments, the results of which are presented in Sec. IV.
We note, however, that with this approach it is impossible to
completely and strictly consider the case of normal GVD and
a defocusing waveguide. However, as will be shown below, in
this case, stable light bullets cannot be formed. For this reason,
we will not study this case in detail.

Summarizing the above, we put in (14)–(17) η = ξ =
0. Then Eqs. (16) and (17) turn into identities 0 = 0, and
Eqs. (14) and (15) take the form

∂ρ

∂z
+ ∂

∂x

(
ρ

∂ϕ

∂x

)
= 0, (28)

∂ϕ

∂z
+ 1

2

(
∂ϕ

∂x

)2

+ c

2nω
βρ2/3 − c

n
q(x) = 2g2

√
ρ

∂2√ρ

∂x2
. (29)

Moreover, we must put η = ξ = 0 in expressions (9). Then
we will have trial solutions in the form of an ansatz used to
take into account the influence of transverse perturbations on
the plane solitons [22].

The system (28), (29) is analogous to the system of equa-
tions for a quantum Bose liquid in an external field [28].
Equation (28) is the continuity equation, and Eq. (29) is the
quantum integral of Cauchy. The third term in the left-hand
side of (29) corresponds to the interaction between particles
of an imaginary liquid, which forms internal pressure. In the
problem we are solving this term corresponds to nonlinearity
and GVD. The fourth term (taking into account the waveg-
uide) describes the effect of an external field on the flow of
a fluid. The right-hand side is often called quantum pressure.
It takes into account the wave properties of particles of an
imaginary quantum liquid. In our case the right-hand side
in (29) corresponds to the influence of diffraction on the
propagation of the pulses of both harmonics. If we put in (29)
g = 0, we take into consideration transverse perturbations in
the approximation of geometric optics. In this case, transver-
sal perturbations are accounted for by the second terms in the
left-hand sides of Eqs. (28) and (29), which coincide at q = 0
with the equations of motion of the classical ideal fluid.

Analogy between the dynamics of an optical soliton in a
waveguide and the flow of a quantum Bose liquid in an ex-
ternal field can be used to apply the Madelung transformation
[1]

Q = √
ρ exp

(
i
ϕ

2g

)
.

It is easy to see that the system (28), (29) is equivalent to
the following equation for a complex function Q:

i
∂Q

∂z
= −g

∂2Q

∂x2
+ c

2gn

(
β

2ω
|Q|4/3 − q(x)

)
Q. (30)

This equation is analogous to the Gross-Pitaevskii (GP) equa-
tion [29], which describes the dynamics of the Bose-Einstein
condensate in an external field. Equation (30) differs from GP
in the nonlinear term. In (30) this term has the form ∼|Q|4/3Q,
and in the GP equation the nonlinear term looks like ∼|Q|2Q.
Therefore, we call Eq. (30) the modified Gross-Pitaevskii
equation (MGP).

III. APPROXIMATE ANALYTICAL SOLUTIONS
AND THEIR STABILITY

In the planar case, for q = 0 and β < 0 (in the absence of
a waveguide and at anomalous GVD) the system (28), (29)
[or Eq. (30)] has an exact localized solution [12]. Frequency
ω is by definition a positive value. On the other hand, if
we formally put in (30) β = 0, then we come to the linear
quantum-mechanical Schrödinger equation. There are many
kinds of functions q(x) for which this equation has exact
solutions. In general, when β 	= 0 and q(x) 	= 0, there are
probably no exact analytical solutions. Therefore, we restrict
our consideration to the search for an approximate solution
corresponding to a localized spatial-temporal soliton.

First we make the analysis in the framework of geometric
optics. Equation (28) has an exact self-similar solution of the
form [30]

ρ = 1

τ 3
p

R0

R
G

( x

R

)
, ϕ = σ (z) + x2

2R

dR

dz
, (31)

where R and σ are still unknown functions of z, and G is
also an unknown dimensionless function of its argument x/R.
The second term in the right-hand side of (31) describes
the dynamic curvature of the wave fronts of the pulse as it
propagates in the medium.

Let us consider the values of the transverse coordinate that
satisfy the condition (

x

aω,2ω

)2

� 1. (32)

From (4) and (12) we have

q = εw

n2 − 1

2cn

x2

a2
, (33)

where a2 = 3(2a−2
ω + a−2

2ω )−1.
To find the functions R, σ , and G let us substitute (31)

into (29), taking into account (33), using the approximation
of geometric optics (g = 0). Then

dσ

dz
+ x2

2R

d2R

dz2
+ εd

c

nωld

R2/3
0

R2/3
G2/3 − εw

n2 − 1

2n2

x2

a2
= 0.

(34)
We should choose the function G(x/R), guided by two

considerations: (a) it is necessary to obtain an exact solution;
(b) the variable ρ must be localized along the x axis. Both

033835-5



SERGEY V. SAZONOV et al. PHYSICAL REVIEW A 100, 033835 (2019)

conditions are satisfied by the expression

G2/3 = 1 − x2

4R2
, |x| < 2R. (35)

From (35), (31), and (9) it is clear that the parameter R has
the meaning of the transverse aperture of the soliton.

