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Attosecond helical pulses
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We find a solution of the wave equation in the paraxial approximation that describes attosecond pulses with
spatiotemporal helical structure in the phase and in the intensity recently generated by means of highly nonlinear
optical processes driven by visible or infrared femtosecond vortex pulses. Having a simple analytical model for
these helical pulses will greatly facilitate the study of their predicted applications, particularly their interaction
with matter after their generation. It also follows from our analysis that the topological charge dispersion inherent
to helical pulses allows one to beat the minimum duration to which a pulsed vortex without charge dispersion is
limited.
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I. INTRODUCTION

In recent years there have been significant advances in the
generation of extreme ultraviolet and x-ray attosecond pulses
with orbital angular momentum (OAM) by means of highly
nonlinear processes driven by visible or infrared femtosecond
pulses carrying also OAM [1–5]. It has been demonstrated
that the natural structure of the attosecond pulses that result
from the coherent superposition of high harmonics of different
frequencies and OAM is a helical spatiotemporal structure in
both the phase and the intensity. The general properties of
these helices of light, also called “light springs,” and their
relevance for applications have been detailed in [6]. The de-
scription in [6] is, however, qualitative in many aspects, with
no analytical expressions, numerically evaluated intensity or
phase profiles, or changes during propagation; indeed, most of
the description refers to a single transversal plane, propagation
effects then being absent.

Here we provide a simple analytical expression of helical
pulses or light springs satisfying the paraxial wave equation
for superbroadband light propagating in free space, and de-
scribe their spatiotemporal structure and propagation features.
As the word “spring” suggests something elastic but these
helices of radiation have a fixed pitch, we prefer to refer to
them as helical pulses. Although we focus on the attosecond
time scale and on the specific conditions that reproduce the
structure of the attosecond pulses generated in experiments,
the same expression holds at other time scales at visible
or infrared carrier wavelengths, and with other conditions
determined by the free parameters involved in the analytical
expression. In the same way as with other fundamental lumi-
nous objects such as Gaussian beams and pulses, Laguerre-
Gauss beams, Bessel beams, etc., having a simple analytical
expression of these helical pulses, will facilitate (e.g., will
eliminate the necessity of performing costly high-harmonic
generation numerical simulations) theoretical studies of their
expected applications such as the excitation of attosecond
electron beams carrying OAM [4] or transfer of OAM to
matter by stimulated Raman scattering [6].

Another important issue is the duration of the individ-
ual pulses in the helical structure. As recently found [7,8],

a pulsed vortex with well-defined topological charge, i.e.,
without topological charge dispersion, must be longer than a
certain minimum value determined by the topological charge.
Helical pulses are superpositions of pulsed vortices with
carrier frequencies in a frequency comb and with topological
charges varying linearly with frequency, and therefore present
topological charge dispersion. We show how to manage this
dispersion to synthesize attosecond pulse trains, or isolated
attosecond pulses, with a certain mean topological charge that
are shorter than the minimum duration of a pulsed vortex
of the same charge without dispersion. Indeed, there is no
lower bound to the pulse duration as long as sufficiently high
topological charge dispersion is introduced.

II. CYLINDRICALLY SYMMETRIC PULSED VORTICES

We consider ultrashort, three-dimensional wave packets,
E (x, y, z, t ), propagating mainly in the positive z direction.
Introducing the local time t ′ = t − z/c, where c is the speed
of light in vacuum, the wave equation �E − (1/c2)∂2

t E = 0
reads as �E = (2/c)∂2

zt ′E . The so-called pulsed beam equa-
tion [9–11], or paraxial wave equation for ultrashort wave
packets,

�⊥E = 2

c

∂2E

∂z∂t ′ (1)

(�⊥ = ∂2
x + ∂2

y is the transverse Laplace operator), is ob-
tained by neglecting ∂zE compared to (1/c)∂t ′E . This ap-
proximation is valid as long as the characteristic axial length
of variation of E due to diffraction is much larger than the
characteristic axial length of variation of the wave form; e.g.,
diffraction changes are negligible in a single axial undulation
[10]. Also, writing E = Ae−iω0t ′

, where ω0 is a carrier fre-
quency, Eq. (1) would yield the envelope equation introduced
in [12] particularized to free space. The general solution of
Eq. (1) can be expressed as the superposition of pulsed beams,

