
PHYSICAL REVIEW A 100, 033825 (2019)

Geometrical phase and Hall effect associated with the transverse spin of light
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By analyzing the vectorial Helmholtz equation within the thin-layer approach, we find that light acquires
another geometrical phase, in addition to the usual one (the optical Berry phase), during the propagation along a
curved path. Unlike the optical Berry phase, the additional geometrical phase is induced by the curvature of the
curve and associated with the transverse spin of light. Furthermore, we show an additional Hall effect of light
induced by the torsion of the curve and associated with the transverse spin of light, which is different from the
usual spin Hall effect of light. Finally, we demonstrate that the usual and transverse-spin-dependent geometrical
phase phenomena are described by different geometry-induced U(1) gauge fields in different adiabatic approxi-
mations. In the general case, these gauge fields are united in an effective SO(3) gauge field, and the optical Berry
phase and transverse-spin-dependent geometrical phase are united in a general geometrical phase of light.
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I. INTRODUCTION

It has long been known that light carries the spin
angular momentum (AM) along the direction of propagation.
The longitudinal spin is generated by rotating electric and
magnetic fields in the transverse plane. In the past decade,
it was shown that light exhibits an unusual transverse spin
in various structured optical fields such as evanescent waves,
interference fields, and focused beams [1–3]. The transverse
spin of light is associated with the presence of a nonvanish-
ing longitudinal component of the electromagnetic field. As
early as 1959, Richards and Wolf showed that in an optical
focusing system the electromagnetic field oscillates along
both transverse and longitudinal directions with π/2 phase
difference [4]. However, they did not identify this elliptical
polarization in the propagation plane as the manifestation of
nonzero transverse spin of light. Only in 2009 the transverse
spin of light and its extraordinary properties, which are very
different from those of the longitudinal one, started to attract
researchers’ interest [5,6]. Most importantly for applications,
the transverse spin is locked to the direction of propagation:
the sign of the transverse spin AM density flips when the prop-
agation direction reverses [7]. Interestingly, the spin-direction
locking in evanescent waves can be recognized as the optical
counterpart of the quantum spin Hall effect [8]. Owing to
this robust spin-direction locking, the transverse spin AM has
found important applications in highly efficient unidirectional
optical transport [7,9–15], resulting in a young yet advanced
research field: chiral quantum optics [16].
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On the other hand, light acquires an optical Berry phase
when it propagates along a curved path [17–21]. The optical
Berry phase underpins the spin-orbit interactions (SOIs) of
light which play a fundamental role in modern optics [22].
The optical Berry phase can be easily understood through the
following argument. Consider the three-dimensional vector
space attached to each point of a space curve. Due to the
vectorial nature of the light field, the three-dimensional vector
space relates to the spin space of light propagating along the
curve. For a transverse electric field, the three-dimensional
vector space reduces to a two-dimensional spin space of light.
Consequently, the torsion of the curve, which describes the
transport of the spin space along the curve and relates to the
connection of the spin space, is coupled with the longitudinal
spin and acts as a gauge field within the dynamics along
the curve [23]. Then akin to the Aharonov-Bohm phase, this
effective gauge field results in the optical Berry phase.

Along these lines it is natural to expect that there are
geometrical phase phenomena associated with the transverse
spin of light [24], just like with the longitudinal one. In fact,
the geometrical quantity of the curve (i.e., the curvature) may
be coupled with the spin AM of light. As a consequence,
an additional class of geometrical phase phenomena, which
are associated with the transverse spin of light, would take
place. To study the transverse-spin-dependent geometrical
phase phenomena, in Sec. II of this paper we use the thin-
layer approach to analyze the vectorial Helmholtz equation
and take into consideration the longitudinal component of the
electric field at the same time. The thin-layer approach is a
convenient framework to study the evolution of various types
of waves, including the electromagnetic wave, along a curve
or on a curved surface [25–33]. In Sec. III, we discuss the
transverse-spin-dependent geometrical phase phenomena. In
Sec. IV, we analyze the gauge structure of the present theory.
Section V provides conclusions.
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II. EFFECTIVE EQUATION

The vectorial Helmholtz equation describing the prop-
agation of the electromagnetic wave is obtained from the
combination of Maxwell’s equations [28,34],

∇2E − ∇(∇ · E) − n2

c2
∂2

t E = 0. (1)

The second term in Eq. (1) leads to a spin and intrinsic
orbital AM coupling term for space-varying refractive index
(see Ref. [35] and references therein). In the present work,
this term is outside the scope of our consideration (see Ap-
pendix A). Equation (1) becomes

∇2E − n2

c2
∂2

t E = 0. (2)

