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Schrodinger cat states and steady states in subharmonic generation with Kerr nonlinearities
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We discuss general properties of the equilibrium state of parametric down-conversion in superconducting
quantum circuits with detunings and Kerr anharmonicities, in the strongly nonlinear regime. By comparing
moments of the steady state and those of a Schrodinger cat, we show that true Schrédinger cats cannot survive
in the steady state if there is any single-photon loss. A delta-function “catlike” steady-state distribution can be
formed, but this only exists in the limit of an extremely large nonlinearity. The steady state is a mixed state,
which is more complex than a mixture or linear combination of delta functions, and the purity of which is
reduced by driving. We expect this general behavior to occur in other driven, dissipative quantum subharmonic

nonequilibrium open systems.
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I. INTRODUCTION

The Schrodinger cat is a famous thought experiment [1],
where a cat is placed in a quantum superposition of two
macroscopically distinct states, either alive or dead. It opens
the fundamental question of whether quantum theory holds
true in the macroscopic world [2—4]. Macroscopic superpo-
sitions have been experimentally realized in atoms [5—8] and
photons [9-11], and have been proposed in quantum compu-
tation [12], quantum teleportation [13], quantum metrology
[14], and quantum key distribution [15]. One of the most
common recent strategies for Schrodinger cats [16] is via
nonequilibrium subharmonic generation [17,18] leading to
discrete time symmetry breaking or time crystals [19], and
this approach is analyzed in greater detail here.

The steady state of above-threshold subharmonic gener-
ation is known for parametric down-conversion without an-
harmonicities [17,20]. In this case transient Schrédinger cats
are possible [16,21,22]. Quantum subharmonic generation
with Kerr anharmonicities was recently achieved in super-
conducting circuits [23], and large cat states were observed.
In this experiment, the physics of the quantum steady state
is different from previous studies [24]. This exact solution
for the steady state demonstrates how dissipation restores
broken time symmetry, with potential applications to solving
combinatorial optimization problems [25].
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Quantum optical and quantum circuit physics are similar,
except that quantum circuits operate at microwave instead
of optical frequencies. General driven quantum subharmonic
generation with damping and weak nonlinearities was studied
in a previous paper [24], where nonequilibrium quantum
tunneling [26] occurs. Here we focus on the catlike properties
of the steady states in the case of strong combined parametric
and Kerr nonlinearities, as found in superconducting quantum
circuits.

We analytically calculate the exact steady state in sub-
harmonic generation with strong parametric and Kerr non-
linearities. This exactly soluble model has a very rich struc-
ture, while displaying the expected physics of more complex
devices. We use the resulting exact correlation function to
show that neither simple mixtures of coherent states nor
Schrodinger cat states can occur in the steady state. This
is confirmed by a numerical steady-state calculation in the
number state basis.

We expect this physical result to occur in other parametric
experiments with a similar dissipative, nonequilibrium behav-
ior. A steady-state mixture of coherent states [20] is achiev-
able as a limiting case of extremely strong nonlinearities, but it
is still a mixed state. This is consistent with the superconduct-
ing experiment [23], where an approximate Schrodinger cat
was observed in a transient regime. The steady state in the zero
loss case can show a macroscopic superposition, although it is
not unique, due to conserved number parity.

The outline of this paper is as follows. In Sec. I we explain
our model definitions and notation, with a comparison to
Josephson-junction superconducting circuit theory. In Sec. III
we obtain the exact steady-state solution, and explain the in-
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FIG. 1. (a) Schematic figure of the degenerate parametric 0s-
cillator. (b) Schematic figure of the parametric down-conversion in
the system. (c) Schematic figure of the Kerr nonlinearity for the
mode a;.

tegration contour for the complex P-representation manifold.
Section IV gives the diagonalization method as an alterna-
tive. In Sec. V, moments are calculated both exactly and in
approximations using coherent or incoherent combinations
of coherent-state delta functions, for comparison purposes.
Finally, Sec. VI summarizes our results.

II. COMBINED NONLINEARITY MODEL

First, we summarize the system properties and theoretical
techniques used previously [18,24,27], with both Kerr and
parametric nonlinearities. We then treat the detailed proper-
ties of the strongly coupled case. A schematic figure of the
experimental system is shown in Fig. 1. The annihilation and
creation operators of the kth mode in two coupled resonant
cavities are a, a, at frequencies wy. The frequencies have
been set as wr =~ 2wy, so the system can be externally driven
simultaneously at fundamental and subharmonic frequencies,
with 2wy and wy, although we include detunings as well.