E =
∑

j

ã jEl j (r, z, t ′)eil jφ, (2)
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of different integer topological charges l j , where ã j are ar-
bitrary complex weights and (r, φ, z) are cylindrical coor-
dinates. The cylindrically symmetric pulsed vortices Eleilφ

satisfy

∂2El

∂r2
+ 1

r

∂El

∂r
− l2

r2
El = 2

c

∂2El

∂z∂t ′ . (3)

Writing them as superpositions of monochromatic vortex
beams,

El (r, z, t ′)eilφ = 1

π

∫ ∞

0
Êl,ω(r, z)e−iωt ′

dω eilφ, (4)

of angular frequencies ω, the monochromatic constituents,
Êl,ω(r, z), must satisfy the paraxial wave equation

∂2Êl,ω

∂r2
+ 1

r

∂Êl,ω

∂r
− l2

r2
Êl,ω + 2i

ω

c

∂Êl,ω

∂z
= 0. (5)

Particular solutions to Eq. (5) are Laguerre-Gauss beams of
zero radial order, given by

Êl,ω(r, z) = b̂ω

e−i(|l|+1)ψ (z)√
1 + (

z
zR

)2

( √
2r

sω(z)

)|l|
e

iωr2

2cq(z) , (6)

where q(z) = z − izR is the complex beam parameter, ψ (z) =
tan−1(z/zR) is Gouy’s phase, and zR is the Rayleigh distance,
which will be assumed to be independent of the frequency;
i.e., we adopt the so-called isodiffracting model [10,13–16].
The complex beam parameter is often expressed as

1

q(z)
= 1

R(z)
+ i

2c

ωs2
ω(z)

(7)

where R(z) = z + z2
R/z is the radius of curvature of the wave

fronts, sω(z) = sω

√
1 + (z/zR)2 is the Gaussian width of the

fundamental (l = 0) Gaussian beam, and sω = √
2zRc/ω is

the waist width located at z = 0.
It has recently been demonstrated [7] that the pulsed vortex

of topological charge l in Eq. (4), obtained as superpositions
of Laguerre-Gauss beams (6) of different frequencies with
adequate weights, with a prescribed pulse shape

P(t ) = A(t )e−iω0t = 1

π

∫ ∞

0
P̂ωe−iωt dω (8)

at the caustic surface or revolution hyperboloid rp(z) =√|l|/2 sω0 (z) of maximum pulse energy, or a bright caustic
surface surrounding the vortex, is given by the expression [7]

El (r, z, t ′)eilφ = e−i(|l|+1)ψ (z)eilφ√
1 + (

z
zR

)2

[
r

rp(z)

]|l|
A(tc)e−iω0tc

= e−i(|l|+1)ψ (z)eilφ√
1 + (

z
zR

)2

[
r

rp(z)

]|l|
P(tc), (9)

where tc = t ′ − r2/2cq(z) + i|l|/2ω0 is as space-dependent
complex time. It has also been demonstrated [7] that such a
pulsed vortex with a well-defined topological charge l and
pulse shape P(t ) = A(t )e−iω0t at the bright caustic surface

exists only if �ω2
A < 4ω2

0/|l|, where

�ωA = 2

[∫ ∞
0 |P̂ω|2(ω − ω0)2dω∫ ∞

0 |P̂ω|2dω

]1/2

(10)

is the Gaussian-equivalent half bandwidth (yielding the 1/e2

decay half width of |Pω|2 for a Gaussian-like spectrum) of the
pulse spectrum, and the carrier frequency is defined by

ω0 =
∫ ∞

0 |P̂ω|2ωdω∫ ∞
0 |P̂ω|2dω

. (11)

The above upper bound for the pulse bandwidth implies
that an arbitrarily short pulse cannot carry a vortex of the
topological charge l , but there is a lower bound to its duration
[7,8]. As shown below, the dispersion or uncertainty in the
topological charge inherent to the helical pulses will allow
one to beat these upper and lower bounds of the spectral
bandwidth and pulse duration.

III. HELICAL PULSES

We consider now the superposition in Eq. (2) of the pulsed
vortices in Eq. (9) of different topological charges and carrier
frequencies:

l j = l0 + jδl, ω j = ω0 + jδω, (12)

where j are integers about zero, and l0 and δl are integers.
For clarity, the meaning of all relevant quantities defined
throughout this paper is illustrated in Fig. 1. Also, the sym-
bols �ω or �t , with or without subindices, are reserved to
Gaussian-equivalent half widths, and other symbols are used
for other measures of width of a function.