According to the well-known result in differential geometry
[36], the covariant derivative ∇i is different from the ordinary
derivative ∂i = ∂/∂qi when it acts on a tensor (including vec-
tor), where the indices i, j, . . . run from 1 to 3. For example,
when ∇i acts on a second-order tensor T jk , we have

∇iT
jk = ∂iT

jk + �
j
ilT

lk + �k
ilT

jl , (3)

where �i
jk is the Christoffel symbol which relates to the par-

allel transport of tensors. Apparently, the Christoffel symbols
arise in the Laplacian term, ∇2E, in the vectorial Helmholtz
Eq. (2). By expanding ∇2E in a general curvilinear coordinate
system, we obtain

∇2E = ∇ j∇ jE i

= 1√
g
∂ j (

√
ggjk∂kE i ) + 2gjk�i

kl∂ jE
l

+ 1√
g
∂ j (

√
ggjk�i

kl )E
l + gjl�i

jk�
k
lmEm, (4)

where gi j denotes the metric tensor and g = det(gi j ). For
comparison, the usual Helmholtz equation is

∇2E − n2

c2
∂2

t E = 0, (5)

where ∇2E = ∇i∇ iE = 1/
√

g∂ j (
√

ggjk∂kE ) and E denotes
the scalar approximation for the electric field. Note that the
first term on the right-hand side of Eq. (4) is exactly the
Laplacian term in Eq. (5). This term can be expanded as

1√
g
∂ j (

√
ggjk∂kE i ) = (∂ j∂

j + �l
l j∂

j )Ei, (6)

where the last term leads to the effective gauge field associated
with the intrinsic orbital AM [23,30,37,38]. Unlike this pure
orbital term, the last three terms in Eq. (4) only appear in the
case of vector waves and, thus, exhibit the vectorial properties
of the electromagnetic waves. The second and third terms on
the right-hand side of Eq. (4) represent the geometry-induced
SOIs of light, since they mix the spin and orbital degrees of
freedom by index contraction. The last term in Eq. (4) is a
pure spin term; it only relates to the spin degree of freedom.
Physically, these geometry-induced terms are associated with
the change of the directions of the wave vector and the spin
of light. In practice, the variation of the wave vector and
the spin directions can be achieved by constructing various

optical systems, such as optical fibers [18], two-dimensional
curved waveguides [28], gradient-index media [39,40], and
plasmonic nanostructures [41,42].

Here, we consider a heuristic model to show how the
geometrical quantities influence the propagation of light car-
rying transverse spin. We focus on the curved propagation
of an electromagnetic wave and take into consideration the
longitudinal component of the electric field. First of all, let us
introduce a coordinate system (we prefer to call it the “adapted
coordinate system”) [37], in which case the present problem
can be simply described. Let r0(s) be the parametrization of
the curve along which the electromagnetic wave propagates,
with s being the arclength. In the vicinity of r0(s), the points
are described by the following position vector (see Fig. 1):

R(s, q2, q3) = r0(s) + q2n(s) + q3b(s), (7)

where n and b are the unit normal and binormal vectors of
r0(s), and q2, q3 are the corresponding coordinate variables.
By introducing the position vector, we define the adapted
coordinates system in the vicinity of r0(s). The metric tensor
in this coordinates system is given by

gi j = ∂iR · ∂ jR. (8)

Note that the unit tangent, normal, and binormal vectors {t =
∂sr0(s), n, b} construct the Frenet frame of r0(s). According
to the Frenet-Serret formulas, these three vectors and their
derivatives with respect to the arclength obey the following
equation:⎛

⎝∂st
∂sn
∂sb

⎞
⎠ =

⎛
⎝ 0 κ (s) 0

−κ (s) 0 τ (s)
0 −τ (s) 0

⎞
⎠

⎛
⎝ t

n
b

⎞
⎠, (9)

where κ (s) and τ (s) are the curvature and torsion of r0(s)
which describe the rotations of t-n and n-b planes along the
curve, respectively. Substituting the position vector (7) and
Frenet-Serret formulas (9) into the metric (8), we calculate

FIG. 1. Schematic of a curved thin tube. t, n, and b are the unit
tangent, normal, and binormal vectors of the curve r0(s), respec-
tively. The orange curved tube denotes the vicinity of r0(s). ε denotes
the radius of the normal cross section of the curved tube.
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the metric as

gi j = ∂R
∂qi

· ∂R
∂q j

=
⎛
⎝ g11 −τ (s)q3 τ (s)q2

−τ (s)q3 1 0
τ (s)q2 0 1

⎞
⎠, (10)

where g11 = [1 − κ (s)q2]2 + τ (s)2[(q2)2 + (q3)2]. By di-
rectly calculating with Eq. (10), one can readily obtain
nonzero Christoffel symbols and a vanishing Riemannian
curvature tensor. This confirms that the adapted coordinate
system is just a special curvilinear coordinate system in the
three-dimensional Euclidean space.

