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Nonlinear optical response of a two-dimensional quantum-dot supercrystal: Emerging
multistability, periodic and aperiodic self-oscillations, chaos, and transient chaos
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We conduct a theoretical study of the nonlinear optical response of a two-dimensional semiconductor
quantum-dot supercrystal subjected to a quasiresonant continuous-wave excitation. A constituent quantum dot
is modeled as a three-level ladderlike system (comprising the ground, the one-exciton, and the biexction states).
To study the stationary response of the supercrystal, we propose an exact linear parametric method of solving
the nonlinear steady-state problem, while to address the supercrystal optical dynamics qualitatively, we put
forward a method to calculate the bifurcation diagram of the system. Analyzing the dynamics, we demonstrate
that the supercrystal can exhibit multistability, periodic and aperiodic self-oscillations, and chaotic behavior,
depending on parameters of the supercrystal and excitation conditions. The effects originate from the interplay
of the intrinsic nonlinearity of quantum dots and the retarded interdot dipole-dipole interaction. The latter
provides a positive feedback which results in the exotic supercrystal optical dynamics. These peculiarities of
the supercrystal optical response open up a possibility for all-optical applications and devices. In particular, an
all-optical switch, a tunable generator of THz pulses (in self-oscillating regime), a noise generator (in chaotic
regime), and a tunable bistable mirror can be designed.
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I. INTRODUCTION

In the last decade, the so-called metamaterials, a class of
new materials not existing in nature, received a great deal of
attention (see for recent reviews Refs. [1–5]). Supercrystals
comprising regularly spaced quantum emitters represent one
of the examples of metamaterials with tunable optical prop-
erties which can be controlled by the geometry and chemical
composition of components [6]. Modern nanotechnology has
at its disposal a variety of methods to fabricate such systems
[7–11]. In Fig. 1, a few examples of ultrathin sheets of
regularly spaced semiconductor nanocrystals grown by the
method of oriented attachment (see for details Ref. [7]) are
present.

As is well known, a thin layer of two-level emitters (atoms,
molecules, J aggregates), the thickness of which is much
smaller than the radiation wavelength in the layer, can act
as an all-optical bistable element [12–22]. For bistability to
occur, two factors are required: nonlinearity of the material
and a positive feedback. Interplay of these two factors leads
to a situation when the system has two stable states; switching
between them is governed again by an external optical signal.
The nonlinearity of the layer is ensured by the fact that two-
level emitters are nonlinear systems. The positive feedback
originates from the secondary field, which is generated by the
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emitters themselves; this is the so-called “intrinsic feedback,”
i.e., here a cavity (external feedback) is not required.

A two-dimensional (2D) semiconductor quantum-dot
(SQD) supercrystal represents a limiting case of a thin layer.
In this paper, we conduct a theoretical study of the nonlinear
optical response of such a system. A single SQD is considered
as a pointlike system with three consecutive levels of the
ground, one-exciton, and biexction states (corresponding to
the so-called ladder or cascade level scheme). Due to the
high density of SQDs and high oscillator strengths of the
SQD’s transitions, the total (retarded) dipole-dipole SQD-
SQD interactions have to be taken into account, which is
finally done in the mean-field approximation for the pointlike
dipoles in a homogeneous host for simplicity. The real part
of the dipole-dipole interaction results in the dynamic shift of
the SQD’s energy levels, whereas the imaginary part describes
the collective radiative decay of SQDs, both depending on the
population differences between the levels. These two effects
are crucial for the nonlinear dynamics of the SQD supercrys-
tal. As a result, in addition to bistability, analogous to that
for a thin layer of two-level emitters, we found multistability,
periodic and aperiodic self-oscillation, and chaotic regimes in
the optical response of the SQD supercrystal.1 To the best
of our knowledge, a detailed study of the SQD supercrystal

1It should be noticed that a thin layer of three-level V emitters also
shows a similar behavior (see Refs. [69,70]).
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FIG. 1. PbSe rocksalt 2D nanostructures with (a) honeycomb
and (b) square-lattice symmetry, (c) CdSe nanostructure with a
compressed zinc-blende and slightly distorted square lattices (scale
bars, 50 nm). Insets show the electrodiffractograms in the [111]
(a) and [100] (b), (c) projections. The figure is from Ref. [7].

optical response has not been performed so far [23]. To
uncover the character of the instabilities, we use the standard
methods of nonlinear dynamics, such as the analysis of the
Lyapunov exponents, bifurcation diagrams, phase space maps,
and Fourier spectra [24–33]. Important technical results of our
study are a simple parametric method of finding the exact so-
lution of the nonlinear steady-state multilevel Maxwell-Bloch
equations and a method of bifurcation diagram calculation
that can be used for a wide class of systems.

The arrangement of the paper is as follows. In the next
section, we describe the model of a 2D supercrystal comprised
of SQDs and the mathematical formalism to treat its optical
response. We use for that the one-particle density matrix
formalism within the rotating wave approximation (RWA),
where the total retarded dipole-dipole interactions between
pointlike SQDs are taken into account. In Sec. III, the gen-
eral formalism is simplified making use of the mean field
approximation, and the mean field parameters (the collective
energy-level shift and radiation damping) are calculated. In
Sec. IV, we present the results of numerical calculations of
the supercrystal optical response, including the steady-state
solution (Sec. IV A), an analysis of bifurcations occurring in
the system (Sec. IV B), and the system’s dynamics (Sec. IV C)
for two conditions of excitation: (i) the external field is tuned
into the one-exciton transition and (ii) it is in resonance with
the coherent two-photon transition (with the simultaneous
absorption of two photons). A rationale for the physical
mechanism of the effects found is provided in Sec. IV D. In
Sec. V we show that the 2D SQD supercrystal can operate
as a bistable nanoscale mirror. Section VI concludes the
paper.

II. MODEL AND THEORETICAL BACKGROUND

We consider a 2D supercrystal comprising identical semi-
conductor quantum dots (SQDs). The optical excitations in
an SQD are confined excitons. In such a system, the degen-
eracy of the one-exciton state is lifted due to the anisotropic
electron-hole exchange, leading to two split linearly polarized
one-exciton states (see, e.g., Refs. [34–36]). In this case, the
ground state is coupled to the biexciton state via the linearly
polarized one-exciton transitions. By choosing the appropriate
polarization of the applied field, i.e., selecting one of the
single-exciton states, the system effectively acquires a three-
level ladderlike structure with a ground state |1〉, one exciton

FIG. 2. Energy-level diagram of the ladder-type three-level
SQD: |1〉, |2〉, and |3〉 are the ground, one-exciton, and biexciton
states, respectively. The energies of corresponding states are ε1 = 0,
ε2 = h̄ω2, and ε3 = h̄(2ω2 − �B ), where, h̄�B is the biexciton bind-
ing energy. Allowed transitions with the corresponding transition
dipole moments d21 and d32 are indicated by solid arrows. Wavy
arrows denote the allowed spontaneous transitions with rates γ32 and
γ21. The dashed horizontal line shows the energy of the coherent
two-photon resonance (the corresponding 1 ← 3 transition occurs
with the simultaneous absorption of two ε3/2 photons).

state |2〉, and biexciton state |3〉 with corresponding energies
ε1 = 0, ε2 = h̄ω2, and ε3 = h̄ω3 = h̄(2ω2 − �B), where h̄�B

is biexciton binding energy (see Fig. 2). Within this model,
the allowed transitions, induced by the external field, are
|1〉 ↔ |2〉 and |2〉 ↔ |3〉, which are characterized by the tran-
sition dipole moments d21 and d32, respectively. For the sake
of simplicity, we assume that they are real. The states |3〉 and
|2〉 spontaneously decay with rates γ32 and γ21, accordingly.
Note that the biexciton state |3〉, having no allowed transition
dipole moment from the ground state |1〉, can be populated
either via consecutive |1〉 → |2〉 → |3〉 transitions or via the
simultaneous absorption of two photons of frequency ω3/2. In
what follows, we will consider both options.