We focus on the experimentally relevant situation in which
the points (ω j, l j ) in the ω-l plane lie in a straight line crossing
the origin, implying that l j , l0, and δl are either all positive or
all negative, and

|l j |
ω j

= |l0|
ω0

= |δl|
δω

. (13)

This choice reproduces the conditions of high-harmonic and
attosecond pulse generation [1–4] with a fundamental, visible
or near infrared, femtosecond, pulsed vortex if we identify
δω and δl with the carrier frequency and topological charge
of the fundamental pulse, and ω0 = mδω and l0 = mδl with
the carrier frequency and charge of the mth harmonic about
the middle of the plateau region in the harmonic spectrum.
This spectrum is typically of the form of a frequency comb

FIG. 1. Scheme illustrating the meaning of symbols used in the
text.
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with tines of similar linewidth [1]. It is then reasonable to
choose Aj (t ) ≡ A(t ) independent of j so that �tA j ≡ �tA and
�ωAj ≡ �ωA, with �ωA < δω for a comb spectrum, as the
simplest, physically reasonable model. Since any fundamen-
tal pulsed vortex of frequency δω, charge δl , and envelope
A(t ) at its bright caustic surface necessarily satisfies �ω2

A <

4δω2/|δl|, use of Eq. (13) leads to �ω2
A < 4(ω j/|l j |)δω <

4ω2
j/|l j |; i.e., all superposed cylindrically symmetric pulsed

vortices can have the pulse shape A(t )e−iω j t at their bright
caustic surface of radius rp,ω j (z) = √|l j |/2 sω j (z). Further,
the choice of zR independent of j ensures that the bright
caustic surfaces of all superposed pulsed vortices overlap, at
the waist and during the whole propagation, with that of the
fundamental infrared pulse, as expected from the nonlinear
interactions generating high harmonics and attosecond pulses,
and as described, e.g., in [1–4]. In fact, the radii rp,ω j (z) =√|l j |/2 sω j (z) = √

2zRc|l j |/2ω j

√
1 + (z/zR)2 are, on account

of Eq. (13), all equal to rp,ω0 (z) and to rp,δω(z), and we can
simply write

rp,ω j (z) ≡ rp(z) =
√

|l0|
2

sω0 (z). (14)

Under the above conditions, the sum in Eq. (2) with the
pulsed vortices in Eq. (9) (with ω0 replaced with ω j and
l replaced with l j) can be expressed, after straightforward
algebra using Eqs. (12) and (13), as

E = e−i(|l0|+1)ψ (z)eil0φ√
1 + (

z
zR

)2

[
r

rp(z)

]|l0|
A(tc)e−iω0tc

× a

[
tc − l0

ω0
φ + |l0|

ω0

(
ψ (z) + i ln

r

rp(z)

)]
, (15)

where

tc = t ′ − r2

2cq(z)
+ i

|l0|
2ω0

(16)

and

a(t ) =
∑

| j|<ω0/δω

ã je
−iδω jt . (17)

Condition | j| < ω0/δω in Eq. (17) limits the sum to positive
frequencies ω j . Equation (15) synthesizes the main result of
this paper, and represents a helical pulse the spatiotempo-
ral structure of which under physically relevant conditions
and the propagation properties of which are discussed be-
low. Equation (15) being a finite sum of regular and three-
dimensional localized pulsed vortices, the helical pulse is
also regular and localized. The apparent singularity of the
logarithm at r = 0 gives, on account of Eq. (17) and the first
row in Eq. (15), the regular factor [r/rp(z)]|l0|+ j|δl|.

For ulterior use, the real and imaginary parts of the space-
dependent, complex time in Eq. (16) can explicitly be sepa-
rated as

tc = t ′′ − i
r2

ω0s2
ω0

(z)
+ i

|l0|
2ω0

, (18)

where t ′′ = t ′ − r2/2cR(z). The real quadratic term r2/2cR(z)
represents a time delay for the whole helical pulse structure

to reach the distance z at a radius r due to the spherical
pulse fronts of radius R(z) when the pulse is converging to
or diverging from the waist, as for the fundamental pulsed
Gaussian beam [10,13]. The dependence of the imaginary part
on l0 reflects the coupling between the OAM and temporal
degrees of freedom, as recently described [8,17].