Now we are able to derive the effective equation that
describes the propagation along the curve. First, to get the
correct volume measure on r0(s), we introduce a new field
function Ē i = g1/4Ei [25,28]. Also, we assume the separa-
tion between the tangent and normal parts of the electric
field: Ē i(s, q2, q3) = Ē i

s (s)Ē⊥(q2, q3) [25,28,30,43]. Second,
substituting the metric Eq. (10) and the new field function
Ē i = g1/4Ei into the vectorial Helmholtz equation Eq. (2),
one can obtain a long equation which consists of q2, q3,
∂i, τ , κ , and Ē i. We emphasize that this long equation is
nothing but the vectorial Helmholtz equation written in a
special curvilinear coordinate system (the adapted coordinate
system). Finally, impose the thin-tube limiting q2, q3 → 0 to
the long equation. The thin-tube limiting q2, q3 → 0 implies
the smallness of the scale of the transverse profile of the light
beam (i.e., the beamwidth). In practice, the effectiveness of
the thin-tube limiting is determined by the parameter δ =
max(ε/τ−1, ε/κ−1), where ε is the characteristic beamwidth.
Experimentally speaking, the thin-tube limiting can be safely
applied to, for example, light propagating in optical fibers
and even thin light beams [40]. We emphasize that the above
derivations do not depend on the details of how the thin-tube
limiting is realized in experiments.

Following the above procedure, we obtain the effective
equation describing the propagation along the curve:

[
(∂s − iτ Ŝ1 − iκ Ŝ3)2 + κ2

4
+ k2

s

]⎛
⎜⎝

Ē1
s (s)

Ē2
s (s)

Ē3
s (s)

⎞
⎟⎠ = 0, (11)

where Ŝ1 and Ŝ3 are two of the spin-1 matrices,

Ŝ1 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, Ŝ3 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, (12)

and ks is the wave number. The effective Eq. (11) is the key
result in the present paper. It describes the curved propagation
of an electromagnetic wave with nonvanishing longitudinal
component. Comparing with the trivial one-dimensional wave
equation, (∂2

s + k2
s )E = 0, there are three additional terms

appearing in Eq. (11). Unlike the scalar geometrical field
κ2/4, which results from the action of normal derivatives
on the rescale factor [32], the other two additional terms
−iτ Ŝ1 and −iκ Ŝ3 relate to the parallel transport of the electric
field vector along a curve and act as effective gauge terms
within the effective dynamics. These two effective gauge

terms result in a number of geometry-induced SOIs of light.
The torsion-induced one represents the SOI related to the
longitudinal spin of light, and thus is responsible for the
optical Berry phase and the spin Hall effect associated with the
longitudinal spin of light [18,44]. The other term is induced
by the curvature, and associated with the transverse spin in
the binormal direction. Therefore, we naturally expect that
this curvature-induced effective gauge term would lead to
transverse-spin-dependent geometrical phase phenomena. In
addition, note that expanding (∂s − iτ Ŝ1 − iκ Ŝ3)2 in Eq. (11)
would lead to the following term:

−κ2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠. (13)

This term is responsible for the nonadiabatic polarization
changes [21,23]. As we discuss in Sec. IV, according to
the spin gauge field theory [45], this term is recognized as
the off-diagonal term which is responsible for the transitions
between different spin levels of light and can be neglected in
the adiabatic approximation. Moreover, the main equations in
Refs. [21,23] can be derived from Eq. (11).

III. GEOMETRICAL EFFECTS

The optical Berry phase and the corresponding spin Hall
effect have been extensively studied for decades and are thus
mostly left out in this paper. In the rest of the present paper,
we focus on the curvature-induced effective gauge term and
the corresponding geometrical phase phenomena.