Then, equating to zero the expressions at x0 and x2 in the
left-hand side of (34), we come to the equations

dσ

dz
= −εd

c

nωld
β

R2/3
0

R2/3
, (36)

d2R

dz2
= εd

c

2nωld

R2/3
0

R5/3
+ εw

n2 − 1

n2a2
R. (37)

Here τp = 1/ρ
1/3
0 is the pulse duration on its axis [at x = 0;

see (31), (32) and (34), (35)[.
The value dσ/dz is proportional to the nonlinear addition

to the refractive index on the waveguide axis [see (31), (9)].
The first and second terms in the right-hand side of (37)
describe nonlinear and linear (waveguide) refraction, respec-
tively.

Expressions (31) and (35) represent the exact solution of
the system (28), (29) at g = 0. In this case, the dependence
R(z) can be found as a result of integrating Eq. (37) in
quadratures.

Now let us approximately take into account the influence
of diffraction (g 	= 0). It is clear that diffraction leads to the
blurring of sharp boundaries of the light bullet, described by
the expression (35). In accordance with this, starting from
(35), we set [12]

G2/3 = sech2
( x

2R

)
. (38)

In this case, the right-hand side of (34) takes the form

2g2

√
ρ

∂2√ρ

∂x2
= 2g2

√
F

∂2
√

F

∂x2
= 9g2

8R2

[
1 − 5

3
sech2

( x

2R

)]
.

Assuming the near-axis approximation x2/R2 � 1 [31], we
write sech2( x

2R ) ≈ 1 − x2

4R2 . Then, instead of (36) and (37), we
have

dσ

dz
= −εd

c

nωld

R2/3
0

R2/3
− 3g2

4R2
, (39)

d2R

dz2
= −∂U

∂R
, (40)

where the “potential energy”

U = εd
3c

4nωld

R2/3
0

R2/3
− εw

n2 − 1

2n2a2
R2 + 15g2

32R2
. (41)

The last terms in the right-hand sides of (39) and (41)
describe the effect of diffraction. Equation (40) is formally
similar to the equation of motion of a Newtonian particle of
unit mass. The roles of the coordinate and time are played by
the pulse aperture R and z coordinate, respectively. The first
integral of this equation has the form

1

2

(
dR

dz

)2

+ U (R) = const. (42)

The case R = R0 = const corresponds to the stationary
propagation of a spatial-temporal soliton with plane wave
fronts. Amplitudes of its both components decrease from
the center to the peripheral regions as ∼sech2( x

2R0
), and the

duration increases according to the law ∼sech( x
2R0

) [see (38),
(31), and (9)].

The stability conditions for such a stationary solution have
the form (

∂U

∂R

)
R=R0

= 0,

(
∂2U

∂R2

)
R=R0

> 0.

These conditions correspond to the minimum of “potential
energy” for an imaginary particle of unit mass [see (40)].
Therefore, these equilibrium positions are stable.

From this and (41), taking into account 3
4 ( π2

30 + 1) =
0.997 ≈ 1, we find

εd + εw

μ

3
+ 5

12

ld
lD

= 0, (43)

εwμ + εd < 0. (44)

Here we determine

μ = 6ld lD(n2 − 1)

a2n2
(45)

and the dispersion ld and diffraction lD lengths

ld = 2τ 2
p

|β| , lD = nω

c
R2

0.

εd = sgnβ, i.e., if GVD is normal, εd = +1, otherwise for
anomalous GVD εd = −1.

So, for the formation of a two-color light bullet, simultane-
ous fulfillment of the conditions (43) and (44) is necessary.

For a homogeneous medium we have a → ∞. Then we
find from (27) εd = −1. Thus, to form a stable light bullet in a
homogeneous medium, GVD must be anomalous [12]. In this
case, equality (43) can be rewritten as lD = 5ld/12 ≈ 0.42lD.
This also coincides with the result obtained earlier in [12].

It follows from (43) that, under condition εd = εw = +1
(normal GVD, defocusing waveguide), it is impossible to
form a light bullet. In this case, the snake instability con-
sidered above in the linear approximation is added to the
defocusing instability created by the waveguide. The results
of numerical experiments confirm the conclusion that it is
impossible to form a light bullet in this case. In the remaining
three cases, bullet formation is possible. Let us consider these
cases in more detail.

a. Anomalous GVD, defocusing waveguide (εd =
−1, εw = +1). In this case from (43) and (44) we find

μ

3
= 1 − 5

12

ld
lD

, (46)

μ < 1. (47)

Successively excluding the parameters a, ld , and lD from the
conditions (46) and (47), taking into account (45), we arrive
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1
R R0

U

R R0

U

FIG. 1. Schematic representation of the dependence of “potential
energy” U on the dimensionless pulse aperture R/R0 of a pulse
under conditions (48) (top) and under violation of these conditions
(bottom); anomalous GVD and defocusing waveguide: ed = −1,
ew = +1.

at the inequalities

1.60 <
ld
lD

< 2.40,
lD
a

< 0.32
n√

n2 − 1
,

ld
a

< 0.55
n√

n2 − 1
. (48)

Note that the right-hand side of the first of the inequalities (48)
automatically follows from (46). We write it in the form of a
double inequality in order to emphasize that the light bullet is
formed in a narrow interval of the ratio ld/lD. It is easy to see
from (42) that if the conditions (48) are violated, the pulse is
defocused.