If the phases of ã j are approximately constant, a(t ) repre-
sents a train of pulses with repetition period δt = 2π/δ jδω,
where δ j is the step in the index j, e.g., δ j = 2 in high-
harmonic generation experiments. The bandwidth,

�ωa = 2

[∑
j |ã j |2(ω j − ω0)2∑

j |ã j |2
]1/2

, (19)

of the train of pulses a(t ) is larger, and the duration �ta of
each one is smaller, as more frequencies are superposed. If at
least a few frequencies ω j are superposed, the sorting �ωA <

δω < �ωa of the different frequency scales, and the opposite
sorting �tA > δt > �ta of the temporal scales, are satisfied.

A useful example with δ j = 2 is

a(t ) = cosn(δωt ) (20)

with n even and n < ω0/δω, corresponding in Eq. (15) to the
superposition of n + 1 frequencies (n/2 above and n/2 below
ω0) spaced 2δω. It can be seen that the coefficients ã j (which
can be found elsewhere) form an approximate Gaussian distri-
bution of bandwidth �ωa � √

2n δω. Correspondingly, each
pulse in the train approximates the Gaussian shape e−t2/�t2

a

of diminishing duration �ta � 2/�ωa = √
2/n/δω as n in-

creases. Another example, mimicking the plateau region of
a high-harmonic spectrum, is n + 1 frequencies (also n/2
above and n/2 below ω0) spaced 2δω with equal ampli-
tudes ã j and with approximate frequency bandwidth �ωa �
(2/

√
3)δωn. For not small n, each pulse in the train acquires

the approximate form sinc(t/Ta) of decreasing duration Ta =
2π/(

√
3�ωa) = π/nδω [the first zero of sinc(t/Ta)] as n

increases.
At the bright ring, rp(z), Eq. (15) for the helical pulse

simplifies to

E = e−i(|l0|+1)ψ (z)eil0φ√
1 + (

z
zR

)2
A(t ′′)e−iω0t ′′

a

[
t ′′ − l0

ω0
φ + l0

ω0
ψ (z)

]
.

(21)

The pulse shape at rp(z) and at fixed azimuthal angle φ then
consists of the train of pulses a of the carrier frequency
ω0, duration �ta, and repetition period δt , enveloped by
A of the longer duration �tA, as in the two examples in
Fig. 2(a). As a function φ at fixed time, the angular period
is δφ = (ω0/|l0|)δt = 2π/δ jδl; i.e., each transversal section
displays N = δ jδl spots, as seen in Fig. 2(b). All together,
at given distance, e.g., z = 0, the helical pulse in Eq. (15)
has N = δ jδl equally spaced spots of light placed about the
radius rp(0) that rotate in time counterclockwise (for l0 > 0)
or clockwise (for l0 < 0) at the angular velocity 	 = ω0/l0
and that appear and disappear in the lapse of time 2�tA.
Plotted in the transversal and temporal dimensions, as in
Figs. 2(c) and 2(d), the whole structure is constituted by
N intertwined helices of pitch 2π/|	| = 2π |l0|/ω0 of finite
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FIG. 2. Spatiotemporal structure of two helical pulses. For both pulses, δω = 2.4166 rad/fs−1 (780 nm), ω0 = 23δω = 55.582 rad/fs−1,
A(t )e−iω0t = sinc2(t/TA)e−(iω0t+iπ/2) with TA = 8 fs (two-cycle pulse at 780 nm), a(t ) = cosn(δωt ) with n = 6, and zR = 10 mm. In the first
case δl = 1 and l0 = 23δl = 23, and in the second case δl = 2 and l0 = 23δl = 46. (a) Intensity of the attosecond pulses at φ = 0 and z = 0
(black curve) and its femtosecond envelope |A|2 (dashed curve) in both cases. (b) Intensity at z = 0 and t ′ = 0 as a function of the azimuthal
angle showing two pulses for δl = 1 and four pulses for δl = 2. (c–f) Spatiotemporal structure of the intensity with two intertwined helices for
δl = 1 and with four intertwined helices for δl = 2, at the waist and at zR. The three surfaces have intensities 0.2, 0.4, and 0.6 times the peak
intensity.

duration 2�tA. At any other distance z, as in Figs. 2(e) and
2(f), the intertwined helices are expanded radially to rp(z),
attenuated by diffraction, and rotated as a whole by the angle
ψ (z) as an effect of Gouy’s phase shift. It is interesting to
note that the pitch of intertwined attosecond intensity helices
is the same as the pitch of intertwined helicoidal phase fronts
of the fundamental pulse of frequency δω and charge δl .