A. Transverse-spin-dependent geometrical phase

Without loss of generality, we consider a planar curve
here, which means vanishing torsion. The effective Eq. (11)
becomes

[
(∂s − iκ Ŝ3)2 + κ2

4
+ k2

s

]⎛
⎜⎝

Ē1
s (s)

Ē2
s (s)

Ē3
s (s)

⎞
⎟⎠ = 0. (14)

Let us diagonalize the above equation by introducing the
transverse circular polarizations [11]⎛

⎝Ē+
Ē−

Ē3

⎞
⎠ = 1√

2

⎛
⎝1 −i 0

1 i 0
0 0

√
2

⎞
⎠

⎛
⎝Ē1

Ē2

Ē3

⎞
⎠. (15)

As the result, Eq. (14) becomes[
(∂s − iκσ̂ )2 + κ2

4
+ k2

s

](
Ē+

s
Ē−

s

)
= 0, (16)

(
∂2

s + κ2

4
+ k2

s

)
Ē3

s = 0, (17)

where σ̂ = (1 0
0 −1). One can readily find that Eq. (16) de-

scribes a curvature-induced geometrical phase (transverse-
spin-dependent geometrical phase)


⊥ = σ⊥
∫

κds, (18)

where σ⊥ = ±1 for Ē+
s and Ē−

s , respectively, and the
subscript “⊥” indicates that the quantity is associated with the
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transverse spin of light. As the torsion-induced geometrical
phase 
‖ = σ‖

∫
τds induces optical activity in the transverse

plane [18], the curvature-induced geometrical phase Eq. (18)
leads to an optical rotation in the t-n plane. Here, σ‖ = ±1
for left- and right-handed circular polarizations, respectively
[22,39], and the subscript “‖” indicates that the quantity
is associated with the longitudinal spin of light. In fact,
these two geometrical phases together complete the parallel
transport of the electric field with the longitudinal component.
Most importantly, the transverse-spin-dependent geometrical
phase underpins an additional class of SOI effects of light.
Actually, it has already been demonstrated experimentally
that the transverse-spin-dependent geometrical phase results
in the interaction between the intrinsic orbital AM and the
transverse spin of light [24].

So far, we have discussed the transverse-spin-dependent
geometrical phase of light from a rather theoretical viewpoint.
Next we provide a heuristic but practical example to illustrate
the influence of the geometrical phase on the curved propa-
gation of an electromagnetic wave carrying transverse spin.
The transverse spin AM of light arises in various structured
optical fields such as evanescent waves, interference fields,
and focused beams [1–3], due to the strong light confinement
[16]. Here, we consider the evanescent wave generated by
the total internal reflection at a curved interface between
two different media. We assume that the evanescent wave
propagates along the curved interface and the total internal
reflection is located at s = 0. Experimentally speaking, the
curved propagation of the evanescent wave may be realized by
a whispering-gallery-mode (WGM) microresonator [11,24]
or a curved nanophotonic waveguide [12,16]. For a planar
interface located at x = 0, the evanescent wave propagating
along the z direction can be written as [1]

Ep ∝
(

ex − i
kx

kz
ez

)
eikzz−kxx, (19)

where ex and ez denote the basis vectors of the Cartesian coor-
dinate system, kz is the wave number, and kx is the decrement.
Then, it would appear reasonable to generalize the evanescent
wave (19) to the curved case by demanding the propagation
along the curved interface and decay along the perpendicular
direction. Thus, the propagation of an evanescent wave along
a curve is given by

Ec ∝ [(A+ei
∫

κds + A−e−i
∫

κds)t

+ i(A+ei
∫

κds − A−e−i
∫

κds)n]eikss−knq2
, (20)

where the transverse-spin-dependent geometrical phase is in-
cluded, and A+ and A− are the initial amplitudes of the two
opposite transverse circular polarizations. The ratio between
A+ and A− is determined by the initial condition Ec(s = 0) ∝
(n − ikn/kst). Substituting Eq. (20) into the spin AM
density [3]

S ∝ Im(E∗ × E), (21)

one can readily find that the result is exactly the same as the
case of planar interface. In other words, the geometrical phase
does not change the transverse spin AM density. This suggests
the robustness of the spin-direction locking in the case of a
curved interface. This trivial result is what we expect, because

FIG. 2. (a) Schematic of a planar curve. Light propagates along
the tangent direction and the transverse spin AM is along the binor-
mal direction. Although we plot a circle here, Eqs. (16) and (18) can
be applied to general planar geometries. (b) The ratio between the
longitudinal and transverse components of the electric field varies as
the function of θ , where θ = ∫

κds.

the transverse-spin-dependent geometrical phase rotates the
field vector in the t-n plane without changing its magnitude.
Moreover, as a nontrivial result, one can directly verify that
the ratio between the longitudinal and transverse components
of the electric field varies periodically along the curved path:

∣∣∣∣ Et

En

∣∣∣∣ =
√√√√1 − ( n2

n1

)2
cos2

( ∫
κds

)
1 − ( n2

n1

)2
sin2

( ∫
κds

) , (22)

rather than being a constant: |Et/En| =
√

1 − (n2/n1)2 [11],
where n2 > n1 are the refractive indices of the different media
on each side of the interface. For n2/n1 = 1.4, Eq. (22)
and

√
1 − (n2/n1)2 are plotted in Fig. 2(b), where |Et/En|1

and |Et/En|2 correspond to Eq. (22) and
√

1 − (n2/n1)2,
respectively.