The optical dynamics of SQDs is described by means of
the Lindblad quantum master equation for the density operator
ρ(t ) [37,38], which in the rotating frame (with the frequency
ω0 of the external field) reads as

ρ̇(t ) = − i

h̄
[HRWA(t ), ρ(t )] + L{ρ(t )}, (1a)

HRWA(t ) = h̄
∑

n

(
�21σ

n
22 + �31σ

n
33

)

− ih̄
∑

n

[
�n

21(t )σ n
21 + �n

32(t )σ n
32

] + H.c., (1b)

L{ρ(t )} = γ21

2

∑
n

([
σ n

12ρ(t ), σ n
21

] + [
σ n

12, ρ(t ) σ n
21

])

+ γ32

2

∑
n

([
σ n

23ρ(t ), σ n
32

]+[
σ n

23, ρ(t ) σ n
32

])
, (1c)

σ n
i j = |ni〉〈 jn|, i, j = 1, 2, 3. (1d)

In Eq. (1a), h̄ is the reduced Plank constant, HRWA is the SQD
Hamiltonian in the RWA, [A, B] denotes the commutator,
L is the Lindblad relaxation operator, given by Eq. (1c)
[37,38]. In Eq. (1b), �21 = ω2 − ω0 and �31 = ω3 − 2ω0

are the energies of states |2〉 and |3〉 in the rotating frame,
accordingly. Alternatively, these quantities can be interpreted
as the detunings away from the one-photon resonance and the

033820-2



NONLINEAR OPTICAL RESPONSE OF A … PHYSICAL REVIEW A 100, 033820 (2019)

coherent two-photon resonance, respectively. �n
21(t ) =

d21En(t )/h̄ and �n
32(t ) = d32En(t )/h̄, where En(t ) is the

slowly varying amplitude of the total field driving the optical
transitions in the nth SQD, En(t ) = En(t ) exp(−iω0t ) + c.c.
The latter is the sum of the applied field E0

n(t ) =
E0

n(t ) exp(−iω0t ) + c.c. and the field produced by all others
SQDs in place of the nth SQD, E loc

n (t ) = ∑
m Emn(t ) =∑

m Emn(t ) exp(−iω0t ) + c.c., where the amplitude Emn(t )
is given by (see, e.g., Refs. [39,40])

Emn(t ) =
{[

3

r3
mn

− 3ik0

r2
mn

− k2
0

rmn

]
(d21umn)umn

−
[

1

r3
mn

− ik0

r2
mn

− k2
0

rmn

]
d21

}
ρm

21(t ′)eik0rmn

+
{[

3

r3
mn

− 3ik0

r2
mn

− k2
0

rmn

]
(d32umn)umn

−
[

1

r3
mn

− ik0

r2
mn

− k2
0

rmn

]
d32

}
ρm

32(t ′)eik0rmn , (2)

where rmn is the distance between sites m and n, k0 = ω0/c
(c is the speed of light in vacuum), umn = rmn/rmn is the
unit vector along rmn, and t ′ = t − rmn/c. Equation (2) rep-
resents the field (amplitude) produced by an oscillating dipole
d21Rm

21(t ′) + d32Rm
32(t ′) situated at a point rm in another point

rn at an instant t , accounting for retardation: t − t ′ = rmn/c.2

Using Eq. (2), the fields �n
αβ (t ) (αβ = 21, 32) can be written

in the form

�n
αβ (t ) = �0n

αβ (t )+
∑

m

(
γ mn

αβ +i�mn
αβ

)
ρm

αβ (t ′), (3a)

γ mn
αβ = 3γαβ

4(k0a)3

{[
(k0a)2

κmn
αβ

|m − n| − χmn
αβ

|m − n|3
]

× sin(k0a|m−n|)+k0a
χmn

αβ

|m−n|2 cos(k0a|m−n|)
}
,

(3b)

�mn
αβ = 3γαβ

4(k0a)3

{[
χmn

αβ

|m − n|3 − (k0a)2
κmn

αβ

|m − n|
]

× cos(k0a|m−n|)+k0a
χmn

αβ

|m−n|2 sin(k0a|m−n|)
}
,

(3c)

2Strictly speaking, this field should be the field acting inside
the SQD; the latter differs from the field acting on the SQD by
a screening factor which depends on the system geometry and
material parameters. In the simplest case of a spherical dot in a
homogeneous environment this factor can be obtained analytically
(see, e.g., Ref. [73]). A realistic SQD array is a considerably more
complicated system involving a nonhomogeneous host, at least
three different materials, and a number of geometrical parameters.
We believe that explicit calculation of the screening factors in this
case would introduce unnecessary level of detail and obscure further
analysis. Therefore, for the sake of simplicity, we consider a SQD
as a pointlike system in a homogeneous host; all the fields entering
the Lindblad equations should be interpreted as those rescaled by
appropriate screening factors.

κmn
αβ = 1 − (eαβumn )2, χmn

αβ = 1 − 3(eαβumn)2. (3d)

We used in Eqs. (3b) and (3c) the expression γαβ =
4|dαβ |2ω3

αβ/(3h̄c3). In Eq. (3d), eαβ = dαβ/dαβ is the unit
vector along dαβ . The matrices γ mn

αβ and �mn
αβ represent the

real and imaginary parts of the retarded dipole-dipole interac-
tion of nth and mth SQDs.

Equation (1a), written in the site basis |ni〉 (i = 1, 2, 3),
reads as

ρ̇n
11 = γ21ρ

n
22 + �n

21ρ
n∗
21 + �n∗

21ρn
21, (4a)

ρ̇n
22 = −γ21ρ

n
22 + γ32ρ

n
33 − �n

21ρ
n∗
21 − �n∗

21ρn
21

+�n
32ρ

n∗
32 + �n∗

32ρn
32, (4b)

ρ̇n
33 = −γ32ρ

n
33 − �n

32ρ
n∗
32 − �n∗

32ρ32, (4c)

ρ̇n
21 = −(

i�21 + 1
2γ21

)
ρn

21 + �n
21

(
ρn

22 − ρn
11

) + �n∗
32ρ31,

(4d)

ρ̇n
32 = −[

i�32 + 1
2 (γ32 + γ21)

]
ρn

32

+�n
32(ρn

33 − ρn
22) − �n∗

21ρn
31, (4e)

ρ̇n
31 = −(

i�31 + 1
2γ32

)
ρn

31 − �n
32ρ

n
21 + �n

21ρ
n
32, (4f)

where �n
21 and �n

32 are given by Eqs. (3a)–(3d). The time
dependence of all relevant quantities is dropped here.

