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One of the theoretical challenges in studying optical trapping is the decomposition of the optical force into
the gradient force (conservative component) and scattering force (nonconservative component), which can be
achieved either for Raleigh particles or for very large particles in the regime of ray optics. However, for the
moderate particles in between these two limits, the scenario is still a mystery. In this paper we present a
theoretical approach to bridge this gap and fully split the optical force acting on a spherical particle immersed
in a generic monochromatic free-space optical field into two such essentially different components, which is
efficient even for large particles with the exact consideration of light polarization, thus offering a benchmark
for examining the effective range for application of ray optics. Our approach models general optical fields by a
series of homogeneous plane waves. The analytical expressions for the gradient and scattering parts of the optical
force exerted on a spherical particle of arbitrary size illuminated by multiple interferential plane waves are then
derived. As examples of applications, we investigate the gradient and scattering forces acting on a dielectric
particle immersed in the Bessel beam. Our results are in excellent agreement with those obtained based on ray
optics methods when the illuminated particle is large enough, while exhibiting effects of Mie resonance that
are totally missing in the ray optics for moderate particle sizes. Finally, we study the effect of particle size on
the gradient force acting on a spherical particle sitting in multiple interferential plane waves. Our extensively
numerical results, up to a size as large as 2000 illuminating wavelengths, suggest an overall decreasing tendency
in the ratio of the magnitude of the gradient force to that of the total force as the particle size increases.
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I. INTRODUCTION

Optical micromanipulation, pioneered by Ashkin [1,2], has
attracted much attention during the past several decades. Up
to now optical micromanipulation is widely used in the fields
of biology, physical chemistry, and physics [3–6]. Decompos-
ing the optical force into conservative and nonconservative
components is one of the general problems of paramount
importance, since these two components play essentially
different roles in optical micromanipulation [7,8]. The cus-
tomary decomposition of optical force can be expressed by
F = Fg + Fs, where the gradient force Fg is the conservative
component, and the scattering force Fs is the nonconservative
component. Both Fg and Fs originate from the scattering, but
they play rather different roles in optical manipulation. The
gradient force satisfies ∇ × Fg = 0, and the work done by
Fg is always path independent. In consequence, one defines
the optical potential energy φ to describe the gradient force
Fg = −∇φ and the negative sign indicates that the gradient
force points in the direction of decreasing potential energy φ.
The scattering force, on the other hand, satisfies ∇ · Fs = 0,
and the work done by Fs is path dependent. Based on the
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optical Earnshaw theorem [7], it is impossible for Fs alone
to construct any trap which needs to satisfy the necessary
condition of stable equilibrium ∇ · Fs < 0 [9,10]. One defines
the vector potential ψ to describe the scattering force Fs =
∇ × ψ, and Fs is also termed the curl force [11].

One of the most important applications in optical microma-
nipulation is single-beam gradient force optical traps, which
are usually described as optical tweezers [2–4,8]. The gradient
force should be large enough for the dominating contributions
in a stable optical trap. So previous researchers have tried to
enhance the gradient force Fg and reduce the scattering force
Fs by using a strongly focused beam from a high-numerical-
aperture objective in experiments [2]. Unfortunately, the basic
mechanism of splitting the optical force into the gradient force
and scattering force for the spherical particle is only studied in
the small-particle limit [7,12] and large-particle limit [8,13].
In the former (the particle’s size parameter x = kr � 1, where
k is the wave number in the background medium and r is the
radius of the sphere), one can regard the particle as a dipole
and obtain the gradient force and scattering force from the
nonrelativistic Lorentz force by using Maxwell’s equations
[7,12]. In the large-particle limit (x � 1), an incident beam
can be divided into a series of individual rays. Based on
ray optics methods, the total force of each ray is further
decomposed into the gradient and scattering forces, which are
perpendicular and along the propagation direction of each ray,
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respectively [8]. Such approximate models are suitable only
for either extremely small or large particles and cannot be used
to separate the force for Mie particles, which are actually most
accessible cases in the optical manipulation.

The generalized Lorenz-Mie theory (GLMT) [14–16],
which is in terms of spherical harmonic expansions, can be
used to deal with mechanical effects of light. GLMT bridges
the gap between the dipole and the ray optics regimes, to
which the theoretical part of the work by Ashkin was limited.
However, the dependence of the optical force on the field
quantities is totally masked in GLMT, and GLMT cannot
decompose the gradient and scattering parts from the total
force. So theoretically decomposing works of gradient force
and scattering force are still confined to the approximation
model in the dipole or ray optics regimes. In consequence,
a standard setup of splitting the optical force suitable for
particles of any size is essential for intensive study. Recently,
Du and coworkers numerically split the optical force into
gradient and scattering components via the Mie theory and
fast Fourier transform [17]. However, their algorithm, falling
into the category of nonlocal decomposition, needs to perform
a great deal of calculation of the optical force over the whole
physical space missing analytical expressions for either of
these two force components for a more in-depth physical in-
sight. More recently, Zheng and coworkers [18] presented an
algorithm and computer codes for evaluating the gradient and
scattering force components. Although ideally suited for the
GLMT, their approach does not allow for deriving analytical
expressions that show explicit dependence of the two force
components on the illuminating optical fields, even in a simple
optical field made up of a few interferential plane waves.

In this paper, we propose an alternative theoretical ap-
proach to split the optical force into gradient and scattering
components. Following the previous work of Cartesian multi-
pole expansion of the optical force [19,20] for general optical
fields, we present a detailed process of decomposition through
modeling the general monochromatic optical fields by a series
of homogeneous plane waves, which has been justified by
the expansion of the general monochromatic optical fields in
terms of the regular vector spherical wave functions (VSWFs)
as well as the integral representation of regular VSWFs (see
[19]) for a rigorous proof. Our current approach belongs to the
category of local decomposition, without having to resort to
extensive computation of a massive number of data on optical
force. Analytical expressions are derived for both conservative
and nonconservative force components. As examples of appli-
cation, we investigate the gradient force and scattering force
acting on a dielectric particle of an arbitrary size immersed in
Bessel beam and interferential multiple plane waves.