B. Transverse-spin-dependent Hall effect

Alternatively, the transverse-spin-dependent geometrical
phase phenomena can be described by a more abstract and
general formalism, that is, the Berry connection within the
Berry phase formalism. As in the situation of the optical
Berry phase 
‖ = σ‖

∫
τds, the Berry connection A⊥ and

the corresponding Berry curvature F⊥ associated with the
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transverse spin are defined by [46]

A⊥(k) = n · (∇k )t, F⊥(k) = ∇k × A⊥. (23)

Importantly, these two geometrical quantities act as an effec-
tive vector field and magnetic field in the k space, with σ⊥ in
Eq. (18) playing the role of effective charge. By introducing
the Berry phase formalism, we can calculate the geometrical
phase Eq. (18) through the Berry connection in the k space:


⊥ = σ⊥
∫

C
A⊥ · dk, (24)

where C is the contour of the evolution of b in the k space. In
particular, for a closed contour the curvature-induced geomet-
rical phase is determined by the solid angle enclosed by the
contour.

Let us consider the propagation during one period of a
uniform helix as a simple example [see Fig. 3(a)]. The Berry
connection and Berry curvature for such propagation can be
easily obtained in spherical coordinates (k, θ, φ):

A⊥(k) = 1

k
(0, 0, 1), F⊥(k) = 1

k2
(cot 
, 0, 0). (25)

After the propagation, the transverse-spin-dependent geomet-
rical phase can be calculated by Eq. (18) or (24). The final
result is


⊥ = σ⊥2π sin 
, (26)

where 
 is the angle between the tangent vector and z axis.
Alternatively, one can determine this geometrical phase by
calculating the solid angle subtended by the trajectory of b
[see Fig. 3(b)],


B
⊥ = −σ⊥�⊥(C) = −σ⊥

∫ 2π

0

∫ π

π/2+


sin θdθdφ

= σ⊥2π (sin 
 − 1), (27)

where �⊥(C) is the solid angle enclosed by the contour
C. Equation (27) coincides with Eq. (26) up to the −σ⊥2π

difference caused by the rotation of the φ coordinates [22,39].
Passingly, the intriguing equivalence relation between the
integration

∫
κds and the solid angle �⊥(C) can be alterna-

tively demonstrated by referring to the argument provided in
Ref. [20] by Haldane.

FIG. 3. (a) One period of a uniform helix with the pitch angle

. (b) The rotations of the Frenet frame and the corresponding solid
angles during the propagation along the helix.

As we know, the geometrical phase and the spin Hall effect
are two reciprocal phenomena [39]. For example, the spin Hall
effect of light, which is associated with the optical Berry phase

‖ = σ‖

∫
τds, is described by [39]

δṙ‖ = −σ‖k−1
0 k̇ × F‖ = −σ‖k−1κb, (28)

where F‖ is the effective magnetic field associated with the
longitudinal spin of light. Thus, one can readily obtain a
similar expression for the spin Hall effect associated with
the transverse-spin-dependent geometrical phase (18) by re-
placing the longitudinal quantities with transverse ones in the
above equation. The result is

δṙ⊥ = −σ⊥k−1
0 k̇ × F⊥ = σ⊥k−1τb. (29)

This quantity represents the transverse deflection of a light
beam propagation along a curved path due to the presence of
the transverse spin of light. This transverse-spin-dependent
Hall effect is of the same magnitude comparing with the
longitudinal one, and thus can be observed through optical
experiments. In fact, the usual and transverse-spin-dependent
geometrical phase phenomena correspond to different adia-
batic approximations. Mathematically, the difference relates
to which spin-1 matrix in Eq. (11) is diagonalized, and the
terminology “adiabatic” indicates rejecting the off-diagonal
terms in Eq. (11) after the diagonalization [45]. Physically, the
difference and “adiabatic” relate to the adiabatic transports of
the circular polarizations or transverse circular polarizations.
As we show in Sec. IV, in the proper adiabatic approximation,
the evolution of light can be adequately described by a U(1)
gauge field. As a result, Eqs. (28) and (29) are valid in differ-
ent adiabatic approximations in terms of the Berry phase for-
malism. In conclusion, when transverse circular polarizations
adiabatically transport along a curved path with nonvanishing
torsion, a transverse-spin-dependent transverse deflection of
the light beam occurs. This is the transverse-spin-dependent
Hall effect of light. To observe this effect in the laboratory, the
following two requirements are necessary: (1) the adiabatic
transport of the transverse spin during the propagation along a
curved path, and (2) nonvanishing torsion of the curved path.
Requirement 1 is to guarantee the validity of the spin gauge
theory [45], while 2 is to guarantee that the transverse-spin-
dependent deflection δṙ⊥ is nonzero.