This case is schematically shown in Fig. 1 in the form of
dependences of “potential energy” U on R, when conditions
(48) are satisfied and if they are violated. Note that in a
defocusing waveguide with a focusing Kerr nonlinearity, the
formation of stable spatiotemporal solitons is impossible. In
this case, the waveguide should be focusing [29]. Therefore,
the conditions (48), under which the formation of light bullets
is possible, are applicable only to quadratically nonlinear
media.

b. Anomalous GVD, focusing waveguide (εd = −1, εw =
−1). In this case we find

μ

3
= 5

12

ld
lD

− 1. (49)

Provided that this equality holds, the condition (44) is satisfied
automatically. Therefore, additional restrictions, along with
(49), are not required.

1
R R0

U

FIG. 2. Schematic representation of the dependence of “potential
energy” U on the dimensionless pulse aperture R/R0 in cases of
anomalous (ed = −1) or normal (ed = +1) GVD and of focusing
waveguide (ew = −1). In both cases the function U (R/R0 ) has a
clearly defined minimum at R/R0 = 1, which indicates the stability
of the spatiotemporal soliton.

In the case of the Kerr nonlinearity condition under con-
sideration, the optical pulse can develop a collapse (R → 0,
ρ → ∞) in a finite time if the pulse power exceeds a certain
threshold value [32,33]. With quadratic nonlinearity collapse
does not occur. For the case of a homogeneous quadratically
nonlinear medium this was shown in [12,34]. As can be seen
from Fig. 2, the development of collapse is also impossible in
the focusing waveguide, because U → ∞ at R → 0.

c. Normal GVD, focusing waveguide (εd = +1, εw = −1).
In this case we have

μ

3
= 1 + 5

12

ld
lD

. (50)

Inequality (44) μ > 1 is satisfied automatically (see Fig. 2),
because from (50) we have μ > 3. Assuming in (50) that a →
∞ (μ → 0), we conclude that it is impossible to form a light
bullet at normal GVD in a homogeneous medium. This is a
well-known result supported by theory and experiments [1].

Formulas (46)–(50) refer to the steady-state propagation
mode, when the soliton aperture and its duration are constants.
Then we can write down the following solution in an explicit
form:

�1 = ± 3β

2
√

2αωα2ωτ 2
p

exp

(
i
βz

2τ 2
p

)

× sech2

(
x

2R0

)
sech2

[
τ

2τp
sech

(
x

2R0

)]
,

�2 = − 3β

4αωτ 2
p

exp

(
i
βz

τ 2
p

)

× sech2

(
x

2R0

)
sech2

[
τ

2τp
sech

(
x

2R0

)]
. (51)

It is important to note that, according to the expression
(33), an effective waveguide is formed at both harmonics. In
this case, situations are possible where the waveguide exists
only for one harmonic. In these cases 1/aω = 0 or 1/a2ω =
0, but 1/a 	= 0. Let, for example, 1/aω = 0, 1/a2ω 	= 0,
εw = −1. Then the input pulse of the fundamental harmonic
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generates a second harmonic pulse in the medium. In turn, the
second harmonic pulse can capture the fundamental harmonic
pulse into the waveguide.

In this section, the expressions (9) are chosen as trial
functions, i.e., it is assumed that pulses of both harmonics
are formed in the medium. However, the greatest interest
is a study of the formation of light bullets in the process
of SHG. This corresponds to the situation when there is no
second harmonic at the input to the medium. Moreover, under
real conditions it is very difficult to achieve simultaneous
fulfillment of phase and group matching conditions [see (5)].

It is useful to specify the period of spatial oscillations
of the aperture. Conditions (43) and (44) correspond to the
presence of a minimum of “potential energy” U (R) at R = R0.
For small deviations from this minimum, the oscillatory mode
of the aperture R(z) should be realized near the equilibrium
value R0. We put in (40) R = R0 + ξ , where |ξ | � R0. After
linearization with respect to ξ , we obtain

d2ξ

dz2
= −

(
2π

T

)2

ξ,

where T is the period of small spatial oscillations of the
aperture, determined by the relation

T = T0√−εd − εwμ
; (52)

T0 = 2π
√

3ld lD/2 ≈ 7.70
√

ld lD is the period of spatial oscil-
lations in the absence of waveguide at εd = −1. Three cases
mentioned above correspond to the expressions for periods:

Ta = T0√
1 − μ

, Tb = T0√
1 + μ

, Tc = T0√
μ − 1

. (53)

We emphasize once again that the conditions (43) and (44)
are related to the steady-state light bullet (51). The answer to
the question of how to generate such a bullet can be given by
means of numerical simulation.