It is worth to noting that Eqs. (4a)–(4f) represent a set of
equations for the one-particle density matrix, where the quan-
tum correlations of the dipole operators of different SQDs are
neglected that implies that 〈d̂nd̂m〉 = 〈d̂n〉〈d̂m〉, where 〈. . .〉
denotes the quantum mechanical average. A proof of this
assumption is a standalone problem to be solved, which is
beyond the scope of this paper.

III. MEAN FIELD APPROXIMATION

The set of Eqs. (4a)–(4f) allows one to study the optical
response of a SQD monolayer, without any limitation to the
layer’s size, lattice geometry, and the spatial profile of the ex-
ternal field amplitude En

0 . Here, we restrict our consideration
to a spatially homogeneous case, when all relevant quantities
entering Eqs. (4a)–(4f) do not depend on the SQD’s position
n. In fact, this approximation is equivalent to taking into
account the Lorentz local field correction to the field acting
on an emitter, which has been widely used when analyzing the
optical response of dense bulk media, both linear [41,42] and
nonlinear [13,16,22,43–45]. This approximation intuitively
seems to be appropriate for an infinite layer, however, for a
finite sample, its validity should be examined. Nevertheless,
as we show below, even this simplest model predicts a variety
of fascinating effects. We consider a simple square lattice of
SQDs in order to avoid unnecessary computational complica-
tions.

Thus, we neglect the spatial dependence of all func-
tions in Eqs. (4a)–(4f). Additionally, we assume for the
sake of simplicity that the transition dipoles d21 and d32

are parallel to each other, d32 = μd21 ≡ μd (not a princi-
pal limitation). Accordingly, γ32 = μ2γ21 ≡ μ2γ and �32 =
μ�21 ≡ μ�. Then, the system of equations (4a)–(4f) takes
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the form3

ρ̇11 = γ ρ22 + �ρ∗
21 + �∗ρ21, (5a)

ρ̇22 = −γ ρ22+μ2γ ρ33−�ρ∗
21−�∗ρ21+μ(�ρ∗

32+�∗ρ32),

(5b)

ρ̇33 = −μ2γ ρ33 − μ(�ρ∗
32 + �∗ρ32), (5c)

ρ̇21 = −(
i�21 + 1

2γ
)
ρ21 + �(ρ22 − ρ11) + μ�∗ρ31, (5d)

ρ̇32 = −[
i�32+ 1

2 (1+μ2)γ
]
ρ32+μ�(ρ33−ρ22)−�∗ρ31,

(5e)

ρ̇31 = −(
i�31 + 1

2μ2γ
)
ρ31 − μ�ρ21 + �ρ32, (5f)

� = �0 + (γR + i�L )(ρ21 + μρ32), (5g)

where the constants γR and �L are given by

γR =
∑

m( 
=n)

γ mn
21 = 3γ

4(k0a)3

∑
n 
=0

{[
(k0a)2 κn

|n| − χn

|n|3
]

× sin(k0a|n|) + k0a
χn

|n|2 cos(k0a|n|)
}
, (6a)

�L =
∑

m( 
=n)

�mn
21 = 3γ

4(k0a)3

∑
n 
=0

{[
χn

|n|3 − (k0a)2 κn

|n|
]

× cos(k0a|n|) + k0a
χn

|n|2 sin(k0a|n|)
}
, (6b)

κn = 1 − (eun)2, χn = 1 − 3(eun )2. (6c)

Recall that the summation in Eqs. (6a) and (6b) runs over
sites n = (nx, ny) of a simple square lattice, where nx =
0,±1,±2,±3 . . . ± Nx, ny = 0,±1,±2,±3 . . . ± Ny, and
e = d/d is the unit vector along the transition dipole
moment d21.

Next, we are interested in (k0a) scaling of the constants γR

and �L. First, consider a pointlike system, when the lateral
lattice sizes Nxa and Nya are much smaller that the reduced
wavelength λ̄ = k−1

0 . Then, making the expansion of sine and
cosine functions in Eqs. (6a) and (6b) to the lowest order with
respect to k0a � 1, one finds

γR = 3γ

4

∑
n 
=0

κn = 3

8
γ N, (7a)

�L = 3γ

4(k0a)3

∑
n 
=0

χn

|n|3 = − 3γ

2(k0a)3
ζ (3/2)β(3/2)

� −3.39
γ

(k0a)3
= −3.39γ

(
λ̄

a

)3

, (7b)

where N = 4NxNy is the total number of sites in the lattice,
ζ (x) is the Riman z function, and β(x) = ∑∞

n=0(−1)n(2n +
1)−x is the analytical continuation of the Dirichlet series [46].
When deriving Eq. (7a) we used the fact that

∑
n 
=0 κn = N/2.

3Note that Eqs. (5a)–(5g) are algebraically equivalent to the equa-
tions for a heterodimer comprising a metallic nanoparticle and a
semiconductor quantum dot subjected to a quasiresonant irradiation
(see Refs. [63,74]).

Furthermore, the formula (7b) follows from Eq. (A20) of
Ref. [47] at θ = π/2. As is seen from Eq. (7a), γR does
not depend on k0a; it is determined by the total number
of SQDs in the lattice and describes the collective (Dicke)
radiative relaxation of SQDs as all the SQD’s dipoles are in
phase for a pointlike system [39,40,48]. Oppositely, �L shows
(k0a) scaling, corresponding to the near-zone dipole-dipole
interaction of a given SQD with all others.

For a large system (Nxa, Nya � λ̄), one has to use Eqs. (6a)
and (6b) to calculate γR and �L, keeping all terms when
performing summation. It turns out that the sums in Eqs. (7a)
and (7b), which contain summands proportional to |n|−1,
converge very slowly as the lattice size increases, which
results in diminishing oscillations of γR and �L around their
asymptotic values given by (see Appendix A)

γR � 4.51
γ

(k0a)2
= 4.51γ

(
λ̄

a

)2

, (8a)

�L � −3.35
γ

(k0a)3
= −3.35γ

(
λ̄

a

)3

. (8b)

As follows from Eq. (8a), for a large system, the collective
radiation rate γR is determined by a number of SQDs within
an area on the order of λ̄2: all SQD’s dipoles are in phase
there. Recall that for a linear chain of emitters, γR ∼ λ̄/a
[39]. On the contrary, the near-zone dipole-dipole interaction
�L changes insignificantly compared with that for a pointlike
system [compare Eq. (8b) with (7b)].

It should be noticed that irrespectively of the system size,
the inequality |�L| � γR is always fulfilled for a dense sys-
tem, λ̄ � a. We will use this relationship in our analysis of the
supercrystal’s optical response.