A. Hamiltonian

We assume a doubly resonant nonlinear cavity with a
noninteracting Hamiltonian in the rotating frame of Hy =
ny Akaiak, where Ap = wp — kwy < wg for input lasers’
frequencies of wy and 2wy. We set the driving on the sub-
harmonic mode to zero; thus, only the fundamental mode is
driven as in the experiment [23]. The interaction Hamiltonian
is assumed to be given by

H = hga?a% + (ihgaza? +ii€al + He.). @2.1)
Here &, is the envelope amplitude of the driving for the mode
a,, while « and x are the parametric and Kerr nonlinearities
[28], respectively. Kerr nonlinearities are only included for the
mode a;.

In addition, we include single-photon and two-photon
losses in this open system. Defining H = Hy + Hj, the master
equation for the density matrix p is

, i v o)
p=—7H pl+ > Z=Lpl. (2.2)
k,j>0

Here yk(j ) are the relaxation rates for Jj-photon losses in the

kth mode, with no two-photon losses in mode k =2 for
simplicity. The dissipative terms are

E,Ej)[,o] =20p0" — pO'0 — O"Op, (2.3)

where O = &i. The corresponding thermal noises are set to
zero. This allows us to study the steady-state properties in
the low-temperature limit, in order to understand this exactly
soluble case of maximal quantum coherence.

B. Effective Hamiltonian and the master equation

We suppose the second-harmonic mode is strongly
damped, as in the recent Yale experiment [23], giving complex
single-photon loss terms defined as y; = ykl) + iAg, with
single-photon losses yk(l) and detunings Ay in the kth mode.
An adiabatic Hamiltonian is obtained for a = a; as

H £ e
7‘4 =Aa'a+ i[EaTz — H.C.i| + %aﬂaz. 2.4)
The effective driving field € and nonlinearity x, are
K Ar| Kk 2
E=—=&, Xe=Xx——5|—| - (2.5)
Y2 2\

The master equation of the reduced density matrix p; =
Try(p) is then obtained as

9 1 M gt i
50 = %[HA, 1l +v, 'QRapia" —a'apy — pra'a)
P oa oo 22
+ -’ pa —aPa’p = pia”a®),  (26)
with an effective two-photon loss %, where
o_ o nlkl

= . 2.7
Ve Vi + 2 v ( )

Here we have taken the detuning A, into account. Hence
the expression of the effective parameters is slightly differ-
ent from those in the previous work [24], while the master
equation (2.6) takes the same general form.

C. Josephson model

In this subsection, we clarify the relations between the
superconducting Josephson-junction experiment [23] and our
paper. In the supplemental material of the experiment [23],
the derivation of the system Hamiltonian, similar to ours
(2.1), has been provided in detail. Here we will make a brief
comparison, so that we can connect the parameters in our
Hamiltonian (2.1) to those in the experiment [23].

In the experiment [23], two superconducting microwave
oscillators were coupled through a Josephson junction. These
oscillators are the fundamental modes of two superconducting
cavities. One is a high-Q cavity termed “the storage,” where
the steady states formed. The other is a low-Q cavity termed
“the readout,” to evacuate entropy from the storage cavity.
The system Hamiltonian of the qubit, the readout, and storage
modes reads

H E; @?
ﬁ = Z Oy — 7<COS((,0) + 7)

m=q,r,s

+2Re(e e """ + e )(a] + ay),

Y= Z Pl -

m=q,r,s

(2.8)
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Here a,, is the annihilation operator for the qubit m = ¢, the
readout mode m = r, and storage mode m = s, respectively,
and n,, = a a,, is the corresponding number operator. E; is
the Josephson energy, and ¢ is the phase across the junction,
which can be decomposed as the linear combination of the
phase across each mode, with ¢,, denoting the contribution
of mode m to the zero-point fluctuations of ¢. The system
is irradiated by the drive and pump inputs with complex
amplitudes €4, €, and frequencies wy, w,, respectively.