IV. NARROWING ATTOSECOND HELICAL PULSES VIA
TOPOLOGICAL CHARGE DISPERSION

As stated above, the bandwidth �ω at the bright ring rp(z)
of a pulsed vortex with a well-defined topological charge l0

always satisfies inequality �ω2 < 4ω2
0/|l0|, and this upper

bound imposes a lower bound to the pulse duration [7]. A
helical pulse presents, however, a dispersion in the topological
charge about l0 given by

�la = 2

[∑
j |ã j |2(l j − l0)2∑

j |ã j |2
]1/2

= |l0|
ω0

�ωa, (22)

where the last relation follows from Eq. (13), and this dis-
persion makes the transverse phase pattern much more com-
plicated than the simple linear azimuthal variation l0φ, as
illustrated in the example of Fig. 3. Still, at the ring of radius
rp(z) of maximum intensity [dashed circle in Fig. 3(b)] the

FIG. 3. (a) Amplitude |E | and (b) phase argE of the helical pulse in Fig. 2 with δl = 1 and l0 = 23 at z = 0 and t ′ = 0. At the radius rp(0)
where the intensity is maximum (dashed circle) the phase of the helical pulse is that of a vortex of the mean charge l0. (c) Azimuthal variation
of the phase argE at the indicated radii as a result of the topological charge dispersion.
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FIG. 4. (a) Spatiotemporal structure of the intensity of the helical
pulse with δω = 2.4166 rad/fs−1, ω0 = 23δω = 55.582 rad/fs−1,
δl = 3, l0 = 23δl = 69, A(t )e−iω0t = sinc2(t/TA)e−(iω0t+iπ/2) with
TA = 1.5 fs, zR = 10 mm, and a(t ) = cosn(δωt ) with n = 20 sat-
isfying condition (24), 15.33 < n < 23. The three surfaces have
intensities 0.2, 0.4, and 0.6 times the peak intensity. (b) For com-
parison, spatiotemporal structure of the shortest Gaussian-like pulse
of the same carrier frequency carrying a vortex of topological charge
l0 = 69 without topological charge dispersion. (c) Train of pulses
[real field Re(E ) and envelope |E |] at φ = 0 and z = 0 (solid curves),
enveloped by |A|2 (dashed curve). Due to the sufficiently short
duration of A, the train of pulses is an almost isolated attosecond
pulse of duration 131 as. The duration of the shortest Gaussian-like
pulse carrying the charge l0 = 69 without dispersion (dotted curve)
is 149 as.

azimuthal variation continues to present the linear variation
l0φ [blue curve in Fig. 3(c)] of a well-defined topological
charge l0.

On the other hand, if a sufficiently high number of frequen-
cies are superposed, the bandwidth �ω and duration �t of the
pulse in Eq. (21) at rp(z) are substantially the same as those
of a(t ), i.e., �ω � �ωa and �t � �ta. Interestingly, �ωa de-
pends on δω and the number of superposed frequencies, but is
independent of l0, which opens up the possibility to synthesize
helical pulses verifying the opposite inequality �ω � �ω2

a >

4ω2
0/|l0| at rp(z), and thus to beat the lower bound to the pulse

duration of the dispersion-free pulsed vortex, while retaining
its azimuthal linear variation l0φ at rp(z). From Eq. (22) with
�ω2

a > 4ω2
0/|l0|, the required topological charge dispersion is

�la > 2
√

|l0|. (23)

In the model with a(t ) = cosn(δωt ), n < ω0/δω, inequality
�ω2

a > 4ω2
0/|l0| with �ω2

a = 2nδω2 leads to

2

|δl|
ω0

δω
< n <

ω0

δω
(24)

FIG. 5. (a) Spatiotemporal structure of the intensity of the helical
pulse with δω = 2.4166 rad/fs−1, ω0 = 23δω = 55.582 rad/fs−1,
δl = 1, l0 = 23δl = 23, A(t )e−iω0t = sinc2(t/TA)e−(iω0t+iπ/2) with
TA = 1.5 fs, and zR = 10 mm, and a(t ) is made of n = 14 frequencies
with equal amplitudes about ω0 satisfying condition (25), 8.3 < n <