II. PROCESS OF DECOMPOSITION

In this section, we present a local decomposition of the
time-averaged optical force 〈F〉 acting on a sphere immersed
in an arbitrary superposition of homogeneous plane waves
based on the Cartesian multipole expansion theory, which is
reviewed in Appendix A. It has been shown (see, e.g., [19,21])
that generic monochromatic optical fields can be written as a
superposition of homogeneous plane waves. So our approach
could be used to decompose 〈F〉 acting on a sphere immersed

in an arbitrary monochromatic optical field. Throughout the
paper, we maintain a lossless background media with the
wave vector k2

i = ω2/c2. Therefore the electric field E and
magnetic field B consisting of np plane waves are expressed
as

E =
np∑

i=1

Ei =
np∑

i=1

Ei eiki·r, B =
np∑

i=1

Bi =
np∑

i=1

Bi eiki·r, (1)

where spatial constant vectors Ei and Bi are the complex
amplitudes of homogeneous plane waves, and satisfy

ki · Ei = 0, Bi = 1

ω
ki × Ei. (2)

Substituting Eqs. (1) into Eqs. (A1), the field moments of total
optical fields can be expressed by the summation of each pair
of plane waves, which is defined by subscripts i and j,

X(n) =
∑
i, j

X(n)
i j =

∑
i, j

xn−1
i j X(1)

i j ; (3)

both i and j run from 1 to np. The field moments of each pair
of plane waves are delineated by

D(n)
ee, i j = xn−1

i j D(1)
ee, i j, D(n)

mm, i j = xn−1
i j D(1)

mm, i j,

G(n)
ee, i j = xn−1

i j G(1)
ee, i j,

G(n)
mm, i j = xn−1

i j G(1)
mm, i j, G(n)

em, i j = xn−1
i j G(1)

em, i j,

G(n)
me, i j = xn−1

i j G(1)
me, i j,

S(n)
ee, i j = xn−1

i j S(1)
ee, i j, S(n)

mm, i j = xn−1
i j S(1)

mm, i j,

S(n)
em, i j = xn−1

i j S(1)
em, i j, (4)

where xi j = (ki · k j ), and

D(1)
ee, i j = (Ei · E∗

j ) ei(ki−k j )·r,

D(1)
mm, i j = (Bi · B∗

j ) ei(ki−k j )·r,

G(1)
ee, i j = −i(k j · Ei ) E∗

j ei(ki−k j )·r,

G(1)
mm, i j = −i(k j · Bi )B∗

j ei(ki−k j )·r,

G(1)
em, i j = −i(k j · Ei )B∗

j ei(ki−k j )·r,

G(1)
me, i j = −i(k j · Bi ) E∗

j ei(ki−k j )·r,

S(1)
ee, i j = (Ei × E∗

j ) ei(ki−k j )·r,

S(1)
mm, i j = (Bi × B∗

j ) ei(ki−k j )·r,

S(1)
em, i j = (Ei × B∗

j ) ei(ki−k j )·r. (5)

In the case of homogeneous plane waves, all terms turn to
constants when i = j in Eqs. (4) and (5). Inserting Eqs. (4)
and (5) into Eqs. (A5), Z(n)

ee,i j and Z(n)
mm,i j for each pair of plane

waves are represented by Z(1)
ee,i j and Z(1)

mm,i j ,

Z(n)
ee =

∑
i, j

xn−1
i j Z(1)

ee,i j, Z(n)
mm =

∑
i, j

xn−1
i j Z(1)

mm,i j, (6)
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where

Z(1)
ee,i j = 1

2

[∇D(1)
ee,i j − ∇ × S(1)

ee,i j − 2iω Re S(1)
em,i j

]
,

Z(1)
mm,i j = 1

2

[
∇D(1)

mm,i j − ∇ × S(1)
mm,i j − 2iω

c2
Re S(1)

em,i j

]
. (7)

In the case of a single wave vector (namely, i = j here),
S(1)

em, i j is solenoidal in our treatment [22],

S(1)grad
em, ii = 0, S(1)curl

em, ii = Ei × B∗
i , (8)

where summations of S(1)curl
em, ii correspond to the constant real

vector P(n) in Eq. (A19). In the case of i �= j, substituting
Eqs. (4) and (5) into Eqs. (A18) and using the series expansion
of 1/(1 − x), S(n)

em,i j is decomposed as follows:

S(1)grad
em, i j = − i

2(1 − xi j )
∇[

D(1)
mm,i j − D(1)

ee,i j

]
,

S(1)curl
em, i j = − 1

2(1 − xi j )
∇× [

G(1)
em,i j − G(1)∗

me, ji

]
. (9)

Meanwhile Z(1)
ee,i j and Z(1)

mm,i j are decomposed:

Z(1)gr
ee, i j = 1

2∇D(1)
ee, i j,

Z(1)cr
ee, i j = − 1

2∇ × S(1)
ee, i j − i Re S(1)

em, i j,

Z(1)gr
mm, i j = 1

2∇D(1)
mm, i j,

Z(1)cr
mm, i j = − 1

2∇ × S(1)
mm, i j − i Re S(1)

em, i j . (10)

One can note that Re S(1)
em, i j is no longer purely solenoidal

due to the complex moments D(1)
ee, i j and D(1)

mm, i j in Eqs. (9).

As a consequence, the superscripts “gr” and “cr” of Z(1)
ee, i j

and Z(1)
mm, i j in Eqs. (10) correspond to the gradient force

and scattering force, whereas they are not the irrotational
and solenoidal components. In the following, we analyti-
cally prove that the irrotational part of Re S(1)

em, i j makes no
contribution to the gradient forces. Using the identity for
homogeneous plane waves

ti j = (ki − k j ) · (Ei × B∗
j ) ≡ Bi · B∗

j − Ei · E∗
j , (11)

we obtain that t ji is the complex conjugate of ti j . Then it is
clearly seen from Eqs. (4) that

∇ · S(1)
em, i j = i(ki − k j ) · (Ei × B∗

j ) ei(ki−k j )·r

= i ti j ei(ki−k j )·r (12)

is the complex conjugate of [−∇ · S(1)
em, ji], so that the identity

∇ · Re
[
S(1)

em, i j

] + ∇ · Re
[
S(1)

em, ji

] ≡ 0 (13)

is established for each pair of plane waves. As a conse-
quence, although Re S(1)

em, i j has irrotational parts along with

∇ · Re S(1)
em, i j �= 0, the summation of Re S(1)

em, i j over all pairs
of homogenous plane waves is purely solenoidal with ∇ ·∑

i, j Re S(1)
em, i j = 0. Meanwhile, both ∇ · Z(1)cr

ee, i j �= 0 and ∇ ·
Z(1)cr

mm, i j �= 0 in Eqs. (10), but summing over all pairs of plane

waves satisfies ∇ · ∑
i, j Z(1)cr

ee, i j = 0 and ∇ · ∑
i, j Z(1)cr

mm, i j = 0.
Considering that each pair of plane waves satisfies xi j = x ji

and shares the same coefficients Q(n)
l, i j = Q(n)

l, ji or R(n)
l, i j = R(n)

l, ji,

then Z(1)cr
ee, i j and Z(1)cr

mm, i j contribute only to the scattering forces.

In the case of a single plane wave, Z(1)
ee,ii and Z(1)

mm,ii are at-

tributed to the scattering force because both D(1)
ee, ii and D(1)

mm, ii

are independent of r in Eqs. (5), which lead to ∇D(1)
ee, ii =

∇D(1)
mm, ii = 0 in Eqs. (10). As a consequence, the total force of

a single plane wave is completely attributed to the scattering
force.