IV. GAUGE STRUCTURE

Within the Berry phase formalism, the usual and
transverse-spin-dependent geometrical phase phenomena are
associated with different three-dimensional U(1) gauge fields:
A‖(k) = b · (∇k )n and A⊥(k) = n · (∇k )t [see Ref. [39] and
Eq. (23)]. These two different U(1) gauge fields in the mo-
mentum space correspond to the torsion and curvature of the
curve, respectively. As shown in Eq. (11), they are united in
one wave equation.

Here, we discuss the effective gauge terms in Eq. (11) from
the point of view of the gauge theory, and show that they
can be unified into an effective SO(3) gauge field. Consider
an arbitrary curve in general electromagnetic field. For the
sake of generality, we replace the Frenet frame {t, n, b} with
an arbitrary triad {qi(s)}. The angular velocity matrices that
describe the rotations of the triad along the curve are defined
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as follows:

�i j = qi · ∂sq j, (30)

where {qi(s)} are the three bases of the triad. Consequently,
the angular velocity vector is defined in terms of these matri-
ces as

�i = − 1
2εi jk� jk, (31)

where εi jk is the three-dimensional Levi-Civita symbol. As an
example, the angular velocity vector of the Frenet frame is

�F = τ t + κb. (32)

Consider an arbitrary local rotation for the triad {qi}, which
is represented by the local rotation angle θ(s). The local
rotation is given by

qi → (eiŜ·θ(s) )i jq j . (33)

As the result, the angular velocity matrix transforms as an
SO(3) gauge connection

�i j → [(eiŜ·θ )ikqk]∂s[(e
iŜ·θ ) jlql ]

= (eiŜ·θ )ik�kl (e
iŜ·θ ) jl + (eiŜ·θ )ik∂s(e

iŜ·θ ) jk . (34)

Under the SO(3) rotation (33), the transformation for the
electric field components corresponding to the triad is

Ei → (eiŜ·θ(s) )i jE j . (35)

In terms of Eqs. (34) and (35) and note that (Ŝi ) jk = −iεi jk , it
can be easily verified that

∂sEl − i�i(Ŝi )lmEm →
(eiŜ·θ(s) )lm[∂sEm − i�i(Ŝi )mnEn]. (36)

Equations (34), (35), and (36) suggest the minimal coupling
between the electric field and the SO(3) gauge connection,

∂sEl → ∂sEl − i�i(Ŝi )lmEm, (37)

which explains the appearance of the effective gauge terms in
the effective Eq. (11) from the view of the gauge theory.

With the minimal coupling (37), one can readily find that
the general form of the effective equation describing the
propagation of light along a curve is

[
(∂s − i� · Ŝ)2 + k2

]⎛⎝E1

E2

E3

⎞
⎠ = 0. (38)

By acting the row vector (E1∗, E2∗, E3∗) on the left of
Eq. (38), we can solve it approximately and obtain the general
geometrical phase of light


g =
∫

S · �ds, (39)

where the asterisk denotes complex conjugate, and S =
|E|−2Im(E∗ × E) is the spin angular momentum density.
Within the Frenet frame, the general geometrical phase of
light reduces to the optical Berry phase and the transverse-
spin-dependent geometrical phase. By replacing the triad
{qi(s)} with {a, b, s}, Eq. (39) becomes the so-called
geometric-Coriolis-Doppler phase shift [47], where a and

b are the unit vectors along the major and minor semi-
axes of the polarization ellipse, respectively, and s = S/|S|.
Therefore, within the triad {a, b, s}, Eq. (39) can describe
the Pancharatnam-Berry phase, including its transverse-spin-
dependent version.