In order to eliminate the system frequencies and the pump
amplitude, we make use of the unitary transformation

@n) Ll +§;a,},
(2.9)

U =exp [it <quq + wgn, +

with &, ~ £,e " and &, ~ —i€,/(% + i(w, — wp)). Thus,
the Hamiltonian takes the form

H/h = (0, — wg)n, + (ws — M)ns

2
" cos@) +7/2)
=Y enlan+a)+E+Eer
s
i, = e "“a, a, = e "a,, a, = e_"wp;wd’as. (2.10)

If we expand the term cos(®) up to the fourth order, and
only keep nonrotating terms, the Josephson Hamiltonian then
reads

ﬁ ~ Hshift + HKerr + H2» (21 1)
with
H ghif
ST” = (_8(1 - er'%'plz)nq
+ (@ = @g = 8 = 2718,y
w, + wgq
+ (0)5 - pT — & — er|‘§p|2)ns,
H gerr Xmm  +
— XgsPgMs — XrsNyHyg,
H S . .
72 = gya’al +g(a)a, +eal +eja,.  (2.12)

Here, the Hamiltonian H ke, corresponds to self-Kerr and
cross-Kerr coupling terms, with x,,, = %(p,‘,‘l /2 and Y =
L1292, In the Hamiltonian F,, the first two terms are
nonlinear couplings between the storage and readout modes
with g, = x& [’f /2, which lead to the subharmonic generation.
The other terms correspond to the weak coherent drive €; on
the readout mode.

D. Josephson parameters

In this paper we will focus on the evolution of the storage
and readout modes. As given in the supplemental material of

[23], the Hamiltonian for the reduced system is

H,, A A
5 = Ayn, + —p; d”x

+gia’al + ga(al

Xmm + 2
— Xrshylly — § Tamama

m=r,s

2 1
)a, + €qa + €;a,

(2.13)

where Ay =, —wg — 8, — 2x,, 11> and A, =—A,+
2(ws — % — 8y — er|§p|2)- In order to include the losses
and quantum noise, master equations have been analyzed
in [23], where the single-photon damping terms ,/k,a, and
J/Kksas have been considered.

In our notation, we set a; = ay and a, = a,. Hence, this
is similar to our initial Hamiltonian (2.1), with A; = (A, +
A2, DAy =Ag, & = —i€q, K =282, X =—Xss» V) =
ks/2, and yz(l) = k,/2. In our initial Hamiltonian (2.1), we
have omitted the cross-Kerr term y,, and the self-Kerr term
for the second-harmonic mode ,, for simplicity.

In fact, the same approximation was used to derive the
adiabatic Hamiltonian in [23] as well. In their supplemental
material, they have shown that the effect of the cross-Kerr
term is negligibly small and thus can be ignored. Since our
main results are obtained under the adiabatic approximation,
these omissions are valid in our situation.

With the detunings and y,. omitted, the adiabatic
approximation can be applied in the region where
g2/Krv ed/Krs er/Kr ~ 4 and Xss/Kr’ Ks/Kr ~ 32 with the
small dimensionless parameter § < 1. By neglecting terms
of order § and higher, the adiabatic Hamiltonian has been
derived in the supplemental material of [23], which reads

H, = &l + ex(al > — %af 2, (2.14)
The corresponding master equation takes the form
4 = —ilHy pd + 2 L[] s+ Lla] 2.15)
dtlos— s> Ps 2 s |Ps ) s1Ps5 .
with ky = 4|g>|*/k, and €, = —2igr€e4/k,. Compared with

our adiabatic Hamiltonian (2.4) and master equation (2.6),
we find the parameter mappings for this experiment to be
E =26, Xe = — X5, and ye(z) = Kk, with y](z) =0and A; =
A, =0.

III. EXACT STEADY-STATE SOLUTION

This master equation has an exact analytic solution for
the steady state, including damping, driving, and detunings
together with all the nonlinear couplings. We note that this is
neither an energy eigenstate nor a thermal state, but rather a
unique nonequilibrium solution to the steady state.

A. Complex P representation

To obtain the exact solution, we introduce a generalized P-
representation [29] transformation of the single-mode density
matrix. If we expand the reduced quantum density matrix in
terms of coherent-state projection operators and a complex P
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distribution P(«, o™, t), we then obtain

. lov) (o™
— + +
P1 —#dada P(Ol,Ol )W,

where |a) is a coherent state and dada™ is a surface integral
measure over a closed surface, so that boundary terms will
vanish on integration by parts. The adiabatic Hamiltonian
results in a single-mode Fokker-Planck equation for P:

P 3 A
= {a[ya—f(a)a ]+§Wg(a)+H.c.}P, (3.2)