IV. NUMERICS

We performed calculations of the system dynamics
for two resonance conditions: (i) the applied field �0

is in resonance with the one-exciton transition ω0 = ω2

(�21 = 0,�32 = −�B) of a single emitter (conventionally
called in what follows as one-photon resonance) and (ii)
it is tuned to the two-photon resonance ω0 = ω3/2 (�21 =
�B/2,�32 = −�B/2). In reality, however, the single-emitter
resonance �21 = 0 is redshifted due to the near-zone SQD-
SQD interactions by |�L|, so that the resonance in the linear
low-field intensity regime is defined by the condition �21 =
|�L| (see Sec. IV D for detail).

In our numerical calculations we use the typical values
of optical parameters of the SQDs (emitting in the visible)
and SQD supercrystals (see, e.g., Fig. 1). More specifically,
the spontaneous decay rate γ ≈ 3×109 s−1 and the ratio μ =
d32/d21 = √

γ32/γ21 = √
2/3. The magnitudes of γR and �L

depend on the ratio λ̄/a. Taking λ̄ ∼ 100–200 nm and a ∼
10–20 nm, one obtains the following estimates for these two
constants: γR ∼ 1012 s−1 and |�L| ∼ 1013 s−1. The typical
values of the biexciton binding energy �B are on the or-
der of several meV, �B ∼ 2.5–10 meV ∼ 1012 s−1, although
for some 2D systems, like transition metal dichalcogenides
[49,50], it can be one order of magnitude larger. Therefore,
the biexciton binding energy h̄�B is considered as a variable
parameter. In what follows, the spontaneous emission rate γ
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FIG. 3. Steady-state solutions to Eqs. (5a)–(5g) for the case
of one-photon resonance (�21 = 0, �32 = −�B) and for different
values of the biexciton binding energy �B (shown in the plots). The
left column shows dependencies of the total field magnitude |�| on
the excitation field |�0|, right column dependencies of the population
difference ρ22 − ρ11 on the |�0|. Unstable regions of the stationary
solutions are indicated by gray shading; the maximum values of the
real parts of Lyapunov exponents maxk Reλk are shown in the middle
column (see text for details). All frequency-dimension quantities are
given in units of γ .

is used as the unit of all frequency-dimensional quantities,
whereas γ −1 as the time unit. According to our estimates, we
set in γR = 100γ and |�L| = 1000γ .

Equations (5a)–(5g) belong to a class of so-called stiff
differential equations, characterized by several significantly
different timescales. In our case, these are defined by γ −1 �
γ −1

R � |�L|−1. We therefore use specialized integration rou-
tines adapted for systems of such stiff equations, in particular,
the ODE23tb of MATLAB and some implementations of meth-
ods based on the backward differentiation formulas.

A. Steady-state analysis

As the first step of studying the system optical response, we
turn to the steady-state regime. By setting the time derivatives
in Eqs. (5a)–(5g) to zero, we obtain the system of stationary
nonlinear equations which we solve by our exact parametric
method (detailed in Appendix B). The results for different
values of the biexciton binding energy �B are presented below
in the series of figures.

Figures 3 and 4 show the dependence of the total field mag-
nitude |�| (leftmost column) and the population difference
Z21 = ρ22 − ρ11 (rightmost column) on the external field mag-
nitude |�0| calculated for the one-photon (ω0 = ω2,�21 = 0,

�32 = −�B) and two-photon (ω0 = ω3/2,�21 = −�32 =
�B/2 resonance, respectively. As is seen from the figures,

FIG. 4. Same as in Fig. 3, but for the case of the two-photon
resonance (�21 = −�32 = �B/2).

the total field magnitude |�| can have several solutions (up
to five for �32 = −50) for a given value of the external
field magnitude |�0|, which can give rise to multistability
and hysteresis phenomenon (see Sec. IV C 3). We analyzed
the stability of different branches by the standard Lyapunov
exponents analysis [25,31]. To this end, we calculated the
eigenvalues λk (k = 1 . . . 8) of the Jacobian matrix of the
right-hand side of Eqs. (5a)–(5g) as a function of |�|. The
exponent with the maximal real part, maxk Reλk , determines
the stability of the steady-state solution: if maxk Reλk � 0,
the solution is stable and unstable otherwise. The values of
maxk Reλk are plotted in the middle panels of Figs. 3 and 4.
The shaded regions show the unstable parts of the steady-state
solutions (with maxk Reλk > 0).

We stress that not only the branches with the negative slope
are unstable, which is always the case, but some parts of the
branches with the positive slopes as well. This occurs for both
the one- and two-photon resonance conditions. Quite remark-
ably, in the case of the one-photon resonance with �B = 100,
a part of the upper branch of the steady-state solution is
unstable. Moreover, for �B = 50, two unstable regions of the
upper branch are separated by a stable one. The nature of these
instabilities is discussed in Secs. IV B and IV C.

B. Bifurcation diagram

The bifurcation diagram is a very useful tool providing
an insight into possible scenarios of the system behavior
in a graphical way [26,27,29,32] by portraying the system
dynamics qualitatively as a function of a control (bifurcation)
parameter. In order to construct the bifurcation diagram, we
address the dynamics of the total field magnitude |�(t )|
(which is one of the possible measurable outputs) as a function
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FIG. 5. Left panel: the overall bifurcation diagram [extrema of the total field magnitude |�(t )| on attractors as a function of the external
field magnitude |�0|] calculated for the case of one-photon resonance �21 = 0, �32 = −�B = −50 (see text for details of the calculation
method). Dashed red line shows the unstable part of the steady-state solution from Fig. 3, which is given for reference. Middle and right
panels: blowups of the regions of the bifurcation diagram with nontrivial dynamics (see also Sec. IV C). All quantities are given in units of γ .

of the external field magnitude |�0|, which is the most natural
bifurcation parameter for the system under consideration. To
this end, for each |�0| we plot a set of characteristic points of
|�(t )|, namely, all the extrema of the latter on an attractor.

Our proposed method of bifurcation diagram calculation is
as follows. First, we note that the steady-state characteristics
(|�| vs |�0| dependence in Figs. 3 and 4) are multivalued,
which can complicate numerical procedures considerably if
the external field amplitude �0 is swept. Therefore, we sweep
the total field amplitude � instead. As we argue in Appendix
B, the latter can be considered to be real without loss of gen-
erality [if appropriate phase transformations are performed,
see Eq. (B3b)]. Thus, for each real valued �, we use Eq. (5g)
to obtain the unique stationary (complex valued) �0, whose
absolute value is used as the external field amplitude in
Eqs. (5a)–(5g) to calculate the system dynamics. After going
through a transient phase, the dynamics converges to an attrac-
tor. Then, we obtain all the extrema of the absolute value of the
total field amplitude |�(t )| on the trajectory over a sufficiently
long time interval. All such extrema are plotted as points for
the current value of |�0|, forming the bifurcation diagram.