The generation mode in the absence of at least one of
the matching conditions (phase or group) can be investigated,
perhaps, only with the help of numerical simulations on the
basis of Eqs. (1) as well. This is discussed in detail in the next
section.

IV. RESULTS OF NUMERICAL SIMULATION IN PLANAR
WAVEGUIDE AND DISCUSSION

In this section we discuss the outcome of a direct numerical
simulation of the system (1) which we performed to confirm
our analytical results presented in the previous section and to
widen the scope of our study, including the effects neglected
in the analytical approach and a possibility of light bullet
formation in a waveguide at SHG.

We still consider a planar waveguide and use dimensionless
parameters related to the physical parameters in the follow-
ing way: �1,2 = A1,2Ain, z = zlnl , x = xRin, τ = ττin, �k̄ =
�klnl , �k = 2k1 − k2 is the phase detuning, lnl = (αωAin)−1

is the nonlinear length, and aω,2ω = Rināω,2ω. Here Ain is
the input peak amplitude of the fundamental harmonic and
Rin and τin are initial pulse spatial and temporal widths,
respectively. We introduce also the following propagation and
waveguide characteristics: Dq1 = 2πωlnlχ

(0)
ω εw/(cn(0)

ω ā2
ω ),

Dq2 = 4πωlnlχ
(0)
2ω εw/(cn(0)

2ω ā2
2ω ), Dτ1 = βωlnl/(2τ 2

in), Dτ2 =
β2ωlnl/(2τ 2

in), Dx1=clnl/(2ωn(0)
ω R2

in), Dx2=clnl/(4ωn(0)
2ωR2

in);
γ = α2ω/αω, aω, and a2ω are the characteristic lengths of
waveguide transversal inhomogeneity. Spatial and temporal
widths of an arising soliton, which generally are different
from those of the initial pulse, we normalize as R0 = R̄0Rin,
τp = τ̄0τin. Then, we suppose the group matching conditions
are satisfied, v(ω)

g = v(2ω)
g = vg. Finally, we get the following

system of the dimensionless equations, which we use as a base
for our numerical simulation:

i
∂A1

∂ z̄
= Dq1x̄2A1 − Dτ1

∂2A1

∂τ̄ 2
+ A∗

1A2ei�kz + Dx1
∂2A1

∂ x̄2
,

i
∂A2

∂ z̄
= Dq2x̄2A2 − Dτ2

∂2A2

∂τ̄ 2
+ γ A2

1e−i�k̄z̄ + Dx2
∂2A2

∂ x̄2
.

(54)

The system (54) possesses the motion integrals [14]

I1 =
∫ ∞

−∞
dx̄

∫ ∞

−∞
(γ |A1|2 + |A2|2)d τ̄ , (55)

I3 =
∫ ∞

−∞
dx̄

∫ ∞

−∞
d τ̄

{
− 2

∣∣A2
1A2

∣∣ cos(2ϕ1 − ϕ2)

+�k̄

γ
|A2|2 + 2Dx1

∣∣∣∣∂A1

∂ x̄

∣∣∣∣
2

+ Dx2γ
−1

∣∣∣∣∂A2

∂ x̄

∣∣∣∣
2

− 2Dτ1

∣∣∣∣∂A1

∂τ̄

∣∣∣∣
2

− Dτ2γ
−1

∣∣∣∣∂A2

∂τ̄

∣∣∣∣
2

− 2Dq1x̄2|A1|2 − Dq2x̄2γ −1|A2|2
}
. (56)

In (56) ϕ1,2 are the wave phases.
The principal interest in our numerical experiment is to

check whether our approximate solutions (51) and criteria
(46)–(50) demonstrate a sufficient coincidence with the results
revealed in direct numerical simulation of the system (54).
Moreover, we go beyond the framework of the theoretical
analysis and show a possibility of light bullet capture and
stable propagation at SHG and at a certain phase mismatch
as well. In computations we launch the initial pulse at both
frequencies in the form corresponding to (51),

A1(z̄ = 0) = E sech2

(
x̄

2

)
sech2

[
τ̄

2
sech

(
x̄

2

)]
,

A2(z̄ = 0) = ±E

2
sech2

(
x̄

2

)
sech2

[
τ̄

2
sech

(
x̄

2

)]
, (57)

or at the fundamental frequency only,

A1(z̄ = 0) = E sech2

(
x̄

2

)
sech2

[
τ̄

2
sech

(
x̄

2

)]
,

A2(z̄ = 0) = 0. (58)

Then, taking into account (51) and the way of normaliza-
tion, we put in (57) E = 3Dτ1. In the process of SHG there is a
partial dissipation of the energy of the fundamental harmonic,
therefore, in our calculations we take E ≈ (5–10)Dτ1.