The total optical force, which is the full Lorentz-Maxwell
force exerted on the particle, can be divided into the extinction
(interception) force and recoil force. The electric (magnetic)
part of extinction forces, i.e., 〈F e(l )

int 〉 (〈F m(l )
int 〉), is generated

by the interaction between the electric (magnetic) multipoles
and the external electric (magnetic) field. The corresponding
electric (magnetic) polarizability γ

(l )
elec (γ (l )

mag) in Appendix A
is proportional to the Mie coefficient al (bl ) in the GLMT
[14–16]. On the other hand, the recoil forces are generated
by the coupling between the electric multipoles of adjacent
orders (electric part, i.e., 〈F e(l )

rec 〉), magnetic multipoles of
adjacent orders (magnetic part, i.e., 〈F m(l )

rec 〉), and electric
and magnetic multipoles of the same order (hybrid part, i.e.,
〈F x(l )

rec 〉). One can note that the existence of recoil forces
violates Newton’s third law in electrodynamics.

In Appendix B, we give the extinction and recoil forces
of arbitrary superposition of homogeneous plane waves in
terms of Legendre polynomials, which can avoid numerical
instability for large orders. Every component in Eqs. (B11)
and (B12) consists of Z(1)

ee,i j , Z(1)
mm,i j , S(1)

em,i j , and their complex
conjugates, which are decomposed in Eqs. (9) and (10).
Finally, the extinction and recoil forces in Eqs. (B11) and
(B12) are decomposed into the gradient force and scattering
force as

〈
F e(l )

int

〉
grad = u(1)

l Im
∑
i, j

al
[
Q(1)

l, i jZ
(1)gr
ee, i j − Q(2)

l, i jZ
(1)gr
mm, i j

]
, (14a)

〈
F e(l )

int

〉
curl = u(1)

l Im
∑
i, j

al
[
Q(1)

l, i jZ
(1)cr
ee, i j − Q(2)

l, i jZ
(1)cr
mm, i j

]
, (14b)

〈
F m(l )

int

〉
grad = u(1)

l Im
∑
i, j

bl
[
Q(1)

l, i jZ
(1)gr
mm, i j − Q(2)

l, i jZ
(1)gr
ee, i j

]
, (14c)

〈
F m(l )

int

〉
curl = u(1)

l Im
∑
i, j

bl
[
Q(1)

l, i jZ
(1)cr
mm, i j − Q(2)

l, i jZ
(1)cr
ee, i j

]
, (14d)
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and

〈
F e(l )

rec

〉
grad = u(2)

l Im
∑
i, j

al+1a∗
l

[
R(1)

l, i j

(
Z(1)gr

ee, i j

)∗ − R(2)
l, i j

(
Z(1)gr

mm, i j

)∗ − 4iR(3)
l, i j

(
S(1)grad

em, i j

)∗

+ R(4)
l, i jZ

(1)gr
ee, i j − R(5)

l, i jZ
(1)gr
mm, i j + 4iR(6)

l, i jS
(1)grad
em, i j

]
, (15a)

〈
F e(l )

rec

〉
curl = u(2)

l Im
∑
i, j

al+1a∗
l

[
R(1)

l, i j

(
Z(1)cr

ee, i j

)∗ − R(2)
l, i j

(
Z(1)cr

mm, i j

)∗ − 4iR(3)
l, i j

(
S(1)curl

em, i j

)∗

+ R(4)
l, i jZ

(1)cr
ee, i j − R(5)

l, i jZ
(1)cr
mm, i j + 4iR(6)

l, i jS
(1)curl
em, i j

]
, (15b)

〈
F m(l )

rec

〉
grad = u(2)

l Im
∑
i, j

bl+1b∗
l

[
R(1)

l, i j

(
Z(1)gr

mm, i j

)∗ − R(2)
l, i j

(
Z(1)gr

ee, i j

)∗ − 4iR(3)
l, i jS

(1)grad
em, i j

+ R(4)
l, i jZ

(1)gr
mm, i j − R(5)

l, i jZ
(1)gr
ee, i j + 4iR(6)

l, i j

(
S(1)grad

em, i j

)∗]
, (15c)

〈
F m(l )

rec

〉
curl = u(2)

l Im
∑
i, j

bl+1b∗
l

[
R(1)

l, i j

(
Z(1)cr

mm, i j

)∗ − R(2)
l, i j

(
Z(1)cr

ee, i j

)∗ − 4iR(3)
l, i jS

(1)curl
em, i j

+ R(4)
l, i jZ

(1)cr
mm, i j − R(5)

l, i jZ
(1)cr
ee, i j + 4iR(6)

l, i j

(
S(1)curl

em, i j

)∗]
, (15d)

〈
F x(l )

rec

〉
grad = u(3)

l Im
∑
i, j

al b
∗
l

{
R(4)

l, i j

[
Z(1)gr

mm, i j − (
Z(1)gr

ee, i j

)∗] + 4iR(6)
l, i j

(
S(1)grad

em, i j

)∗

+ R(5)
l, i j

[(
Z(1)gr

mm, i j

)∗ − Z(1)gr
ee, i j

] + 4iR(7)
l, i jS

(1)grad
em, i j

}
, (15e)

〈
F x(l )

rec

〉
curl = u(3)

l Im
∑
i, j

al b
∗
l

{
R(4)

l, i j

[
Z(1)cr

mm, i j − (
Z(1)cr

ee, i j

)∗] + 4iR(6)
l, i j

(
S(1)curl

em, i j

)∗

+ R(5)
l, i j

[(
Z(1)cr

mm, i j

)∗ − Z(1)cr
ee, i j

] + 4iR(7)
l, i jS

(1)curl
em, i j

}
, (15f)

where the Mie coefficients are al and bl [23], with

Q(1)
l, i j =

l∑
m=1

(2)
m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ), (16a)

Q(2)
l, i j =

l∑
m=2

(2)
m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ), (16b)

R(1)
l, i j =

l∑
m=1

(2)
(m + 1)(2l + 2 − m)(2l + 1 − 2m)[2(m + 1)l − (m2 − m − 4)]Pl−m(xi j ), (16c)

R(2)
l, i j =

l∑
m=2

(2)
m(m + 2)(2l + 1 − m)(2l + 1 − 2m)(2l + 3 − m)Pl−m(xi j ), (16d)

R(3)
l, i j =

l∑
m=1

(2)
(m + 1)(2l + 2 − m)(2l + 1 − 2m)Pl−m(xi j ), (16e)

R(4)
l, i j =

l∑
m=2

(2)
(2l + 1 − m)(2l + 1 − 2m)[2m2l − m(m + 1)(m − 2)]Pl−m(xi j ), (16f)

R(5)
l, i j =

l∑
m=1

(2)
(m + 1)(m − 1)(2l − m)(2l + 2 − m)(2l + 1 − 2m)Pl−m(xi j ), (16g)

R(6)
l, i j =

l∑
m=2

(2)
m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ), (16h)

R(7)
l, i j =

l∑
m=1

(2)
(2l + 1 − 2m)[2l2 − 2(m − 1)l + m2 − m]Pl−m(xi j ). (16i)
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FIG. 1. Normalized optical force components fy, fz, and fx exerted on a dielectric sphere (radius r0 = 10λ, refractive index ns = 2) in the
circular polarized Bessel beam versus the displacement of the beam center ρ0 along the +y direction. (a) Force component fy as a function
of displacement ρ0. Solid red curves and dashed green curves are based on the multipole decomposition method and Mie theory, respectively,
while blue circles are based on the ray optics method from Ref. [30]. (b, c) Same as (a) except for the force components fz and fx .