The distribution of the extrema provides qualitative in-
formation on possible types of the system dynamics. For
example, if the dynamics converges to a stable fixed point, all
the extrema collapse onto a single point (within the precision
of the numerical method). The point coincides with the stable
stationary value of the field (the extrema exist because the
solution is typically still oscillating about the stationary value
due to finite precision of numerical methods). If the dynamics
converges to a periodic orbit, all the extrema collapse onto
a finite set of points separated by gaps (see Fig. 5, middle
panel). Quasiperiodic oscillations can turn up as vertical bars
separated by gaps (see Fig. 5, right panel), while chaos would
probably display itself as a continuous vertical line. The
proposed representation of the system dynamics is somewhat
similar to the Lorenz map [51] (in the sense that it uses
extrema), but it contains considerably more information. On
the other hand, it is also resembling the Poincaré map [25] (in
the way it represents different types of dynamics), but it is less

complicated to calculate than the latter while providing almost
equivalent qualitative information. We believe therefore that
the proposed method of bifurcation diagram calculation is
quite advantageous.

The choice of the initial conditions becomes very important
when scanning for attractors with nontrivial dynamics (those
different from a stable fixed point). Ideally, one should try out
all possible initial conditions for each value of the bifurcation
parameter, which is hardly feasible. Hereafter, we assume that
the system can manifest interesting dynamics when it is “not
too far” in the phase space from the unstable branches of
the steady-state characteristics; we therefore use the following
procedure to choose the initial conditions. At each step, i.e.,
for each value of |�|, we are inspecting the solution from
the previous step. If the previous solution appears to be on
a nontrivial attractor, we take the previous solution at the final
time instant as the initial condition for the current step. Thus,
we try to keep the system in the basin of attraction of the
nontrivial attractor. Otherwise, if the systems is converging
to a stable fixed point at the previous step, we take the
steady-state solution corresponding to the current value of
|�| as the initial condition. Such a solution can be on an
unstable part of the stationary curve and yield some interesting
dynamics. Besides, we are sweeping the parameter |�| across
the window of interest back and forth, intending to discover
the most complete set of attractors.

Finally, to ascertain that the dynamics has converged to an
attractor, in other words, to make sure that the transient phase
of the dynamics has passed, we apply the following procedure.
We integrate the system over consecutive time intervals �T
and calculate the range Rn of the function |�(t )| at each
interval, i.e.,

Rn = max
�T

|�(t )| − min
�T

|�(t )|,

where n is the step number. The dynamics is considered to
converge to an attractor when the range Rn stops growing
and its change from one step to the next becomes suffi-
ciently small in the following sense: |Rn+1 − Rn| < εa and
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|Rn+1 − Rn|/Rn < εr .4 In any case, the integration was
stopped when the integration time reached Tmax. Unfortu-
nately, we can not propose any general method to estimate the
parameters �T , εa, εr , and Tmax. To determine their appro-
priate values, we analyzed the system dynamics on different
types of attractors and found out that the set �T = 50, εa =
0.001, εr = 0.001, and Tmax = 104 was working well in all
cases we considered. Finally, when the dynamics converges
to an attractor, the extrema of |�(t )| are calculated on the last
time interval; their values are used to construct the bifurcation
diagram as explained above.

Figure 5 presents the bifurcation diagram calculated for
the case of the one-photon resonance �21 = 0,�32 = −�B,
and the biexciton binding energy �B = 50. The steady-state
characteristics from Fig. 3 is also plotted; the stable stationary
branches (black lines) form the trivial part of the bifurcation
diagram, while the unstable branches (red dashed line) are
given for reference. The middle and right panels of the figure
show blowups of the parts of the diagram with nontrivial
dynamics. As expected, these parts are located in proximity
to the unstable branches of the steady state. The figure shows
that, although there are stable stationary solutions for all val-
ues of the external field magnitude |�0|, the system dynamics
can be highly nontrivial, manifesting a wide range of attractor
types. In particular, fingerprints of stable fixed points, periodic
and aperiodic orbits, and chaotic trajectories can be seen.

As observed from Fig. 5, the system undergoes multiple
bifurcations. Consider, for example, the bifurcation of limit
cycles existing within the range of the external field mag-
nitude 67 � |�0| � 90 (middle panel of Fig. 5). When |�0|
crosses the left boundary of the interval, being swept down,
the limit cycle disappears and the system is attracted to a
stable fixed point which resides in the lower stable branch
of the steady-state characteristics. This scenario resembles a
subcritical Andronov-Hopf bifurcation [26,29,32]. Once at the
stable branch, the system remains at this trivial attractor even
if the field magnitude is swept up to fall again within the
interval, where self-oscillations can exist. Here, we deal with
hysteresis of the bifurcation diagram.

We turn now to the case when the system is in a stable fixed
point belonging to the intermediate positive-slope branch of
the steady-state characteristics, surrounded by the unstable
parts, i.e., within the interval 100 � |�0| � 135 (see the panel
of Fig. 3 for �B = 50 and the right panel of Fig. 5). If the
external field magnitude |�0| starts to increase and crosses
the right boundary of the interval, a limit cycle is created
from a stable fixed point at |�0| ≈ 137. This change of the
character of dynamics resembles a supercritical Andronov-
Hopf bifurcation [26,29,32]. Further, if the external field
magnitude is swept back (starts to decrease), the system would
follow the nontrivial attractor until its lower field extreme (at
|�0| ≈ 115), where the auto-oscillation disappears, and the
system is attracted back to the stable fixed point at the upper
steady-state branch.

4Additionally, one can apply the same criteria to the average
An = [min�T |�(t )| + max�T |�(t )|]/2 to account for and get rid of
the drift of the average toward an attractor.

FIG. 6. Same as in Fig. 5 but for the case of two-photon res-
onance (�21 = −�32 = �B/2) with �B = 50. Upper panel: the
overall diagram; lower panel: a blowup of a fragment of the above
diagram showing its fine structure.

Figure 6 shows the extrema diagram calculated for the case
of the two-photon resonance (�21 =−�32 = �B/2 = 25). The
black vertical feature at 85 � |�0| � 100 represents the most
interesting part of the diagram with nontrivial dynamics.
The feature consists of very densely packed points forming
practically continuous vertical lines, which indicates that the
extrema of the total field magnitude |�(t )| might be dis-
tributed randomly and that the signal is presumably of a
chaotic nature. We confirmed the latter by calculating the
Lyapunov spectra using the standard method based on the QR
factorization (decomposition of a matrix into a product of an
orthogonal matrix Q and an upper triangular one R) [52–58]
and found that a typical spectrum contains one positive expo-
nent, a zero one, and negative remaining exponents. The latter
(+, 0,−, . . . ,−) pattern of the signs of Lyapunov exponents
is known to be a fingerprint of a chaotic trajectory. The typical
value of the corresponding Lyapunov dimension, estimated
using the Kaplan and Yorke’s conjecture [59,60], is dL � 4.