(3.1)

where we define y = y; = yl(l) + iA|. We also introduce an
effective complex nonlinear decay of g = y® +ix., and a
function £(a) =& — gaz. The notation H.c. indicates Her-
mitian conjugate terms obtained by the replacement of o —
a™, and the conjugation of all complex parameters. As in
our previous work [24], we introduce dimensionless param-
eters: e = E/g,n=le|,c =y/(gn), T = &, B = a/ /€, and
e = g/|g| = n/e, so that the Fokker-Planck equation can be
simplified to the form

OPB) _ o o _ gt

5r ¢ {B,B[C'B (1-87)871
+1821—2+H PB 33
ﬂa_ﬂz( B) -c.} B). (3.3

With this transformation, time is scaled relative to the two-
photon driving rate. Here c is a complex dimensionless single-
photon loss and detuning, and # is the photon number at which
saturation of the mode occupation occurs due to the nonlinear
losses.

The steady-state solution of the scaled Fokker-Planck
equation (3.3) can be derived via the potential method [30-33]

Py(B) = N exp[—®(B)].
where N is a normalization constant and ® satisfies
(1—-p8%3d 1 2\ ot
> PR _ —(1— ,
95 = (c7 o )B - F08
(1-p*2) 0
2n apt

(3.4)

= (C* - %)W —(1=p™)B. (3.5

These equations (3.5) are obtained by inserting the form
(3.4) into the Fokker-Planck equation (3.3) and requiring that
dP;/dt = 0 in the steady state.

By solving the differential equations (3.5) directly, the ex-
act steady-state solution with quantum noise can be expressed
via the potential

®(B) = —n[BTB + &In(1 — B%) + H.c.], (3.6)

with ¢ = ¢ — 1/n. Thus, the steady-state probability distribu-
tion is
Ps(B) = NI(1 = B*)°(1 = B*) exp2B™ B)I".
This is the exact zero-temperature steady-state solution for
the density matrix. Written in this way, we can see how it

scales with the effective driving field n occurring in the expo-
nent. Apart from n, all the parameters here can have complex

(3.7)

values, which is necessary when treating the situations in
recent quantum circuit experiments [23].

In the case where the power ¢ has a negative real part,
if a real planar complex manifold is chosen, one obtains
singular peaks at the boundaries where |B], |81| = %1, as
shown in Fig. 2. This would give boundary terms on par-
tial integration, causing errors. Integration over phase-space
distributions requires vanishing boundary terms. Instead, one
must choose a curved topological structure with cuts on the
complex integration manifold. This leads to branch points,
rather than local potential minima. This is why there is no
quantum tunneling, although transient Schrodinger cats can
be formed in this type of experiment [23].

As a result, this physical situation requires a completely
different phase-space manifold to that investigated in the
previous work [24], where the real part of ¢ is positive. In
that case, there is quantum tunneling between local potential
minima on a finite, bounded manifold. To define the distribu-
tion for strong coupling, one must choose complex integration
contours which are closed, continuous [18,27,29], and without
boundaries. This is obtained by inserting cuts at the branch
points for 8 = £1 and B* = +1, combined with complex
Pochhammer contours. This method is used to represent the
beta and hypergeometric special functions [34-36]. One way
to visualize this is to imagine the contours drawn on both sides
of two sheets of paper, one for B and one for 8+.

B. Moments and correlations
The second-order correlation function of the single-mode
intracavity field is defined as
(a*a’aa)
(@fa)? ’
where the kth moment can be calculated with P-representation
integrals as

§2(0) = (3.8)

I = (a™a"y = #(e*ﬁe%ﬁ”‘ﬂk’Ps(ﬂ, BH)dp*dp.
(3.9)

It is well known that nonclassical effects like photon an-
tibunching will occur if g»(0) < 1 and classical bunching
takes place if g (0) > 1. Thus, g®(0) is often used to dis-
tinguish classical from nonclassical behavior [37].

The exact solution for the moments [18] is obtained by ex-
panding the term PP = >, @n)" "B /m! in Eq. (3.7).
In this way, we obtain the form of the moment after normal-
ization and integration over the complex manifold, as

2n)" )
i =N Y C Ve (-

m

X oFy(—m — k', né+1,2n¢ + 2, 2)
X 2 Fy(—=m — k,n&* + 1,2n¢" +2,2). (3.10)

Here , Fj is the hypergeometric function, and N’ is the normal-
ization factor:

2 m
N~ = Z (;Zv) SFi(—m, né+1,2n¢ +2,2)

X 2Fy (—m, né* + 1, 2n&* +2,2). @3.11)
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P(3,87)

B B

FIG. 2. Real parts of steady-state probability distributions (3.7)
for (a) ¢ = —2.79 + 0.93i and € = —0.192 — 0.097i, (b) large n =
le]: ¢ = —0.279 + 0.093i and € = —1.92 — 0.97, (c) small |Re(¢)|:
¢ =-0.93+40.93i and ¢ = —0.192 — 0.097i, and (d) large |Im(¢)|:
¢=-2794+93iand e = —0.192 — 0.097i.