One should note that to derive the criteria (46)–(50) an-
alytically we have made several assumptions concerning the
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phase matching (n(0)
ω = n(0)

2ω = n), equality of nonlinear co-
efficients χ (0)

ω = χ
(0)
2ω = χ , and fulfillment of (5). Through

normalization these assumptions result in Dx1 = 2Dx2 and
Dτ2 = 2Dτ1. Moreover, to simplify the interpretation for nu-
merical results we suppose that dimensionless soliton spatial
and temporal widths R̄0 = τ̄0 = 1. Hence, we arrive at the
following form of the dimensionless coefficient μ introduced
in (45):

μ = 2εd

Dτ1εw

(4Dq1 + Dq2). (59)

Besides that, we can express the periods of spatial oscillations
(53) in dimensionless form as well. The dimensionless period
of spatial oscillations in the absence of waveguide T0 is

T0 = π

√
3

εd Dτ1Dx1
. (60)

The ratio of dispersion an diffraction lengths included in
(46)–(50) and (52) in dimensionless form looks like

ld
lD

= 2Dx1εd

Dτ1
. (61)

To investigate numerically the regimes of the formation
and propagation of two-component optical bullets we ap-
proximate (54) by a conservative difference scheme based
on the Crank-Nicolson method. This method guarantees the
preservation of difference analogues of the integrals (55),
(56). To compute the solution on the next layer along the
propagation coordinate we use a multistep effective iterative
solver [14]. This method allows us to carry out an accurate
and efficient modeling of the investigated processes. Imple-
menting calculations, we usually take a limited computational
domain in transverse directions x̄ and τ̄ :

−Lx/2 < x̄ < Lx/2, −Lτ /2 < τ̄ < Lτ /2,

where Lx and Lτ are chosen so that the amplitudes of both
harmonics decay to zero at the boundaries of this domain. In
particular cases, when Lx and Lτ are too large, the efficiency
of the method can be improved by using absorbing boundary
conditions along the coordinates x̄ and τ̄ . To this end we
embed an artificial absorption in the system (54) [14].

Our numerical experiment is divided into three series. In
the first series we consistently investigate in detail a two-
component light bullet propagation provided phase matching.
In this series we launch both input pulses of the forms (57)
and (58). In the second series we calculate and discuss some
examples with phase mismatching. In the final series of nu-
merical simulation we consider a waveguide at one frequency
only.

Let us start with the first series of computations. We
suppose that the phase matching condition is satisfied (�k̄ =
0) and check the criteria (46)–(50) and (44). We simulate
the propagation of a two-component light bullet (57) when
the problem parameters are chosen close to the limit of the
fulfillment of the criteria (46)–(50). To verify that two pulses
form stable parametric solitons, we pay special attention to
the conservativeness of the generalized phase � = 2ϕ1 − ϕ2.
It is known that the generalized phase has a constant value for
parametric solitons [12].

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Anomalous dispersion and defocusing waveguide at
phase matching. Peak intensities of the fundamental (solid line) and
second (dotted line) harmonics vs the propagation distance (a, c).
Generalized phase (b, d). μ = 0.2, Dq1 = 0.0017, Dq2 = 0.0034,
Dx1 = 0.112, Dx2 = 0.056, Dτ1 = −0.1, Dτ2 = −0.2, E = 0.3, γ =
0.5 (a, b) and μ = 0.5, Dq1 = 0.0042, Dq2 = 0.0084, Dx1 = 0.1,
Dx2 = 0.05, Dτ1 = −0.1, Dτ2 = −0.2, E = 0.3, γ = 0.5 (c, d). De-
pendence of the distance z̄max at which the phase behavior abruptly
deviates from the quasisoliton regime on μ (e). In (e) from (46),
(48), and (61) Dx1 = 2(μ − 3)Dτ1/5, Dx2 = Dx1/2, Dq1 = μDτ1/12,
Dq2 = 2Dq1; other parameters are the same as in (a)–(d). Input pulses
of the form (57) at both frequencies. The same as in (a) at SHG,
E = 1.0 (f).

Below we consistently discuss the numerical simulation of
three cases considered in the previous section.

d. Anomalous GVD, defocusing waveguide (Dτ1,2 < 0,
εd = −1, εw = +1). The principal interest in this case is to
refine the limits of the dimensionless criteria (46) and (48)
rewritten by taking into account (61). One should note that a
combination of the mentioned criteria gives 0 < μ < 1.

Figures 3(a)–3(d) show the dependencies of peak inten-
sities and generalized phase on propagation coordinate z̄ for
both harmonics. Figures 3(a) and 3(b) correspond to μ = 0.2.
Numerical simulation demonstrates that after a short initial
period the two-component light bullet propagates without
distortions along the entire distance of computations. We
reveal that there is no energy exchange between the funda-
mental and second harmonics: the maxima and minima of the
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fundamental wave intensity coincide with those of the second
harmonic intensity. This means that the regime of classic
parametric solitons is established. This regime is known as
a reactive one, and an optimal relation between phases of
interacting waves is a characteristic sign of it [30]. Figure 3(b)
illustrates the dependence of the generalized phase � on the
distance z̄ at the center of the (x̄, τ̄ ) domain. We observe that
after z̄ ≈ 40 the generalized phase becomes constant. Thus,
we confirm the stability of the derived soliton solution (51).