The summation indices of
∑l

m=1
(2) and

∑l
m=2

(2) denote
the index m odd and even positive integers satisfying 0 <

m � n, and Pm(x) is the Legendre polynomial. Equations
(14) and (15) represent the fundamental formulation for the
decomposition of optical force into the conservative (gradi-
ent) and nonconservative (scattering) components. The final
expressions were summarized in Ref. [24] and we present the
comprehensive derivation in this paper.

III. NUMERICAL RESULTS AND DISCUSSION

With formulations given in the previous section, we calcu-
late the gradient and scattering forces acting on a dielectric
particle immersed in Bessel beams and interferential multiple
plane waves, respectively. The comparison with the ray optics
method of Bessel beams is also exhibited.

A. Bessel beams

In this section, we divide a Bessel beam into a series of
plane waves via the angular spectrum representation [21].
Then the gradient force and scattering force can be calculated
for a spherical particle illuminated by the Bessel beam. The
angular spectrum of the Bessel beam is described by plane
waves with wave vectors lying on the conical surface with
fixed polar angle α0, which means the angular spectrum
representation can be formulated in terms of one-dimensional
integration over the azimuthal angle β. Therefore the angular
spectrum of the electric field is defined in Cartesian coordi-
nates [25–27],

EB(r, θ, φ) = − 1

2π
il eikr cos α0 cos θ

×
∫ 2π

β=0
eilβeikr sin α0 sin θ cos(φ−β )Qdβ, (17)

with

Q = (c2 cos α0 cos β + c1 sin β )ex

+ (c2 cos α0 sin β − c1 cos β )ey − c2 sin α0ez. (18)

The integrations in Eq. (17) are already worked out, and the
explicit expressions in cylindrical coordinates are listed below
[25–27],

EB(r, θ, φ) = ic1M(c)
l (ρ, φ, z) + c2N(c)

l (ρ, φ, z), (19)

where vector cylindrical wave functions are defined by [25]

M(c)
l (ρ, φ, z) =

[
il

aρ
Jl (aρ)er − J ′

l (aρ)eφ

]
eilφ+ibz,

N(c)
l (ρ, φ, z) = a

k
Jl (aρ)eilφ+ibzez + ib

k
ez × M(c)

l , (20)

with ρ = r sin θ , z = r cos θ , a = k sin α0, and b = k cos α0

[27]. We use the Gauss quadrature formulas [28,29] to rewrite
Eq. (17) as a summation, for which each group of the Gaussian
abscissas βi and weights wi corresponds to a homogeneous
plane wave with the electric field components in Cartesian
coordinates,

Ei
x = − wi

2π
il (c2 cos α0 cos βi + c1 sin βi ),

Ei
y = − wi

2π
il (c2 cos α0 sin βi − c1 cos βi ),

Ei
z = wi

2π
il c2 sin α0. (21)

Consequently, each group of plane waves can be determined
by α0, βi, pi

1, and pi
2, where pi

1 and pi
2 are the same as

Eqs. (24):

pi
1 = −Ei

z/ sin α0, pi
2 = cos βiE

i
y − sin βiE

i
x. (22)

To corroborate the method, we calculate the optical force
exerted on a sphere illuminated by a circular polarized Bessel
beam. Parameters of the Bessel beam are the same as in
Ref. [30], i.e., the order l = 2, coefficients c1 = −i, c2 = k/b,
and cone angle α0 = 0.0141 in Eq. (17). Parameters of the
dielectric sphere are fixed to radius r0 = 10λ and relative
refractive index ns = 2. Three force components, normalized
by the intensity I1 = ε0E2

0 r2
0 , as a function of the beam

center’s displacement ρ0 along the +y direction are given
in Fig. 1. The results based on our approach (red lines),
obtained by 35 plane waves, confirm that the component fy is
gradient force, while the components fz and fx are scattering
forces. Compared with the total force based on the Mie theory
(dashed green curves), perfect agreement is reached in Fig. 1.
Comparing our approach with the data of previous work based
on the ray optics method (blue circles) [30], in which the force
component fx is ignored, a visible difference in the gradient
force fy and scattering force fz is shown in Figs. 1(a) and 1(b).
Definitions of the relative errors δg = ( f r

g − f m
g )/ f r

g and δs =
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FIG. 2. (a) Normalized optical force components fg and fs versus the normalized radius r0/λ. Gradient force fg (left axis; red line) and
scattering force fs (right axis; blue line) based on the multipole expansion method; dashed black lines based on the ray optics method.
(b) Enlarged view of (a) in the range of 4λ < r0 < 4.3λ. (c) Moduli of scattering phases | tan ηl | in the range 4λ < r0 < 4.3λ.

( f r
s − f m

s )/ f r
s are given in Ref. [30], where the superscripts r

and m denote results calculated by ray optics [30] and our
multipole decomposition method, respectively. The relative
error is |δg| ≈ 8% for ρ0 = 10λ in Fig. 1(a) and |δs| ≈ 4%
for ρ0 = 20λ in Fig. 1(b). Considering the ray optics method
suitable for spheres large enough, the relative error would
become larger with decreasing radius.

The gradient force and scattering force versus the normal-
ized radius r0/λ are presented in Fig. 2. Considering that the
scattering force component fx is smaller than fz by two orders
of magnitude in Fig. 1, we set the normalized gradient force
fg = Fy/I1 and the scattering force fs = Fz/I1 in Fig. 2. The
displacement is fixed to ρ0 = 10λ and other parameters are
the same as in Fig. 1. There is a large difference between
our method (solid curves) and the ray optics method (dashed
curves) for r0 < 5λ. And it is evident that the results of the two
methods are close to each other for r0 > 20λ in Fig. 2(a). Both
the gradient force and the scattering force display oscillations
by our method, however, such oscillations do not exist in the
ray optics regime (dashed black curves). An enlarged view
of the gradient force is shown in Fig. 2(b). We confirm that
the gradient force displays oscillations (solid red curves) with
three notable peaks (blues circles) by our method, while the
curve is smooth by the ray optics method. In Fig. 2(c), the
moduli of scattering phases of the sphere are exhibited in the
same range as in Fig. 2(b). The transverse magnetic (TM)
scattering phases, depending on the Mie coefficients bl , are
expressed as tan ηl = −ibl/(bl − 1) and labeled (l )TM(n),
where l and n are the orders and modes [31–33]. Comparing
Fig. 2(b) with Fig. 2(c), three force peaks are associated with
three scattering phase peaks at r0 = 4.075λ, r0 = 4.170λ,
and r0 = 4.265λ separately. As a consequence, oscillations in
Fig. 2(a) correspond to Mie resonances.