The case of real ¢ has been investigated in [20,21], where
there was no anharmonic nonlinearity and a real manifold
was used. It was suggested that the steady-state distribution
approaches a set of § functions in strong-coupling limits. The

case without single-photon loss and anharmonic nonlinearity
has also been studied in [38], where one always has ¢ = —1/n.
In this case, steady-state Schrodinger cats can be achieved
with initial Fock states. Other work studying this potential
in different parameter regimes was used to benchmark our
numerical results, given below [27].

IV. NUMERICAL DIAGONALIZATION

As a comparison and independent check of these exact
results, we have also solved the master equation Eq. (2.6)
numerically by expanding the density operator in a number
state basis. The steady state of the system corresponds to the
eigenstate of the Liouvillian operator with zero eigenvalue.
This steady-state density operator is then used to compute the
statistical moments of interest. In this approach, which is valid
for small photon number, we numerically diagonalize the Li-
ouville operator of the master equation, with a photon number
cutoff. This allows us to compare the analytical and numerical
approaches. We find that there is excellent agreement between
the two methods.

A. Number state basis

In order to verify our analytic results, we applied these
numerical number state methods to the same case. We expand
the density operator p in the number state basis, where its
matrix elements py; are defined as

pri = (klpll). 4.1)
Then the master equation (2.6) takes the form
7P = Tif-l,okz- 4.2)

Here the Einstein summation convention has been used on
identical indices and T;}' is a four-dimensional transition
matrix, which describes the transition from the state py; to the
state p;;. It can be written as

£ g £ ;
T = SV =D = 2 U+ DG 085
*

+ & i(j — 1)skir? — & (i + D+ 2)88
5 JU isj P isj

R g .. kil
_[yH—y ]—i—zl(l—l)—l—?](]—l)]&-;j

+y 2V + DG +2)G + DG+ 2)85, 77

+2y "V + DG+ D 4.3)
with
w1 ifi=kand j=1,
8";!' - {0 otherwise. “4)

The system can be characterized by the eigenvectors of the
transition matrix Tlfl The steady state of the system corre-
sponds to the eigenvector with zero eigenvalue [39].

B. Transition matrix elements

Within the numerical calculation, we must use a pho-
ton number cutoff N to make the transition matrix finite,
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0<1i,j,k,1 <N. This approximation is valid if the high-
photon-number states play negligible roles in determining the
system’s evolution. We check that the cutoff is set to a high
enough value by repeating the calculation with a higher cutoff
and checking that no change occurs.

Hence, the four-dimensional matrix Tl’]" can be reduced to

a two-dimensional one T&ﬁ with this truncation, so that

d -
= ! o5 (4.5)

£ ; £ B—
I} = SVi =18 = 2 G DG+ 28

& . &* N
+ VIG5 = Vi + D+ 28

- [w‘+ yti+Sii- 1+ 0 - 1)]85

FyO G+ DA+ 2)( + D + 2988

+2y DG+ DG+ DsEN2,

(4.6)

where

a=WN+1i+j+1, B=WN+Dk+I1+1. 47
Here 85 is a Kronecker delta, and & and B are in the range of
[1, (N +1)*].
We label the kth eigenvalue by €, and its corresponding
eigenvector by ,oék) so that
pa(t) =) Axexplext)py, (4.8)
k=0

where the coefficients A, define the initial state. We order
the indices k by the size of the real part of the eigenvalues,
Re(er) > Re(ex41). Therefore, € is the stable eigenvalue with
€y =0, and ,oéo) corresponds to the stable state.

With the numerical expansion method, the stable state
,oéo) can be obtained by solving the eigenvalue problem of

the transition matrix T&ﬁ . Then the average photon number
(a'a) and the second-order correlation function g (0) can be
obtained directly by

(a'a) = Trla"ap™),

Tr[aTaTaa,o(O)]

@) = -r
g7 (0) Triatap O

4.9)

where p@ is the stable-state matrix reshaped from the
stable-state vector ,oéo). The numerical results are shown in
Figs. 3 and 4 with green dots. They agree with the analytic
results very well. This confirms the validity of our analytic
calculations.