Then we increase the strength of the defocusing waveg-
uide and investigate the case μ = 0.5 [Figs. 3(c) and 3(d)].
Numerical simulation shows that, as in the previous case,
the intensities of the fundamental and second harmonics
change in-phase but there is energy dissipation and light bullet
distortion [Fig. 3(c)]. We find out that there is an optimal
relation between phases of interacting waves up to z̄ = 100
[Fig. 3(d)], confirming the stable propagation of the light
bullet.

The generalization of our studies for an anomalous
GVD, defocusing waveguide at phase matching is de-
picted in Fig. 3(e). Here we demonstrate the influence
of μ on the distance z̄max at which the phase behavior
abruptly deviates from the quasisoliton regime. From (46) we
have Dx1 = 2(μ − 3)Dτ1/5, provided Dx2 = Dx1/2, Dq1 =
μDτ1/12, Dq2 = 2Dq1. Other parameters are the same as in
Figs. 3(a)–3(d). The input pulse has the form (57). It is
necessary to underline that with increasing μ up to μ = 1 we
observe that the distance of stable two-component light bullet
propagation decreases. For μ > 1 the graph for generalized
phase has no constant parts. Therefore, one should note the
fulfillment of the criteria (46) combined with (61).

As mentioned above, the question of the possibility of
generating a bullet, in particular, in the case under consider-
ation, is rather essential. Figure 3(f) illustrates results of the
computations when launching a pulse (58) at the fundamental
frequency only. We observe significant fluctuations in the in-
tensities of both harmonics during the initial energy exchange
up to z̄ = 100. For a longer distance oscillations characteriz-
ing a stable bound state occur. It means the formation of a
light bullet.

e. Anomalous GVD, focusing waveguide (Dτ1,2 < 0, εd =
−1, εw = −1). As shown recently in [12], a stable two-
component light bullet may form in this case even without
a waveguide. It is clear that the presence of a focusing
waveguide strengthens this effect. There are no additional re-
strictions on parameters. Since μ > 0, we get Dx1 > 6Dτ1/5.

Figure 4, which shows dependencies of peak intensities
and generalized phase on propagation coordinate z̄ for both
harmonics, illustrates stable quasisoliton propagation up to
z̄ = 500. We remind the reader that in the absence of a waveg-
uide “breathing” light bullets are observed in a quadratic
nonlinear medium with anomalous dispersion [12,13]. All
parameters of such bullets oscillate like harmonic functions.
Waveguide introduction complicates the whole picture since
additional oscillations caused by the waveguide appear. In
general, the character of oscillations remains “breathing”
but regular, with good coincidence between the period of
oscillations predicted theoretically, T ≈ 33.5, and the period
of oscillations obtained in the numerical experiment, Texp ≈
38.5. As in the previous case, there is no energy exchange

(a) (b)

FIG. 4. Anomalous dispersion and focusing waveguide at phase
matching. Peak intensities of the fundamental (solid line) and second
(dotted line) harmonics vs the propagation distance (a). Generalized
phase (b). Input pulses of the form (35) at both frequencies. Dq1 =
−0.00625, Dq2 = 0.0125, Dx1 = 0.15, Dx2 = 0.075, Dτ1 = −0.1,
Dτ2 = −0.2, E = 0.3, γ = 0.5.

between the fundamental and second harmonics, the reactive
regime is established.

We also carried out computations in the regime of SHG in
this case. Launching a signal of the form (58) in the numerical
experiment, we demonstrate that in the focusing waveguide
at anomalous dispersion a spatiotemporal bullet forms and
robustly propagates.

f. Normal GVD, focusing waveguide (Dτ1,2 > 0, εd = +1,
εw = −1). There are no additional restrictions on parame-
ters. Since Dx1 > 0 and Dτ1,2 > 0, μ > 3. If μ → 3, the
diffraction coefficient Dx1 → 0. Thus, we deal with wider
(shortwave) beams.

First we discuss the case when the value of μ is far
from the limit determined by (26c). Figure 5 corresponds
to μ = 10 and illustrates z dependencies of the calculated
peak amplitudes (a), generalized phase (b) and temporal
and spatial widths (c, d) of both harmonics. The calculated
profiles are compared with those of the form (8a) having
the same amplitudes, widths, and durations at the center of
the beam pulse [Figs. 5(e) and 5(f)]. A similar comparison
of the calculated and analytical profiles of both harmonics
at the distance x̄ = 1 from the beam-pulse center is given
in Fig. 5(g). One can see quite a good match between the
analytical prediction and the calculated profiles. The profiles
calculated numerically demonstrate a good coincidence with
the theoretical solution applied in accordance with the above-
described method. Moreover, there is an agreement between
the period of oscillations predicted theoretically, T ≈ 10.8,
and the period of oscillations obtained in the numerical ex-
periment, Texp ≈ 10.8. Therefore, one may conclude that the
trial functions (51) are chosen correctly.