However, this chaos may turn up to be transient, in the
sense that, if the system is let to evolve for sufficiently long
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time, it will finally be attracted to one of the stable steady-state
points. Such events can be seen in the blowup shown in the
lower panel of Fig. 6: the white gaps in the feature correspond
to solutions that converged toward the stable stationary curve
for t � Tmax. Our calculations showed that the time during
which the transient chaotic dynamics exists is hardly pre-
dictable, besides this time seems to be very sensitive to initial
conditions and the integration method, which is a typical
feature of a transient chaos (see Refs. [61,62] and references
therein).

Regarding bifurcations occurring in the present case, we
can state with definiteness only about those which arise at the
edges of the black feature: at the left edge, a stable fixed point
loses its stability and bifurcates into a chaotic trajectory, while
at the right one, the back bifurcation takes place.

Thus, the system dynamics can be very complex demon-
strating a large variety of attractor types and bifurcations,
some of which can manifest hysteresis. A detailed study of all
possible bifurcations goes far beyond the scope of this paper;
in what follows, we restrict ourselves to addressing some of
the most prominent system dynamics scenarios in more detail.

C. Time-domain analysis

In this section, we present and discuss system dynamics
on a variety of nontrivial attractors for either the one-photon
(ω = ω2) or two-photon (ω = ω3/2) resonant excitation. We
solve Eqs. (5a)–(5g) for two types of initial conditions: the
system is initially in the ground state (ρ11 = 1, while all other
density matrix elements are equal to zero) or in a given steady-
state5 corresponding to the external field magnitude |�0|.

1. One-photon resonance (�21 = 0, �32 = −�B)

Figure 7 shows the results of time-domain calcula-
tions performed for the case of the one-photon reso-
nance (�21 = 0) with �32 = −�B = −50. Three points on
the unstable parts of the steady-state solution were used
as initial conditions: (|�0| = 68.1, |�| = 20.1257) (upper
row), (|�0| = 136, |�| = 31.4674) (middle row), and (|�0| =
170, |�| = 42.3836) (bottom row).

The left panels in Fig. 7 show the time evolution of the
total field magnitude |�|. As is seen, after some delay which
correlates well with the values of inverse Lyapunov exponents
for the corresponding points of the steady-state solution (see
Fig. 3, the middle panel for �B = 50) an instability starts
to develop. At longer times, the latter acquires a sustained
form, indicating that the system is on an attractor. In the
middle panels, the Fourier spectra [| ∫ dt exp(iωt )�(t )|] on
the attractor are plotted. The right panels show the trajectories
on attractors in the reduced phase space (Re �, Im �).

The figure shows that the character of motion on the
attractor depends on the initial point. For example, for (|�0| =

5When the system is exactly in a stationary state it remains there
forever. However, due to the finite precision of numerical methods
and the initial state itself, the system is in very small vicinity of the
exact stationary state. Therefore, it is either attracted to the steady
state (if it is a stable fixed point) or drifts away from it if the stationary
state is unstable.

68.1, |�| = 20.1257) (the upper row in Fig. 7), the system
dynamics looks like a simple self-oscillation [see the left panel
and also the inset for a blowup of the dynamics of |�(t )|].
Accordingly, the Fourier spectrum (middle panel) contains
a few well-defined harmonics of the base frequency while
the phase space map (right panel) represents a closed curve,
commonly called a limit cycle [25,31]. The pattern of the
Lyapunov exponents signs (0,−, . . . ,−) is also typical for a
limit cycle.

For (|�0| = 136, |�| = 31.4674) (the middle row in Fig. 7),
the dynamics manifests signature of aperiodic oscillations.
In this case the Fourier spectrum is also discrete, but now
together with the equidistant peaks there are also satellites
with incommensurate frequencies. The phase-space map rep-
resents a stripelike trajectory, densely filling a finite area in
the phase space. This is a signature of aperiodic motion on a
hypertorus.

Finally, for (|�0| = 170, |�| = 42.3836) (the bottom row),
the dynamics is more complicated (see the inset in the left
panel). The Fourier spectrum consists of a set of broadened
peaks at a noisy background (see also the inset in the mid-
dle panel). This regime is chaotic; our calculations of the
Lyapunov exponents spectrum confirm that the signs of the
exponents have the typical (+, 0,−, . . . ,−) pattern and the
Lyapunov dimension is dL ≈ 3.42.

2. Two-photon resonance (�21 = −�32 = �B/2)

In the case of the two-photon resonance (ω0 = ω3/2), a
part of the lower branch of the steady-state solution with
a positive slope is unstable (see Fig. 4). As a result, the
dynamics can be nontrivial even if the system is initially in
the ground state, in contrast to the case of the one-photon
resonance discussed in the preceding section. We therefore
consider both the steady-state and the ground-state initial
conditions; the corresponding results are presented in Fig. 8.

The top row in Fig. 8 shows the system dynam-
ics for �B = 50 and the steady-state initial condition at
(|�0| = 95, |�| = 5.5). As is seen, after a short transient phase,
the system evolves toward the fixed point on the upper stable
branch of the stationary curve that corresponds to |�0| = 95.
Accordingly, the Fourier spectrum on the attractor consists of
a single peak at zero frequency and the phase-space map is a
point.

On the contrary, if the ground-state initial condition is
used for the same external field magnitude |�0| = 95 (middle
row), the dynamics is seemingly chaotic, manifesting a very
irregular train of pulses. The Fourier spectrum is practically
continuous in this case, while the reduced phase-space map of
the trajectory seems to have a completely filled volume. The
sign pattern of the Lyapunov exponents is (+, 0,−, . . . ,−)
indicating that the trajectory is indeed chaotic; the Lyapunov
dimension is dL ≈ 4.7.

The results of calculations, performed for another value
of the external field magnitude |�0| = 95.2, turned out to be
essentially independent on the initial conditions. The output
for the unstable steady-state point (|�0| = 95.2, |�| = 5.6)
is shown in the bottom row of Fig. 8 and reveals a chaotic
behavior of the system, in contrast with the unstable steady-
state point (|�0| = 95, |�| = 5.5).
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FIG. 7. The dynamics of the total field magnitude |�(t )| (left column, insets show blowups of the dynamics), the Fourier spectrum
(middle column), and two-dimensional map of (Re[�], Im[�]) on the attractor (right column). The results are calculated for the case of
the one-photon resonance (�21 = 0, �32 = −�B) with �B = 50. The initial conditions were taken to be on the steady-state characteristics at
(|�0| = 68.1, |�| = 20.1257) (upper row), (|�0| = 136, |�| = 31.4674) (middle row), and (|�0| = 170, |�| = 42.3836) (bottom row). All
frequency-dimension quantities are given in units of γ , while time is in units of γ −1.

3. Optical hysteresis

The multivalued character of the steady state (see Figs. 3
and 4) can give rise to a hysteresis of the system response,
when the external field magnitude |�0| is slowly swept back
and forth. It is unclear, however, whether the hysteresis loops
are stable because some parts of the steady-state solutions,
through which the system is driven by the field, are unstable.
Figures 9 and 10 show the corresponding results for the one-
and two-photon resonance excitation, respectively. In both
cases, the hysteresis loops appear to be stable.