B. Interferential multiple plane waves

In this section, we calculate the gradient force and scatter-
ing force acting on a spherical particle of arbitrary size im-
mersed in interferential multiple plane waves. We concentrate
on homogeneous plane waves with real polar angles α and
azimuthal angles β of wave vectors k, which is a special case
of complex wave vector fields [34],

Einc = E ei k · r = E0(Exex + Eyey + Ezez )ei(kxrx+kyry+kzrz )

= E0(p1 θk + p2 φk )ei(kxrx+kyry+kzrz ), (23)

where ex, ey, and ez are the unit vectors in the Cartesian
coordinate system, θk and φk are the unit vectors in the spher-
ical coordinate system, and E0 > 0 denotes the amplitude.
p1 and p2 correspond to the complex amplitudes of p and s
polarizations, and three Cartesian components of wave vector
k can be expressed by α and β,

p1 = −Ez/ sin α, p2 = cos βEy − sin βEx,

kx = k sin α cos β, ky = k sin α sin β, kz = k cos β,

(24)

where k = 2πnd/λ, with λ denoting the wavelength in vac-
uum and relative refractive index nd of the surrounding
medium. The dielectric sphere (ns = √

3) is immersed in
water (nd = 1.33) and the center of the sphere is fixed
to (λ/3, 0, 0). The operating wavelength is fixed at λ =
1064 nm. Therefore a plane wave can be depicted by the
parameters, i.e., α, β, p1, and p2, with α in the range0 < α <

180◦ and β in the range 0 < β < 360◦. We choose a group of
parameters of 10 plane waves in Table I.

The optical force components fx, fy, and fz, normalized
by I2 = ε0E2

0 /k2
0 , as a function of the spherical radius in the

range 0 < r0 < 50λ are shown in Fig. 3. Mie resonances of
the dielectric sphere are also visible in Fig. 3, while they
disappeared at a wide radius interval. Using our approach,
the gradient components fg (dashed red curves), the scattering
components fs (solid red curves), and their summations ft

(dashed green curves) acting on the particle by the 10 inter-
ferential plane waves are calculated. Using the Mie theory in
previous work [34], the total force of 10 interferential plane

TABLE I. Data on 10 plane waves.

α β p1 p2

pw1 2◦ 122◦ 1.0324 + 0.3441i 1.0324
pw2 3◦ 149◦ −0.5040 + 0.2520i 0.2520 + 0.2520i
pw3 4◦ 331◦ −0.1667 − 0.1667i 0.1667 − 0.1667i
pw4 5◦ 236◦ 0.4364 − 0.6547i −0.4364 + 0.4364i
pw5 6◦ 88◦ −0.9383 + 0.3128i −0.6255 − 0.9383i
pw6 7◦ 218◦ 0.2085 − 0.4170i 0.6255 + 0.6255i
pw7 7◦ 227◦ −0.4588 + 1.3765i 1.3765i
pw8 8◦ 353◦ −0.2395 − 0.3592i 0.3592 − 0.3592i
pw9 9◦ 332◦ −0.6708 + 0.2236i 0.6708 + 0.2236i
pw10 10◦ 138◦ 0.3873 − 0.1291i −0.2582 − 0.1291i
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FIG. 3. Normalized optical force components fx , fy, and fz acting on a dielectric sphere illuminated by 10 plane waves, listed in Table I,
versus the normalized radius r0/λ. (a) Force component fx as a function of r0/λ. Gradient components fg (dashed red curves), scattering
components fs (solid red curves), and their summations ft (dashed green curves) based on the multipole decomposition method. The total
forces of 10 independent plane waves f M

s (blue crosses) and 10 interferential plane waves f M
t (blue circles) based on the Mie theory. (b, c)

Same as (a) except for the force components fy and fz.

waves f M
t (blue circles) and the total force of 10 independent

plane waves f M
s (blue crosses) are also calculated. Consider-

ing that a single plane wave is completely attributed to the
scattering force, so f M

s is a vector summation of each single
plane wave’s scattering force. Perfect agreement between ft

by our approach and f M
t by Mie theory for the total forces is

reached in Figs. 3(a)–3(c). Comparing Figs. 3(a) and 3(b) with
Fig. 3(c), we find the total force components fx, fy smaller
than fz by one order of magnitude. The gradient components
of fx and fy approach the scattering components in Figs. 3(a)
and 3(b). On the other hand, the gradient component of fz is
much smaller than the scattering component, by at least two
orders of magnitude, and f M

s approaches fs in Fig. 3(c).
Keeping the same parameters, we explore a much larger

range, 0 < r0 < 2000λ, in Fig. 4. Figures 4(a)–4(c) corre-
spond to Figs. 3(a)–3(c) separately. It is clearly shown in
Fig. 4 that the scattering forces (dotted red curves) are much
larger than the gradient forces (dashed red curves) in all three
directions with increasing radius. As a consequence, the total
forces (dashed green curves) are dominated by the scattering
forces. Meanwhile f M

s values approach the scattering forces

FIG. 4. (a–c) Same as Figs. 3(a)–3(c), except for the range, 0 <

r0 < 2000λ. (d) Ratio of the gradient force’s modulus |Fg| to the total
force’s modulus |Ft | on logarithmic scale.

in Figs. 4(a)–4(c). The ratio of the gradient force’s modulus
|Fg| =

√
f 2
gx + f 2

gy + f 2
gz to the total force’s modulus |Ft | =√

f 2
tx + f 2

ty + f 2
tz is given in Fig. 4(d) on logarithmic scale. The

ratio |Fg|/|Ft | continues to decrease with increasing radius.
We randomly choose other groups of incident plane waves

with different ranges of polar angles in Fig. 5, where the
sphere is fixed at origin (0, 0, 0) and the ratio |Fg|/|Ft | is
depicted on logarithmic scale. The range of polar angles 0 <

α < 10◦, 0 < α < 30◦, and 0 < α < 80◦ is randomly selected
for plane waves in Figs. 5(a)–5(c), 5(d)–5(f), and 5(g)–5(i),
respectively. The numbers of plane waves are chosen to be
10, 50, and 100 in Figs. 5(a), 5(d), and 5(g), Figs. 5(b), 5(e),
and 5(h), and Figs. 5(c), 5(f), and 5(i). With increasing radius,
we find a tendency of the ratio |Fg|/|Ft | to decrease to 0 in
Figs. 5(a)–5(i), which is the same as in Fig. 4(d).