V. MOMENTS AND SCHRODINGER CAT COMPARISONS

We will use these exact analytic and approximate nu-
merical results to check the validity of approximate delta-
function steady-state distributions which we introduce below

@ 4. (0)
—analytic v# 0
0.8 ° analytic =0
—~ = 3| - numerical v# 0
S .
~ 0.6 ~— | = -mixed cat
S a =--pure cat
=2
0.4 /
0.2 1=
-1 -0.5 0 -1 -0.5 0
ne ne
c )
0.8
= s’
=2
0.4
0.2 1=
-1 -0.5 0 -1 -0.5 0
nRe(¢) nRe(¢)
© 55 (D
0.8
—~ = 2
S =2
>1.5
0.4 \/
0.2 |
-1 0 1 -1 0 1
nlm(¢) nIm(¢)

FIG. 3. Comparisons of the average photon numbers (a, c, e) and
second-order correlation functions (b, d, f). In figures (a) and (b),
the results are changing with ¢ real. In figures (c) and (d), the real
part of ¢ is changed with Im(¢) = —0.199. In figures (e) and (f), the
imaginary part of ¢ is changing, with Re(¢) = —0.896. The driving
€ =1+ 0.1/ in all figures. Since n = |¢| is fixed, we scale by n on
the x axis so the limit is simply n¢ — —1. The blue dashed line
is obtained from the delta-function distribution (5.9), the red solid
line is obtained from the exact method (3.10), the green dots are
obtained from the numerical solution, and the black dash-dotted line
is obtained from the pure cat state (5.10). The magenta circles in
figures (a) and (b) are obtained from the results (5.14) with y =0
and an initial vacuum state.

(5.3). These correspond to the physical assumptions that one
has either a quantum superposition or a quantum mixture of
two coherent states with opposite signs. As we show below,
neither assumption is correct in the steady state of this driven,
nonequilibrium quantum system.

A. Experimental parameter values

For numerical evaluations of the steady-state moments, we
obtain the parameters of the recent experiment [23], using the
results of Sec. II. In our notation, we obtain that for these re-
cent quantum circuit experiments y /2w = 3.98kHz, g/2m =
(7.96 — 4i)kHz, and &£ = (—19.2 — 0.07{)kHz. Thus, we
have ¢ = —0.279 4 0.093i and € = —1.92 — 0.97i. Since the
real part of ¢ is negative, there will be singularities occurring
at B ==+lor Bt ==+1.

From now on, we will treat the strong-coupling regime,
which corresponds to the parameter region of Re(¢) < 0.
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(a)

1.5

O L
0 0.5 |
n
b
150 ( ) ; ; ;
—analytic result
- numerical result
= 100 l_l - -mixed cat
~ H ===pure cat
= |
S 501
\

02 04 06 08 1
n

FIG. 4. Comparing the average photon number (a) and the
second-order correlation function (b) with n varying. In this case,
né = —0.99 — 0.1i; thus, it is close to the limit n¢ — —1. The lines
have the same meanings as in Fig. 3.

Using the definitions of ¢ and g, we have

(" +in) (v = ixe)
(r®) + x2

nc =

—1. 5.1)

Considering n > 0, it follows that Re(¢) < 0 is equivalent
to yP " —y®)+ xo(A1 — x.) < 0. This is satisfied if
there is either a weak single-photon damping yl(l) or strong
nonlinear couplings x., y?. It is easily checked, provided
there are no detunings, that Re(¢) > —1/n and the limit ¢ —
—1/n occurs if yl(l) <L yPor y](l) < Xe-

Considering that nonlinear losses are always weak, the
relation y" « y® can occur with large « referring to
Eq. (2.7). Thus, the limit ¢ — —1/n occurs either with large
nonlinearities x or .

B. Delta-function approximations

To understand the physics more clearly, we note that in the
limit of ¢ — —1/n the exact solution is a product of simple
poles with opposite contour integration directions. These can
be integrated using Cauchy’s theorem, and correspond to a
delta-function solution, so the ratio of the probabilities at the
singularities is

Pin(B =41, " =41 _ ,,
Pim(B = £Vhe, pr=F1)

(5.2)

If we assume this is also true approximately for ¢ # —1/n, we
obtain a real distribution [20] in the form of

§(B— DB =1 +8(B+ D3B* + 1)
2(1 +e—4n)

+ (B—D3BT+D+s(B+ DB -1
2(1 + &%) ’

Pim(B, B7) =

(5.3)

We now contrast this with an idealized, even cat state
[V )ear o [|4/€) + | — 4/€)], where the P representation takes
the form after normalization
S(B—1DSBT =D+ 8B+ DB +1)

2(1 4 e=2m)
n SB—DSBT+1D)+8(B+DSBT—1)
2(1 4 e2m) ’

Pcat(,B’ :3+) =

(5.4)

The factor is 2" (e?"), rather than e=*" (¢**) in Eq. (5.3),
so even if the steady state does evolve to a delta-function
distribution (5.3) it will be a mixed state instead of a true cat
state.