In the spirit of the spin gauge field theory [45], a U(1)
gauge field arises in the adiabatic approximation [23]. The
adiabatic approximation is associated with the diagonaliza-
tions of the three spin-1 matrices. Here, we take the diago-
nalization of Ŝ3 as an example (the case of Ŝ1 is presented in
Ref. [23]). The diagonalization can be achieved by the trans-
formation (15). After the diagonalization, neglecting the off-
diagonal terms leads to the reduction of Eq. (11) to Eq. (16).
Apparently, neglecting the off-diagonal terms corresponds to
the adiabatic transports of the transverse circular polariza-
tions. In this adiabatic approximation, the local rotation (33)
reduces to an SO(2) rotation(

q1
q2

)
→ eiσ̂sθ (s)

(
q1
q2

)
, (40)

where σ̂s = (0 −i
i 0 ). For simplicity, here we have neglected

the trivial dimension q3. The transformations for the cor-
responding SO(2) gauge connection and the electric field
become

�3 → �3 + ∂sθ (41)

and

Eσ⊥ → eiσ⊥θ (s)Eσ⊥ , (42)

respectively, where Eσ⊥ denote the two opposite transverse
circular polarizations [see Eq. (15)]. Consequently, an effec-
tive one-dimensional U(1) gauge field [note that the SO(2)
group is isomorphic to the U(1) group] arises in the coordinate
space. Within the Berry phase formalism, it corresponds to the
three-dimensional U(1) gauge field, A⊥(k), in the momentum
space.

V. CONCLUSIONS

In the present paper, we investigate the effective dynamics
of light with nonvanishing longitudinal component by using
the thin-layer approach. As the result, we obtain an effective
equation (11) which describes the curved propagation of
light exhibiting the longitudinal component. In addition to
the torsion-induced term [23], Eq. (11) contains a curvature-
induced effective gauge term. This curvature-induced effec-
tive gauge term brings about an additional geometrical phase
which is associated with the transverse spin along the bi-
normal direction. Furthermore, we show that the curvature-
induced effective gauge term is responsible for the nona-
diabatic polarization changes of light [21,23]. Imitating the
reciprocal relation between the optical Berry phase and the
spin Hall effect of light, we calculate the transverse-spin-
dependent Hall effect of light. In contrast to the spin Hall
effect of light [44], this additional Hall effect induced by the
torsion is associated with the transverse spin along the binor-
mal direction of the curve. Interestingly, we find that the usual
(longitudinal-spin-dependent) and the additional (transverse-
spin-dependent) geometrical phase phenomena are associated
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with different geometry-induced U(1) gauge fields in different
adiabatic approximations. We demonstrate that these U(1)
gauge fields are unified into an effective SO(3) gauge field,
and obtain a general geometrical phase of light. The general
geometrical phase is able to represent a broad range of optical
geometrical phase phenomena, including the usual optical
Berry phase, the usual Pancharatnam-Berry phase, and their
transverse-spin-dependent versions.

As discussed, the transverse-spin-dependent geometri-
cal phase effects have purely geometrical origin like the
longitudinal-spin-dependent ones. It therefore provides new
possibilities to control the spin and orbital degrees of freedom
of light via the geometries. As an experimental example,
the transverse-spin-dependent geometrical phase can be em-
ployed to investigate the interaction between the transverse
spin and the intrinsic orbital AM of light [24]. We believe that
the present research could benefit the rapidly growing research
of the transverse spin of light.
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APPENDIX A: DISCUSSION OF THE TERM −∇(∇ · E)

The Maxwell’s equations are

∇ × E = −1

c
∂t B, (A1)

∇ × H = 1

c
∂t D, (A2)

∇ · D = 0, (A3)

∇ · B = 0. (A4)

From Eqs. (A1) and (A2) and the constitutive relations, we
can obtain the following vectorial Helmholtz equation:

∇2E − ∇(∇ · E) − n2

c2
∂2

t E = 0, (A5)

where the second term −∇(∇ · E) survived in the above equa-
tion for space-varying refractive index because of Eq. (A3).
In our model the refractive index depends only on the per-
pendicular distance ρ from the curve [21] [i.e., n = n(ρ)],
where {ρ =

√
(q2)2 + (q3)2, φ = tan(q3/q2)} are the polar

coordinates of the transverse plane. In fact, the refractive
index of our model can be described by the following function
which contains a Heaviside step function (see Ref. [35] and
references therein):

n(ρ) = ncore + H (a − ρ)�n, (A6)

where H (a − ρ) is the Heaviside step function, a is the fiber
radius, �n = ncore − nclad, and ncore and nclad are the indices

of the core and the cladding, respectively. For ρ < a (i.e., in
the core of the fiber), we have n(ρ) = ncore = constant, as the
result the term −∇(∇ · E) vanishes. According to the theory
of Ref. [35] (and references therein), if we take the step profile
of the refractive index into consideration, the term −∇(∇ ·
E) leads to a SOC (spin and intrinsic orbital AM coupling)
correction term. The SOC correction term is

ĤSOC = δ(ρ − a)�

4kza2

(
1

a
∂ρ − a

ρ
ŝz l̂φ

)
, (A7)

where δ(ρ − a) is the Dirac delta function and comes from
the derivative of H (a − ρ), � = n2

core − n2
clad is the dielectric

jump at ρ = a, kz is a variable separation constant, and ŝz

and l̂φ = −i∂φ are the spin and intrinsic orbital AM operators,
respectively.