IV. CONCLUSION

We present a local decomposition scheme of the optical
force into gradient and scattering components. Our approach
allows for the decomposition of the optical force on a spher-
ical particle of any size immersed in interferential optical
fields made up of an arbitrary number of homogeneous plane
waves. Considering that the optical beams can be depicted
by an angular spectrum representation, we make use of our
approach to decompose the force acting on a particle residing
in a Bessel beam. Compared with the previous decomposing
work based on the ray optics method, the advantage of our
approach is the adaptiation of an arbitrary radius. In addition,
the effect of Mie resonances on the optical force could also
be observed in our approach, while they are invisible in the
ray optics method. The decomposition of other optical fields,
e.g., Gaussian beams and Airy beams, could be studied in the
same way. The optical force acting on a spherical particle in
multiple interferential plane waves with different ranges of
polar angles is also decomposed, for particles of size up to
2000 wavelengths in radius. The total forces calculated by our
approach are in excellent agreement with the results based
on the Mie theory. Our extensive numerical results suggest
an overall decreasing tendency of the ratio |Fg|/|Ft | as the
particle radius increases.
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FIG. 5. Ratio of the gradient force’s modulus to the total force’s modulus |Fg|/|Ft | on logarithmic scale. (a–c) Polar angles 0 < α < 10◦;
randomly chosen 10 plane waves (a), 50 plane waves (b), and 100 plane waves (c). (d–f) Polar angles 0 < α < 30◦; randomly chosen 10 plane
waves (d), 50 plane waves (e), and 100 plane waves (f). (g–i) Polar angles 0 < α < 80◦; randomly chosen 10 plane waves (g), 50 plane waves
(h), and 100 plane waves (i).
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APPENDIX A: CARTESIAN MULTIPOLE
EXPANSION THEORY

The Cartesian multipole expansion of the time-averaged
optical force 〈F〉 is formulated [19] based on the T-matrix
method [23], the multipole field theory [35,36], the irreducible
tensor theory [37], and the Maxwell stress tensor method
[38,39]. Decomposition of the optical force into the gradient
and scattering components on a spherical particle of arbitrary
size is established on the basis of the Cartesian multipole
expansion formulation [20]. Before giving the multipole ex-
pansion of the optical force, we define some field moments in

reciprocal space,

D(n)
ee = [∇(n−1)E] (n)

: [∇(n−1)E∗],

D(n)
mm = [∇(n−1)B] (n)

: [∇(n−1)B∗],

G(n)
ee = [∇(n−1)E] (n)

: [∇(n)E∗],

G(n)
mm = [∇(n−1)B] (n)

: [∇(n)B∗],

G(n)
em = [∇(n−1)E] (n)

: [∇(n)B∗],

G(n)
me = [∇(n−1)B] (n)

: [∇(n)E∗], (A1)

S(n)
ee = [(∇(n−1)E) (n−1)

: (∇(n−1)E∗)] (2)
:

↔
ε ,

S(n)
mm = [(∇(n−1)B) (n−1)

: (∇(n−1)B∗)] (2)
:

↔
ε ,

S(n)
em = [(∇(n−1)E) (n−1)

: (∇(n−1)B∗)] (2)
:

↔
ε ,

where integers n � 1,
↔
ε is the Levi-Civita tensor, superscripts

(*) denote the complex conjugates, and the tensor contraction
(n)
: is defined as follows:

↔
A(l ) (m)

:
↔
B(l ′ ) = A(l )

k1 k2 ... km im+1 im+2 ... il
B(l ′ )

k1 k2 ... km jm+1 jm+2 ... jl′
,

0 � m � min[ l, l ′]. (A2)
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In the light of the above definitions, the electric and magnetic
parts of extinction forces are rewritten [20]

〈
F e(l )

int

〉 = 1

2 l!


 l−1
2 �∑

m=0

cl,mk4m Re
[
γ

(l )
elec t (l−2m)

elec

]
, (A3a)

〈
F m(l )

int

〉 = 1

2 l!


 l−1
2 �∑

m=0

cl,mk4m Re
[
γ (l )

mag t (l−2m)
mag

]
, (A3b)

where 
x� gives the greatest integer less than or equal to x,
and

t (n)
elec = Z(n)

ee − (n − 1)ω2

n
Z(n−1)

mm ,

t (n)
mag = Z(n)

mm − (n − 1)ω2

n c4
Z(n−1)

ee , (A4)

with

Z(n)
ee ≡ 1

2

[∇D(n)
ee − ∇ × S(n)

ee − 2iω Re S(n)
em

]
,

Z(n)
mm ≡ 1

2

[
∇D(n)

mm − ∇ × S(n)
mm − 2iω

c2
Re S(n)

em

]
. (A5)

The electric polarizability γ
(l )

elec and magnetic polarizability
γ (l )

mag, depending on the Mie coefficients al and bl [23], are
expressed as

γ
(l )

elec = l (2l + 1)!

2l (l + 1)!

4 i πε0

k2l+1
al ,

γ (l )
mag = l (2l + 1)!

2l (l + 1)!

4 i πε0 c2

k2l+1
bl . (A6)

The coefficient cl,m is written in terms of the Gamma function
�(x) as

cl,m = (−1)m (l − 2m)

4ml2

l!

m!

�
(
l − m + 1

2

)
�

(
l + 1

2

)
�(l − 2m)

. (A7)

In a similar way, the electric and magnetic parts of the recoil
force are rewritten as

〈
F e(l )

rec

〉 = −cl k2l+3

4πε0


 l−1
2 �∑

m=0

{
fl,mk4mIm

[
η

(l )
elect (l−2m) ∗

ee

]

+ gl,mk4m+2 Im
[
η

(l )
elect(l−2m−1)

ee

]}
, (A8a)

〈
F m(l )

rec

〉 = cl k2l+3

4πε0c2


 l−1
2 �∑

m=0

{
fl,mk4m Im

[
η(l )

mag t (l−2m) ∗
mm

]

+ gl,mk4m+2 Im
[
η(l )

magt (l−2m−1)
mm

]}
, (A8b)

where cl = 2l+1(l + 2)/(2l + 3)! and

t (n)
ee = Z(n)

ee − (n − 1)ω2

(n + 1)
Z(n−1)

mm + iω

(n + 1)
S(n)

em, (A9a)

t (n)
mm = Z(n)

mm − (n − 1)ω2

(n + 1)c4
Z(n−1)

ee + iω

(n + 1)c2
S(n) ∗

em . (A9b)

Products of the polarizabilities η
(l )
elec and η(l )

mag are propor-
tional to the Mie coefficients al+1a∗

l and bl+1b∗
l in GLMT,

η
(l )
elec = γ

(l+1)
elec γ

(l ) ∗
elec , η(l )

mag = γ (l+1)
mag γ (l ) ∗

mag , (A10)

and the coefficients

fl,m = l (l − 2m + 1)(2l − 2m + 1)

(l + 1)(2l + 1)(l − 2m)
cl,m,

gl,m = l (l − 2m − 1)

(l + 1)(2l + 1)
cl,m. (A11)

The hybrid term of the recoil force is rewritten as

〈
F x(l )

rec

〉 = c

4πε0

2l k2l+2

l (2l + 1)!


 l−1
2 �∑

m=0

hl,mk4m Re
[
η

(l )
hybt (l−2m)

em

]
,

(A12)

where

t (n)
em = i(n − 1)ω

n c2

[
c2Z(n−1)

mm − Z(n−1) ∗
ee

]

+ i(n − 1)(n − 2)ωk2

n2c2

[
c2Z(n−2) ∗

mm − Z(n−2)
ee

]

− S(n)
em − (n − 1)k2

n2
S(n−1) ∗

em + (n−1)(n−2)k4

n2
S (n−2)

em .