In this case, the density matrix can be derived to have the
following form:

Plim = p|w>cat<W|cat + (1 - p)pmix- (55)
Here
p=(1+e"/(1+eM,
puix = 3lIVeE) Vel +] = Vel —ell.  (5.6)
The purity of this limiting form can then be obtained as
eSn + 6€4n + 1
=Tr[p? = —— 5.7
n r[lohm] 2(e4n + 1)2 ( )
which is a monotonic decreasing function of n since
du 8e* (e — 1)
g —— Y 5.8
dn @1y 5-8)

for n > 0. Thus, the driving will weaken the purity of the
steady state since n is proportional to the driving &;.

It is obvious that we will have p — 1 in the limit of n — 0.
Thus the delta-function distribution appears, at first, to be a
true Schrodinger cat state in this limit. However, since |e¢| =
n — 0, the steady state will actually reduce to a vacuum state,
not a superposition. It is natural that a nondriven, damped
system evolves as a vacuum state. In the opposite limit of
n — 00, the delta-function steady-state distribution (5.3) will
reduce to the mixed state pnix since p — 0. Therefore, a pure
Schrodinger cat state is unreachable in the steady state of the
system, even using an approximate delta-function solution.

The parity P = (—1)‘”“ can also be studied directly with
the complex P distribution (5.3). In the P representation,
the parity operator is equivalent to the average of P =
exp(—2nB7*B). In the steady state of the delta-function ap-
proximation, we have Py, = sech(2n). This means that Py, =
1 in the case of n = 0, and Py, = 0 in the limit of n — oco. It
is consistent with the density matrix (5.5) which is a vacuum
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state when n = 0 and a mixed state when n — oo. Parity is
not conserved because of the finite single-photon loss.

C. Steady-state distributions

The exact steady-state distributions (3.7) with different
parameters are shown in Fig. 2, plotted on a finite manifold.
We see that a delta-function distribution will be obtained ap-
proximately with large |Re(¢)| and small [Im(¢)|, and reduced
to a classical mixture of coherent states with large n. However,
these graphs also demonstrate that the probability does not
vanish at the boundaries, which means that with Re(¢) < 0 on
this bounded manifold the potential solution when restricted
to this planar manifold is no longer a solution to the original
master equation, since boundary terms from integration by
parts are nonvanishing.

An inspection of Fig. 2 shows that when assuming a real,
bounded manifold the distribution is not a true delta function,
nor does it vanish at the boundaries, which is the reason why
the exact complex contour manifold is essential when there
are poles.

D. Moment comparisons

As a result, the true steady states are clearly neither mix-
tures of delta functions nor Schrodinger cats. This difference
can be quantified by using the steady-state distribution (5.3) to
compare moments. The approximate kth moment is obtained
directly with the definition (3.9) as

Jim _ WO EN + (Ve (V)

ke 2(1 + e—n)
(—VOF (Ve + (Ve (—e¥)
+ ) . (5.9

Similarly, the moment can be written down directly with the
cat state (5.4) as

e _ WO WEN + VOf (Ve

ke = 2(1 4 e=2m)
K F\k K [oe\k
+(—\/?) (Ve + (Ve (—e¥) . (5.10)
2(1 4 €21)

We have compared the average steady-state photon num-
ber (a'a) and the second-order correlation function g*(0)
changing with ¢ in Fig. 3. The results of Fig. 3 show that
the delta-function distribution (5.3) is only attainable when
¢ — —1/n, which is valid when yl(l) < y@ or yx,, if there
are no detunings. Mathematically, it is obtained by reaching
the steady state first and then taking the limit yl(l) — 0,
which is different from the magenta circles where we take
yl(l) = 0 exactly and then get the steady states assuming some
particular parity [38]. Number ?arity is conserved only if
yl(l) = 0, and nonconserved if V1( ) # 0. Thus the ordering of
the limit is important, which leads to the gap between the red
line with ¢ — —1/n (a mixed state) and the magenta circles
(a pure cat state) in Fig. 3. In addition, the delta-function
distribution can also be obtainable in the region of extremely
strong nonlinearity as the limit ¢ — —1/n suggests, which is
more practical than the case yl(]) =0.