23. The three surfaces have intensities 0.2, 0.4, and 0.6 times the peak
intensity. (b) Intensity at φ = 0 and z = 0 (solid curve) compared to
the intensity of the shortest pulsed vortex of the same topological
charge without dispersion (dotted curve).

for the number of frequencies about the carrier frequency, a
condition that requires |δl| > 2 to be satisfied. Since each
pulse in the train has an approximate Gaussian shape of du-
ration �ta � 2/�ωa, the lower bound �ta >

√|l0|/ω0 to the
duration of a Gaussian-shaped, dispersion-free pulsed vortex
turns into �ta <

√|l0|/ω0 for the helical pulse if n satisfies
(24). In the example of Fig. 4 satisfying (24), the helical pulse
at each azimuthal angle and propagation distance is a train of
pulses of duration �ta = 131 as [Fig. 4(a) and solid curves
in Fig. 4(c)], while the minimum duration of a pulse of the
same carrier frequency carrying a vortex of charge l0 = 69
without dispersion is �ta = 149 as [Fig. 4(b) and dotted curve
in Fig. 4(c)]. In addition, the envelope A is taken sufficiently
short [dashed curve in Fig. 4(c)] so that the train of attosecond
pulses reduces to an almost isolated attosecond pulse.

In the model with n constant amplitudes ã j about ω0

spaced 2δω and with n < ω0/δω0, pulse shortening is more
pronounced and is not restricted to |δl| > 2. Condition �ω2

a >

4ω2
0/|l0| with �ωa � (2/

√
3)δωn leads now to√

3

|l0|
ω0

δω
< n <

ω0

δω
. (25)

Since each pulse in the train has the approximate shape
sinc(t/Ta) with Ta = 2π/(

√
3�ωa) = π/nδω, the lower

bound Ta >
√

π/3
√|l0|/ω0 to the duration without topolog-

ical charge dispersion turns into Ta <
√

π/3
√|l0|/ω0 if n

satisfies (25). The helical pulse of Fig. 5(a) with l0 = 23
and δl = 1 satisfies condition (25). At each particular az-
imuthal angle an isolated attosecond pulse of duration Ta = 93
as appears [solid curve in Fig. 5(a)], while the minimum
duration of a sinc pulse of the same carrier frequency and
topological charge without dispersion is Ta = 157 as (dotted
curve).

In the two examples above the envelope A is taken with
duration �tA diminishing down to δt , or �ωA increasing up to
δω, for the attosecond pulse to be isolated. In an experiment,
a visible or near-infrared driving pulse of envelope A and
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charge δl necessarily satisfies �ω2
A < 4δω2/|δl|, which with

�ωA ∼ δω yields the limit |δl| < 4 to the topological charge
of the fundamental pulse so that the attosecond pulse may be
isolated.

V. CONCLUSION

In conclusion, we have provided a closed-form analyti-
cal expression that describes the attosecond helical pulses
generated in recent experiments. Equation (15) allows one
to understand the propagation of these attosecond helices
of radiation and establishes a starting point for theoretical
analyses of propagation in matter and other phenomena of
interaction with matter.

In our analysis, a focusing geometry in which the funda-
mental pulse has a Rayleigh range or focal depth independent
of frequency (and hence a frequency-dependent waist width)
is assumed. A common Rayleigh range for all superposed
harmonics arises naturally as the condition for their bright
rings to overlap with the bright ring of the fundamental
pulse. Attosecond helices of light with substantially the same

properties have been described to be generated using other
focusing geometries, e.g., with frequency-independent waist
width in [1], and are expected to arise with more sophisticated
focusing configurations [18] since in all cases the crucial
property of the attosecond helical pulses (the linear variation
of topological charge with harmonic frequency) is imposed by
conservation of angular momentum and is independent of the
focusing geometry.

We have also shown that the helical pulses can transport
vortices of arbitrarily high mean topological charge and have
at the same time arbitrarily short duration by virtue of the in-
herent topological charge dispersion. Possible generalizations
of Eq. (15), such as pulses carrying vortices with fractional
topological charge [19] or self-torque [20], are currently under
investigation.
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