ĤSOC is added as a perturbation. Up to the first order, per-
turbations to kz can be obtained by calculating the expectation
value of ĤSOC:

δkσ
z = π�

2kza3

∫
δ(ρ − a)Eσ

(
ρ

∂

∂ρ
− σm

)
Eσ dρ, (A8)

where σ = ±1 is the helicity and m is the eigenvalue of the
intrinsic orbital AM (i.e., the vortex number) [35]. Since the
perturbation δkσ

z contains the term σm, it leads to a splitting
between the σ+ and σ− components. This effect has been
observed in experiments as the rotation of the spatial intensity
pattern given by the interference of two beams with opposite
intrinsic orbital AM [35,48]. When � = 1.12, the absolute
value of δkσ

z is about 0.1% of the original eigenvalue k0
z [35].

For a fiber, � is typically about 0.01; then the absolute value
of δkσ

z is about 0.001% of the original eigenvalue k0
z .

More importantly, the SOC correction term arises in the
transverse effective equation rather than the tangent effective
equation since it contains only the transverse variables. In our
paper, we only focus on the tangent dynamics of light, i.e., the
propagation along the curve. Therefore, the effects resulting
from −∇(∇ · E) do not change the main results of the present
paper. Furthermore, in the present paper, we do not consider
the intrinsic orbital AM of light. That is, in our paper light
does not carry the intrinsic orbital AM, which means that the
spin and intrinsic orbital AM coupling resulting from the term
−∇(∇ · E) vanishes. Actually, in the paper the only spin-orbit
coupling is the spin and extrinsic orbital AM coupling which
leads to the geometrical phase phenomena. We can say that
the term −∇(∇ · E) is outside the scope of our consideration
in the present paper.

So in conclusion, the term −∇(∇ · E) can be safely ig-
nored in our paper. Equation (A5) becomes

∇2E − n2

c2
∂2

t E = 0. (A9)

APPENDIX B: FROM THE POINT OF VIEW
OF THE CORIOLIS EFFECT

As discussed above, the geometrical phases of light are
straightforward consequences of the Maxwell’s equations, and
are associated with the parallel transport of the electric field
vector. Alternatively, they can be derived through a different
way. Note that an arbitrary rotation with respect to a labora-
tory coordinate frame is described by a precession of the triad
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attached to the curve with the angular velocity vector (31)
[39]. Analogously to the Coriolis effect in classical mechanics
[49], some inertia terms arise in the Helmholtz equation via
the following substitution [39,50]:

∂t E → ∂t E + c

n
� × E, (B1)

where the angular-velocity-induced term is the Coriolis term
in this situation. Since the time t is associated with the
arclength s by the wave velocity c/n, the Coriolis term can
be alternatively introduced through the following way:

∂sE = ∂s(Et t + Enn + Ebb)

= (∂sEt )t + (∂sEn)n + (∂sEb)b + � × E. (B2)

Importantly, the last row in the above equation can be rewrit-
ten in the following form:

(∂s − i� · Ŝ)

⎛
⎜⎝

Et

En

Eb

⎞
⎟⎠, (B3)

which coincides with Eq. (11). Note that we have used a spe-
cial triad—the Frenet frame—rather than an arbitrary triad in
the above derivations. In the Frenet frame, the rotation of the
b-t plane vanishes, and thus the second spin-1 matrix Ŝ2 does
not appear in Eq. (11). In conclusion, we have demonstrated
the equivalence between the effective gauge terms in Eq. (11)
and the Coriolis terms here. It is obvious that the derivation
of the Coriolis terms is much simpler. Nevertheless, like the
Coriolis effect in classical mechanics, the introduction of the
Coriolis terms here is somewhat artificial. Most importantly,
the Coriolis terms are irrelevant to the spatial distribution of
the electric field, which means that they cannot describe the
geometrical phase phenomena associated with the intrinsic
orbital AM. On the other hand, as we have shown in Ref. [23],
the orbital geometrical phase can also be directly derived
from the Maxwell’s equations by using the same approach
presented in Sec. II. Physically speaking, once we replace the
ordinary differential with the covariant differential, the paral-
lel transport of the electric field is included in the Maxwell’s
equations. In particular, the parallel transport of the vortex is
also included as the polarization.
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