In Fig. 3 the results of the delta-function distributions never
agree with those of the cat states. This is consistent with the
discussion above that the steady state of the system is always
a mixed state (5.5) instead of a pure cat state. Although there
are crosses for the exact results of the steady state and those
of the pure cat state, they are always at different & for (a'a)
and g (0). The exact steady state is therefore different from
both the cat state and a mixture of delta functions. Hence we
cannot generate a pure steady-state cat state, unless the system
has no single-photon losses.

We have stated that in the limit of small » the delta-function
distribution (5.3) tends to an approximate Schrodinger cat.
Now we show how (a'a) and g®(0) change with n in Fig. 4.
It is natural that the average photon number (a’a) increases
with large driving & o n as shown in Fig. 4(a). It also shows
that in the region of small n their photon numbers agree with
each other, but g (0) has a different behavior.

This means that even with n — 0 the delta-function steady-
state distribution (5.3) is still different from the distribution of
a Schrodinger cat. We also show in Fig. 4 that in the limit
of ¢ — —1/n the exact steady state will approach the delta-
function steady-state distribution, although as before this is
not a cat state.

It is directly checked with Egs. (5.9) and (5.10) that the
second-order correlation functions are

41 2 2l 2
g (0) = <e4n_ 1) ., 80) = (62”— 1) RENCATY

Thus, (121; the limit of n ? 0, we have g(cii(O)/gfn)l(O) — 4

with g;;(0) = oo and gfir;(O) — o00. This tendency can be

found in Fig. 4. In addition, we will also have g2}(0) >
gﬁ:‘(O) > 1 over the full range of n. This means that their
probability distributions are both super-Poissonian [37]. From
all the discussions above, we demonstrate that the delta-
function steady-state distribution (5.3) is different from the
Schrodinger cat state, even if n — 0.

Pure steady-state cats can occur in systems without single-
photon loss and anharmonic nonlinearity [38]. If we neglect
the single-photon loss in our system from the beginning, the
steady-state solution is obtained from solving dp;/dt = 0 in
Eq. (2.6). We expand the density operator in the coherent-state
basis as pi(t = 00) = [[ cq,ola)(e’| d*ad?e’. Substituting
into Eq. (2.6) with yfl) = 0, for arbitrary ¢, , We have

a=+e, o =+ /e (5.12)

Thus the steady-state density matrix with no single-photon
damping takes the form

p1(00) = cyp|Ve) (Ve + | — Ve) (= el
eyl = Ve Vel + ch|Ve)—Vel, (5.13)

where the coefficients ¢, o are determined by the initial states.
This is consistent with earlier work [38], which, however,
had no Kerr anharmonic term. In the P representation, the
distribution reads in this undamped case

Po(B, BF) = c148(B — DS(BT = 1)
+e 8B+ 1DS(BT+1)
+ep_e 8B — DB+ 1)
+e_yeS(B+DSBT —1), (5.14)
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which is also a delta-function distribution. The possible pure
state solutions are coherent states and cat states. Since the
parity is conserved without single-photon loss according to
the master equation (2.6), Schrodinger cats can be achieved
if the initial states are eigenstates of the parity, such as Fock
states. These steady-state Schrodinger cats with yl(l) = 0 and
initial vacuum states have been graphed in Figs. 3(a) and
3(b), where a gap between them and the results for the limit
yl(l) — 0, which is a mixture, can be observed.

VI. SUMMARY

We have studied the steady states of quantum subharmonic
generation with strong nonlinearity, which has been experi-
mental achieved [23]. By comparing the correlation functions,
we conclude that true Schrodinger cats cannot survive in
the steady state unless there is no single-photon loss. With
single-photon loss included, the steady state for subharmonic
generation will reduce to a delta-function steady-state distri-
bution (5.3) only if there is an extremely strong nonlinearity.
More generally, the exact solution is always more complex

than any type of delta function, whether a pure or mixed state.
To obtain this exact behavior, the correct integration manifold
is a Pochhammer contour which samples both sheets of a
double Riemann sheet contour. Intriguingly, this reflects some
of the character of the transient macroscopic superposition
that occurs on the path to the steady state.
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