It is important to underline that in the absence of a waveg-
uide, provided there is normal dispersion, both pulses of the
fundamental and second harmonics are unstable and light
bullets cannot form. Localizations in the form of bullets are
observed only in a waveguide.

Figure 6 demonstrates the behavior of the two-component
bullet when μ is closer to the limit. Figures 6(a) and 6(b)
show dependencies of peak intensities and generalized phase
on propagation coordinate z̄ for both harmonics at μ = 6.
The period of oscillations predicted theoretically, T ≈ 22.2, is
still close to that obtained in numerical experiment, Texp ≈ 22.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Normal dispersion and focusing waveguide at phase
matching. Dependencies of the calculated peak amplitudes (a),
generalized phase (b), and temporal and spatial widths (c, d) of
the fundamental (solid lines) and second (dotted lines) harmonics.
Transversal temporal (e) and spatial (f) profiles of both harmonics
calculated at the distance z̄ = 1000 from the beam-pulse center (solid
lines) compared with the approximations of the form (51) of the
maximum intensity and temporal and spatial widths of the calculated
first and second harmonics (dashed lines). Similar comparison of
the calculated and analytical profiles of both harmonics at the same
distance from the beam-pulse center (g). Propagation of the beam
pulse (h). Input pulses of the form (35) at both frequencies. μ = 10,
Dq1 = −0.083, Dq2 = −0.166, Dx1 = 0.28, Dx2 = 0.14, Dτ1 = 0.1,
Dτ2 = 0.2, E = 0.3, γ = 0.5.

One may conclude that a quasisoliton regime establishes after
z̄ = 200, approximately. Further decrease of μ changes the
picture. Figures 6(c) and 6(d) show dependencies of peak
intensities and generalized phase on propagation coordinate
z̄ for both harmonics at μ = 5. Oscillations become less
regular; the predicted oscillation period T ≈ 30.5 differs from

(a) (b)

(c) (d)

FIG. 6. Normal dispersion and focusing waveguide at phase
matching. Parameters are close to the limits of the criterion (26c).
Dependencies of the calculated peak amplitudes (first harmonic:
solid lines; second one: dotted lines) and generalized phase at μ =
6, Dq1 = −0.05, Dq2 = −0.1, Dx1 = 0.12, Dx2 = 0.06, Dτ1 = 0.1,
Dτ2 = 0.2, E = 0.3, γ = 0.5 (a,b) and at μ = 5, Dq1 = −0.042,
Dq2 = −0.084, Dx1 = 0.08, Dx2 = 0.04, Dτ1 = 0.1, Dτ2 = 0.2, E =
0.3 (c,d).

that obtained in the numerical experiment, Texp ≈ 27, by 10%.
But it is still possible to talk about the quasistable propagation
of a two-component light bullet after z̄ = 200, approximately,
since the generalized phase oscillates near a certain averaged
value.

It is rather important that in our calculations snake insta-
bility does not arise, and the solution agrees well with the
analytical one. This confirms the second part of the analysis,
where such instability is not taken into account because it
appears to be suppressed by focusing the waveguide effect at
normal GVD.

Then we focus on the process of optical bullet generation
from a powerful fundamental beam at phase matching and
normal dispersion. One should note that bullet generation at

(a) (b)

FIG. 7. Normal dispersion and focusing waveguide at phase
matching. Dependencies of the calculated peak amplitudes (first
harmonic: solid line; second one: dotted line) (a) and generalized
phase (b) at SHG. μ = 10, Dq1 = −0.083, Dq2 = −0.166, Dx1 =
0.28, Dx2 = 0.14, Dτ1 = 0.1, Dτ2 = 0.2, E = 0.5, γ = 0.5.
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(a) (b)

(c) (d)

(e)

FIG. 8. Normal dispersion and focusing waveguide at phase
mismatching. Input pulses of the form (57), μ = 10, Dq1 = −0.083,
Dq2 = −0.166, Dx1 = 0.28, Dx2 = 0.14, Dτ1 = 0.1, Dτ2 = 0.2, E =
0.3, γ = 0.5. Dependencies on z̄ of the calculated peak amplitudes
(first harmonic: solid lines; second one: dotted lines). �k̄ = 0.1 (a),
�k̄ = 0.3 (b), �k̄ = 0.4 (c); dependencies on �k̄ of the maximum
amplitudes of the fundamental (solid line) and second (dotted line)
harmonics in time and transversal coordinate, which are averaged
over the distance from z̄ = 100 to z̄ = 200 (d). Input pulse of
the form (58) at the fundamental frequency, �k̄ = 0.2, E = 1.0;
the inset shows the propagation of the formed bullet at a larger
scale (e).

anomalous dispersion was demonstrated earlier in [12]. In
the present computations we launch the initial pulse at the
fundamental frequency only in the form (58). Figures 7(a) and
7(b) show the dependencies of peak intensities and general-
ized phase on propagation coordinate z̄ for both harmonics.
One should note that at the first propagation stage, when
the second harmonic is generating and a two-component
bullet is forming, there are intensive variations of the peak
intensity and generalized phase. These are caused by initial
energy exchange transformed into the reactive regime of wave
interaction. At far distances, a solitonlike profile forms. This