(A13)

The product of polarizabilities η
(l )
hyb is proportional to the Mie

coefficients alb∗
l in GLMT. Then η

(l )
hyb and hl,m are written as

η
(l )
hyb = γ

(l )
elecγ

(l ) ∗
mag , hl,m = (l − 2m)

l
cl,m. (A14)

Based on the Maxwell equations, the following relations can
be demonstrated,

∇D(n)
ee = 2ω Im S(n)

em + 2 Re G(n)
ee ,

∇D(n)
mm = −2ω

c2
Im S(n)

em + 2 Re G(n)
mm, (A15)

which imply that ∇D(n)
ee and ∇D(n)

mm are purely real. In addi-
tion, ∇ × S(n)

ee and ∇ × S(n)
mm are purely imaginary and satisfy

∇ × S(n)
ee = −2i Im G(n)

ee , ∇ × S(n)
mm = −2i Im G(n)

mm.

(A16)

As a consequence, the complex vectors Z(n)
ee and Z(n)

mm in
Eqs. (A5) are decomposed into an irrotational part (denoted
by the superscript “grad”) and a solenoidal part (denoted by
the superscript “curl”),

Z(n)grad
ee = Re Z(n)

ee = 1

2
∇D(n)

ee ,

Z(n)curl
ee = iIm Z(n)

ee = −1

2
∇ × S(n)

ee − iω Re S(n)
em,

Z(n)grad
mm = Re Z(n)

mm = 1

2
∇D(n)

mm,

Z(n)curl
mm = iIm Z(n)

mm = −1

2
∇ × S(n)

mm − iω

c2
Re S(n)

em, (A17)
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where S(n)
em is derived as

S(n)
em = − i

2ω
∇

∞∑
m=0

1

k2m

[
c2D(n+m)

mm − D(n+m)
ee

]

− 1

2k2
∇×

∞∑
m=0

1

k2m

[
G(n+m)

em − G(n+m)∗
me

] + P(n).

(A18)

The spatially constant real vector P(n) is a missed term in
the decomposition of S(n)

em by Helmholtz’s theorem [22]. P(n)

can be regarded as the irrotational part, the solenoidal part, or
their linear combination. In our treatment, P(n) is completely
solenoidal so that the force acting on a sphere immersed in a
homogeneous plane wave is regarded as the scattering force,

and then

Re S(n)
em = − 1

2k2
∇×

∞∑
m=0

1

k2m
Re

[
G(n+m)

em − G(n+m)∗
me

] + P(n)

(A19)

is solenoidal, i.e., ∇ · Re S(n)
em = 0. Meanwhile, the imaginary

part of S(n)
em is divided:

ImS(n)grad
em = − 1

2ω
∇

∞∑
m=0

1

k2m

[
c2D(n+m)

mm − D(n+m)
ee

]
, (A20a)

ImS(n)curl
em = − 1

2k2
∇×

∞∑
m=0

1

k2m
Im

[
G(n+m)

em − G(n+m)∗
me

]
.

(A20b)

Extinction and recoil forces consist of Z(n)
ee , Z(n)

mm, S(n)
em, and their complex conjugates in Eqs. (A4), (A9), and (A13). So the

total forces are decomposed into gradient and scattering parts.

APPENDIX B: OPTICAL FIELD COMPOSED OF MULTIPLE PLANE WAVES

In this section, we work out the extinction and recoil forces of an arbitrary superposition of homogeneous plane waves in
terms of Legendre polynomials. In order to get the dimensionless force, we set the parameters k = ω = c = 1. Substituting
Eqs. (A4), (A6), and (6) into Eqs. (A3) yields

〈
F e(l )

int

〉 = −2πε0l (2l + 1)!

2l (l + 1)!
Im

∑
i, j

al T e(l )
i,i j ,

〈
F m(l )

int

〉 = −2πε0l (2l + 1)!

2l (l + 1)!
Im

∑
i, j

bl T m(l )
i,i j , (B1)

with

T e(l )
i,i j = Z(1)

ee,i j


 l−1
2 �∑

m=0

cl,mxl−2m−1
i j − Z(1)

mm,i j


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m
cl,mxl−2m−2

i j ,

T m(l )
i,i j = Z(1)

mm,i j


 l−1
2 �∑

m=0

cl,mxl−2m−1
i j − Z(1)

ee,i j


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m
cl,mxl−2m−2

i j . (B2)

Equations (B1) are the extinction forces of np plane waves. Similarly, substituting Eqs. (A4), (A10), and (6) into Eqs. (A8), the
electric and magnetic parts of the recoil force are obtained,

〈
F e(l )

rec

〉 = − 4πε0(2l + 1)!

2l (l + 1)!(l − 1)!
Im

∑
i, j

al+1a∗
l

[
T e(l )

r1,i j + T e(l )
r2,i j + T e(l )

r3,i j

]
,

〈
F m(l )

rec

〉 = − 4πε0(2l + 1)!

2l (l + 1)!(l − 1)!
Im

∑
i, j

bl+1b∗
l

[
T m(l )

r1,i j + T m(l )
r2,i j + T m(l )

r3,i j

]
, (B3)

where

T e(l )
r1,i j = Z(1)∗

ee,i j


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j − Z(1)∗

mm,i j


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m + 1
fl,mxl−2m−2

i j ,

T e(l )
r2,i j = Z(1)

ee,i j


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j − Z(1)

mm,i j


 l−1
2 �∑

m=0

l − 2m − 2

l − 2m
gl,mxl−2m−3

i j ,

T e(l )
r3,i j = −iS(1)∗

em,i j


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j

l − 2m + 1
+ iS(1)

em,i j


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j

l − 2m
(B4)
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and

T m(l )
r1,i j = Z(1)∗

mm,i j


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j − Z(1)∗

ee,i j


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m + 1
fl,mxl−2m−2

i j ,

T m(l )
r2,i j = Z(1)

mm,i j


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j − Z(1)

ee,i j


 l−1
2 �∑

m=0

l − 2m − 2

l − 2m
gl,mxl−2m−3

i j ,

T m(l )
r3,i j = −iS(1)

em,i j


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j

l − 2m + 1
+ iS(1)∗

em,i j


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j

l − 2m
. (B5)

Substituting Eqs. (A4), (A14), and (6) into Eq. (A12), the hybrid part of the recoil force is obtained,

〈
F x(l )

rec

〉 = − 4πε0l (2l + 1)!