In the hysteresis loop calculations, the external field mag-
nitude |�0| was swept linearly in the following way: |�0| =
0.002t for 0 � t � T and |�0| = 0.002(2T − t ) for T � t �
2T , where the time T is chosen in such a way that the
whole multivalued part of the steady-state characteristics is
scanned.

From Figs. 9 and 10 it follows that in both cases, the optical
response is bistable within a window of external field ampli-
tudes. As the external field magnitude |�0| is increased from
zero, the total field magnitude |�| follows the lower branch of
the steady-state characteristics until it reaches the right critical
point at which |�| abruptly jumps up to the upper stable
branch where the system is saturated. On decreasing |�0| the
system remains on the upper branch until |�0| reaches the left
critical point, where the system abruptly jumps down to the
lower branch, completing the hysteresis loop. Branches with
the negative slope are not accessible in the adiabatic numerical
experiment.

D. Discussion

As we argue above, the considered system demonstrates
a very rich optical dynamics: multistability, periodic and
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FIG. 8. Same as in Fig. 7, but for the case of the two-photon resonance (�21 = −�32 = �B/2 = 25) and two values of the external field
magnitude |�0|. Top and middle rows: the system resides initially in the steady-state points (|�0| = 95, |�| = 5.5214) and (|�0| = 95.2, |�| =
5.6121), respectively. Bottom row: the system initially is in the ground state [ρ11(0) = 1] and |�0| = 95.

aperiodic self-oscillations, and dynamical chaos. The origin of
such a behavior is derived from the secondary field produced
by the SQDs, which depends on the current state of SQDs.
This can provide a strong enough positive feedback resulting
finally in instabilities. If the secondary field is neglected, all
above-mentioned effects disappear.

Below, we discuss the underlying nonlinearities giving rise
to the exotic SQD supercrystal optical response. To this end,
let us consider Eqs. (5d) and (5e). Substituting into Eqs. (5d)
and (5e) the expression (5g) for the field �, one gets

ρ̇21 = −[
i(�21 − �LZ21) + 1

2γ − γRZ21
]
ρ21

+μ(γR + i�L )Z21ρ32 + μ(γR − i�L )(ρ∗
21 + μρ∗

32)ρ31

+�0(Z21 + μρ31), (9a)

ρ̇32 = −[
i(�32 − μ2�LZ32) + 1

2 (1 + μ2)γ − μ2γRZ32
]
ρ32

+μ(γR + i�L )Z32ρ21 − (γR − i�L )(ρ∗
21 + μρ∗

32)ρ31

+�0(μZ32 − ρ31). (9b)

As is seen, these equations contain a number of nonlinear
terms, however, a special attention should be paid to the first
terms in the right-hand sides, which describe oscillations and
decay of the off-diagonal density matrix elements ρ21 and
ρ32. Note that the secondary field results in an additional
frequency detuning �LZ21 and damping γRZ21 for ρ21 and,
respectively, μ2�LZ32 and μ2γRZ32 for ρ32. These additional
quantities depend on the corresponding population differences
Z21 and Z32. Thus, the following renormalizations are evident:
�21 �→ �21 − �LZ21 and γ /2 �→ γ /2 − γRZ21 for the transi-
tion 2 ↔ 1, and �32 �→ �32 − μ2�LZ32 and (1 + μ2)γ /2 �→
(1 + μ2)γ /2 − μ2γRZ21 for the transition 3 ↔ 2.

Before the external field is switched on and the system
is in the ground state, the population difference Z21 = −1,
whereas Z32 = 0, because the states |2〉 and |3〉 are not pop-
ulated. Accordingly, only the (1 ↔ 2) transition experiences
the above-mentioned renormalization, whereas the (2 ↔ 3)
transition does not. Thus, the initial values of the param-
eters of the 1 ↔ 2 transition detuning and decay rate are
�21 − |�L| ≈ −|�L| and γ /2 + γR ≈ γR, respectively (here
we took into account that |�L| � �21 and γR � γ /2). All
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FIG. 9. Optical hysteresis of the total field magnitude |�| cal-
culated by solving Eqs. (5a)–(5g) for the case of the one-photon
resonance (�21 = 0, �32 = −�B) for �B = 50. The external field
magnitude |�0| was slowly swept back and forth across the multival-
ued part of the steady-state curve from Fig. 3, which is also shown
for reference. The arrows indicate the sweep direction. All quantities
are given in units of γ .

other resonance detunings and decay rates keep their bare
values.

When the external field is switched on, the system starts to
evolve, reaching finally the strong excitation regime. Along-
side the dynamic shift �LZ21 is increasing whereas the shift
μ2�LZ32 is decreasing, which is driving the initially off-
resonance situation toward a better resonance condition for
both transitions. As a result, the redistribution of the level pop-
ulations and the competition between transitions come into
play creating necessary conditions for emerging instabilities
(see Ref. [63] for more details). The system manifests the

FIG. 10. Same as in Fig. 9, but for the case of the two-photon
resonance (�21 = −�32 = −�B/2) with �B = 50.

bistability and hysteresis because the values of parameters �L,
γR are far above the bistability threshold [64,65].

Finally, as far as parameters are concerned, we would
like to note that the model has so many of them that a
complete study of the whole parameter space is hardly fea-
sible. However, for particular systems, such as supercrystals
comprising semiconductor quantum dots, some parameters
are well known, in particular, the relaxation rates γ21 and
γ32 and the relationship between them, while the biexciton
binding energy �B can vary by a factor of about 4–5. To
demonstrate the possible impact of variations of the latter
parameter, we presented results for a range of values of �B

(see Figs. 3 and 4).
The parameters �L and γR (that are related to the secondary

field) were kept fixed throughout the study. They have been es-
timated on the basis of experimental data presented in Fig. 1.
In principle, both �L and γR vary if the lattice constant of the
supercrystal is different. We performed additional calculations
(not presented here) for the values of these parameters twice
as small as the ones used in this paper. As can be expected,
the results were quantitatively different but the system was
manifesting the same wide range of nontrivial dynamics. The
robustness of the dynamics is related to the fact that �L is the
largest parameter in the problem and it therefore determines
the optical response. Only when the value of �L becomes
comparable to that of �B, the system becomes stable and all
nontrivial dynamics scenarios disappear.

V. REFLECTANCE

In our analysis of the system’s nonlinear response, we
addressed the total field � acting on an emitter. Although
this field can be measured by near-field techniques, it is
less demanding to measure the reflected or transmitted fields.
These are determined by the far-zone part of � and are given
by the following expressions:

�refl = γR(ρ21 + μρ32), (10a)

�tr = �0 + γR(ρ21 + μρ32). (10b)

The reflectance R and transmittance T are then defined as

R =
∣∣∣∣�refl

�0

∣∣∣∣
2

, T =
∣∣∣∣�tr

�0

∣∣∣∣
2

. (11)

Let us first consider the linear regime of excitation and
restrict ourselves to analyzing the steady-state reflectance. In
this case, the major contribution to the secondary field comes
from ρ21 which is given by

ρ21 = − �0
1
2γ + γR + i(�21 + �L )

. (12)

Substituting Eq. (12) into (11), one obtains the following
approximate expression for the reflectance R:

R =
∣∣∣∣ γR

1
2γ + γR + i(�21 + �L )

∣∣∣∣
2

. (13)
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FIG. 11. The dependence of the steady-state reflectance R on
the external field magnitude |�0| calculated for different values of
the detuning �21 in the vicinity of the renormalized resonance,
�21 � −�L . The results are calculated for the biexciton binding
energy �B = 50, the values of �21 are given in the plot, herewith
�th

21 = 850 is the threshold detuning below which the reflectance
becomes bistable. Dashed parts of the curves are unstable branches
of the reflectance. All frequency-dimension quantities are given in
units of γ .