(a) (b)

FIG. 9. Normal dispersion and focusing waveguide at the fun-
damental frequency only, �k̄ = 0. Input pulses of the form (57) at
both frequencies. Dependencies of the calculated peak amplitudes
(first harmonic: solid line; second one: dotted line) (a) and general-
ized phase (b). Dq1 = −0.15, Dq2 = −0.0, Dx1 = 0.28, Dx2 = 0.14,
Dτ1 = 0.1, Dτ2 = 0.2, E = 0.3, γ = 0.5.

process is again accompanied by strong variations of the peak
intensity but the generalized phase actually becomes constant.
Therefore, it is demonstrated that the stable two-component
light bullet forms in this case.

We proceed with the second series of computations. Now
we suppose that the phase matching condition is violated.
Figure 8 demonstrates the behavior of the two-component
bullet in a focusing waveguide at normal dispersion and weak
phase mismatching. We see that small values of �k̄ do not
interrupt the process of two-component light bullet propa-
gation: oscillations near some averaged value have regular
character. We reveal that �k̄ = 0.4 is a critical value. As soon
as dimensionless mismatching passes it, the light bullet stable
propagation is violated. We note a good coincidence of the
theoretical and experimental periods in this case.

It is remarkable that we have managed to get a steady-state
two-color bullet at a certain phase mismatching in the regime
of SHG. In Fig. 8(d) we see a sharp intensity drop in the initial
propagation stage. It is obviously due to energy transfer to
the second harmonic and dissipation as well. But beginning
from the distance z̄ = 100 it is possible to talk about the
propagation of a steady-state soliton.

The final series of our modeling demonstrates that in
accordance with the theoretical assumption a two-component
light bullet may form at normal dispersion when an effective
waveguide exists only for the fundamental harmonic. Figure 9
shows that the second harmonic pulse is also captured in a
waveguide and then a quasisoliton propagation takes place.
Significant dissipation of energy and intensive generalized
phase oscillations are characteristic in this case. However, the
beam profile preserves its shape for dozens of dispersion and
diffraction lengths.

When an effective waveguide exists only for the second
harmonic pulse, quasistable propagation is too short: no
more than one dispersion or diffraction length. Later a two-
component light bullet breaks down.

Our computations also demonstrate that a two-component
bullet may form and propagate at a certain distance in the
regime of SHG if the focusing waveguide is at the fundamen-
tal frequency only.
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V. CONCLUSION

Application of the AL method to the system of spatiotem-
poral parabolic equations describing the process of SHG in
a planar waveguide yields an asymptotic analytical solitary-
wave solution in the form of a two-component light bullet.
Bullet formation is possible in the following three cases:
anomalous GVD, defocusing waveguide; anomalous GVD,
focusing waveguide; and normal GVD, focusing waveguide.
We highlight the remarkable fact that, in contrast to a homoge-
neous medium, the waveguide geometry allows us to observe
stable two-component light bullets in media with weak normal
dispersion which corresponds to defocusing nonlinearity.

The bullet manifests a “breathing” character. Propagating
along the longitudinal coordinate, it undergoes regular oscil-
lations of intensities, temporal and transversal widths, etc.

We verify the results obtained with the help of the AL
method by direct numerical simulation. Taking the derived
analytical solution as initial condition, we show a good
agreement between the analytical estimations and numerical
results. A stable propagation of light bullets either at anoma-
lous or at normal dispersion is confirmed by computations.
We also verify and refine the analytical criteria of stable
bullet propagation in a planar waveguide at anomalous GVD
with defocusing waveguide and normal GVD with focusing
waveguide.

In a focusing waveguide at anomalous GVD two-color
light bullets are unconditionally stable, provided there is a
certain parameter coherence.

We numerically investigate a possibility of soliton exis-
tence at the presence of phase mismatch. We found critical
mismatch values below which light bullets can be formed
and propagate robustly. Above the thresholds we show the
broadening of both pulses.

We analytically predict and numerically confirm a pos-
sibility of light bullet stable propagation at normal group
velocity dispersion, when the focusing waveguide is only at
one frequency.

Our numerical experiments confirm the conclusion of [27]
that a focusing waveguide effectively suppresses the develop-
ment of snake instability. This, in particular, makes it possible
to form a light bullet in a focusing waveguide in the region of
normal group velocity dispersion.

Earlier we demonstrated the generation of a two-color light
bullet at SHG at anomalous dispersion. Optical bullet genera-
tion from a powerful fundamental beam at phase matching or
mismatching and normal dispersion is a focus of the present
study.

Further studies should include the expansion for volu-
metric waveguides starting from the axially symmetric ones.
Moreover, it is reasonable to take into account dependencies
of nonlinear susceptibilities on waveguide transversal coordi-
nates.
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