2l (l + 1)!(l + 1)!
Im

∑
i, j

alb
∗
l

[
T x(l )

r1,i j + T x(l )
r2,i j + T x(l )

r3,i j + T x(l )
r4,i j

]
, (B6)

with

T x(l )
r1,i j = [

Z(1)
mm,i j − Z(1)∗

ee,i j

] 
 l−1
2 �∑

m=0

l − 2m − 1

l − 2m
hl,mxl−2m−2

i j ,

T x(l )
r2,i j = [

Z(1)∗
mm,i j − Z(1)

ee,i j

] 
 l−1
2 �∑

m=0

(l − 2m − 1)(l − 2m − 2)

(l − 2m)2 hl,mxl−2m−3
i j ,

T x(l )
r3,i j = iS(1)

em,i j


 l−1
2 �∑

m=0

[
hl,mxl−2m−1

i j − (l − 2m − 1)(l − 2m − 2)

(l − 2m)2 hl,mxl−2m−3
i j

]
,

T x(l )
r4,i j = iS(1)∗

em,i j


 l−1
2 �∑

m=0

(l − 2m − 1)

(l − 2m)2 hl,mxl−2m−2
i j . (B7)

It is noted that l runs from 1 to nc and the empirical formula for the cutoff coefficient nc is [40]

nc = x + 4.05x1/3 + 2, (B8)

where x is the particle’s size parameter. Nevertheless, the summations involving cl,m, fl,m, gl,m, and hl,m in Eqs. (B1)–(B7)
would be numerically inaccurate along with the increasing orders l . This is due to roundoff error resulting from cancellation
of terms in summations of approximately equal magnitudes and opposite signs. Making use of the completeness properties of
Legendre polynomials, the relationships between the Legendre polynomials and summations of cl,m, fl,m, gl,m, and hl,m over m
in Eqs. (B1)–(B7) could be demonstrated by mathematical induction,


 l−1
2 �∑

m=0

cl,mxl−2m−1
i j = s(1)

l Q(1)
l, i j,


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m
cl,mxl−2m−2

i j = s(1)
l Q(2)

l, i j, (B9a)


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j = s(2)

l R(1)
l, i j,


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m + 1
fl,mxl−2m−2

i j = s(2)
l R(2)

l, i j, (B9b)


 l−1
2 �∑

m=0

fl,mxl−2m−1
i j

l − 2m + 1
= 4s(2)

l R(3)
l, i j,


 l−1
2 �∑

m=0

l − 2m − 2

l − 2m
gl,mxl−2m−3

i j = s(2)
l R(5)

l, i j, (B9c)


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j = s(2)

l R(4)
l, i j,


 l−1
2 �∑

m=0

gl,mxl−2m−2
i j

l − 2m
= 4s(2)

l R(6)
l, i j, (B9d)


 l−1
2 �∑

m=0

l − 2m − 1

l − 2m
hl,mxl−2m−2

i j = s(3)
l R(4)

l, i j,


 l−1
2 �∑

m=0

hl,mxl−2m−1
i j = s(3)

l

[
R(5)

l, i j + 4R(7)
l, i j

]
, (B9e)
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 l−1
2 �∑

m=0

(l − 2m − 1)(l − 2m − 2)

(l − 2m)2 hl,mxl−2m−3
i j = s(3)

l R(5)
l, i j, (B9f)


 l−1
2 �∑

m=0

(l − 2m − 1)

(l − 2m)2 hl,mxl−2m−2
i j = 4s(3)

l R(6)
l, i j, (B9g)

where the coefficients

s(1)
l = 2l + 1

2l (l + 1)

2l l!(l + 1)!

l (2l + 1)!
, s(2)

l = 2l−3(l + 1)!(l − 1)!

(l + 1)2(2l + 1)!
, s(3)

l = 1

4l
s(1)

l . (B10)

Substituting Eqs. (B9a) into Eqs. (B2), extinction forces are simplified to the following expressions:〈
F e(l )

int

〉 = u(1)
l Im

∑
i, j

al
[
Q(1)

l, i jZ
(1)
ee, i j − Q(2)

l, i jZ
(1)
mm, i j

]
, (B11a)

〈
F m(l )

int

〉 = u(1)
l Im

∑
i, j

bl
[
Q(1)

l, i jZ
(1)
mm, i j − Q(2)

l, i jZ
(1)
ee, i j

]
. (B11b)

Analogously, substituting Eqs. (B9b)–(B9d) into Eqs. (B4) and (B5), and substituting Eqs. (B9e)–(B9g) into Eqs. (B7), recoil
forces in terms of Legendre polynomials could be obtained,〈

F e(l )
rec

〉 = u(2)
l Im

∑
i, j

al+1a∗
l

[
R(1)

l, i jZ
(1) ∗
ee, i j − R(2)

l, i jZ
(1) ∗
mm, i j − 4i R(3)

l, i jS
(1) ∗
em, i j + R(4)

l, i jZ
(1)
ee, i j − R(5)

l, i jZ
(1)
mm, i j + 4i R(6)

l, i jS
(1)
em, i j

]
, (B12a)

〈
F m(l )

rec

〉 = u(2)
l Im

∑
i, j

bl+1b∗
l

[
R(1)

l, i jZ
(1) ∗
mm, i j − R(2)

l, i jZ
(1) ∗
ee, i j − 4i R(3)

l, i jS
(1)
em, i j + R(4)

l, i jZ
(1)
mm, i j − R(5)

l, i jZ
(1)
ee, i j + 4i R(6)

l, i jS
(1) ∗
em, i j

]
, (B12b)

〈
F x(l )

rec

〉 = u(3)
l Im

∑
i, j

al b
∗
l

[
R(4)

l, i j

(
Z(1)

mm, i j − Z(1) ∗
ee, i j

) + R(5)
l, i j

(
Z(1) ∗

mm, i j − Z(1)
ee, i j

) + 4iR(6)
l, i j S(1) ∗

em, i j + 4iR(7)
l, i j S(1)

em, i j

]
, (B12c)

with

u(1)
l = −πε0(2l + 1)

l (l + 1)
, u(2)

l = − πε0

2(l + 1)2 , u(3)
l = −πε0(2l + 1)

2l2(l + 1)2 . (B13)

The extinction and recoil forces in Eqs. (B11) and (B12) are completely in terms of Legendre polynomials, which could avoid
the numerical instability for large orders l in Eqs. (B1)–(B7).
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