It follows from the latter expression that for the range of
relatively small detunings used so far in our calculations
(�21 < 100), the reflectance

R ≈
∣∣∣∣ γR

�L

∣∣∣∣
2

� 1

because |�L| � �21, γR. Remarkably, if the excitation fre-
quency is in the vicinity of the resonance renormalized by the
near field, i.e., |�21 + �L| � γR, the reflectance of the system
is close to unity, R ≈ 1. Thus, in this region of frequencies,
the SQD supercrystal operates as a perfect mirror. It has been
reported recently that an atomically thin mirror can be realized
based on a monolayer of MoSe2 [66,67]. SQD supercrystals
represent yet another class of nanoscopically thin reflectors.
The advantage of the latter, however, is that the properties of
the SQD-based mirror can be controlled by the geometry and
materials of the nanostructure.

Now, we turn to the nonlinear regime of reflectance in
the vicinity of the renormalized resonance �21 ≈ −�L. We
calculated the |�0| dependence of the reflectance R for a set
of detunings above the renormalized resonance �21 � −�L.
The results are presented in Fig. 11. The figure shows that
at the exact resonance (�21 = −�L = 1000), the reflectance
decreases monotonously as the external field magnitude |�0|
increases. This behavior is explained by the dependence of
the current detuning �′

21 = �21 − �LZ21 on the population
difference [see Eq. (9a)]: as the system is being excited, it
is driven away from the renormalized resonance and, conse-
quently, reflects less.

If the system is initially out of the renormalized resonance
(�21 � −�L), the low-field reflectance is relatively small
according to Eq. (13). As the system is being excited, it is

driven toward the resonance (�21 − �LZ21 → 0) and, at some
|�0|, manifests again almost unity reflectance (Fig. 11). Fur-
thermore, starting some critical value of �21, namely, �th

21 =
850 for the set of parameters used, the reflectance becomes
three valued within some window of external field amplitudes,
manifesting the optical bistability. The critical value �th

21 =
850 is in a good agreement with the theoretical estimate
made within the framework of an effective two-level model
�21 = −�L − √

3γR ≈ 827 [16]. A small deviation from the
calculated value is probably due to the third biexciton level, a
small admixture of which affects slightly the threshold value.

Finally, we note that the discussed reflectance properties
are almost independent on the biexciton binding energy �B, so
our results should apply to a wide range of SDQ supercrystals.

VI. SUMMARY

We conducted a theoretical study of the optical response of
a two-dimensional semiconductor quantum-dot supercrystal
subjected to a monochromatic quasiresonant excitation. A
constituent SQD was modeled as a three-level ladderlike sys-
tem with the ground, one-exciton, and biexciton states. The set
of parameters used in our study is typical for SQDs emitting
in the visible range, such as CdSe and CdSe/ZnSe. We took
into account the SQD dipole-dipole interaction within the
framework of the mean field approximation.

To address the stationary response of the system, we de-
veloped an exact linear parametric method of solving the non-
linear steady-state problem which has multivalued solutions
in all considered cases. Analyzing the Lyapunov exponents
at the stationary characteristics, we found stable and unstable
branches of the steady-state solutions. We provided a physical
insight into the nature of the instabilities which have their
origin in the competition between the ground-to-one exciton
and one exciton-to-biexciton transitions, driven by the near-
field SQD-SQD interactions. The stability analysis provided
us with a solid starting point for further study of the system
dynamics, which we first addressed qualitatively. To this end,
we put forward a method to calculate the bifurcation diagram
of the system which gives a general overview of possible
system dynamics. It turned out that the 2D supercrystal op-
tical response can manifest very different dynamics under a
continuous wave (CW) excitation: periodic or aperiodic self-
oscillations and probably chaotic behavior. The frequency of
self-oscillations depends on the external field magnitude and,
for the set of parameters used, falls in the THz region.

Our results suggest various applications of the 2D SQD
supercrystals, such as an all-optical bistable switch, an ul-
trathin tunable bistable mirror, a tunable generator of trains
of THz pulses (in self-oscillation regime), and as a noise
generator (in chaotic regime). The intrinsic sensitivity of the
optical response to the initial conditions in the chaotic regime
could be of interest for information encryption [68]. All these
findings make the considered system a promising candidate
for practical applications in all-optical information processing
and computing.
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FIG. 12. The lateral size dependence of the collective radiation
rate γR (upper plot), the near-zone dipole-dipole interaction of SQDs,
�L (middle plot), and the ratio γR/|�L| (lower plot) calculated from
Eqs. (6a) and (6b) for different values of k0a (indicated in the plots).
Thin horizontal lines are guides for the eye showing the asymptotic
values of the oscillating functions.
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APPENDIX A: NUMERICAL EVALUATION OF γR AND �L

Here, we evaluate numerically γR and �L, given by
Eqs. (6a) and (6b), for a large square system (Nxa, Nya � λ̄,
Nx = Ny = Nl ). In Fig. 12, we plotted γR, �L, and the ratio
γR/|�L| against the system lateral size Nl for different values
of k0a. As can be seen from the figure, these quantities
manifest decaying oscillations around their asymptotic values,
which reflect slow convergence of the sums that contain terms
proportional to |n|−1. Comparing these data with the expected
(k0a)−2 scaling of γR and (k0a)−3 scaling of �L [which
follow from Eqs. (6a) and (6b)] we obtained the approximate
numerical formulas (8a) and (8b) which describe excellently
all numerical data presented in Fig. 12.

APPENDIX B: SOLUTION OF THE
STEADY-STATE PROBLEM

The steady-state problem is governed by the following set
of equations:

γ ρ22 + �ρ∗
21 + �∗ρ21 = 0, (B1a)

μγρ33 + �ρ∗
32 + �∗ρ32 = 0, (B1b)

�(ρ22 − ρ11) −
(

i�21 + γ

2

)
ρ21 + μ�∗ρ31 = 0, (B1c)

μ�(ρ33 − ρ22) −
[

i�32 + γ

2
(1 + μ2)

]
ρ32 − �∗ρ31 = 0,

(B1d)

−
(

i�31 + γ

2
μ2

)
ρ31 − μ�ρ21 + �ρ32 = 0, (B1e)

ρ11 + ρ22 + ρ33 = 1. (B1f)

Thus, originally the system of nine nonlinear coupled equa-
tions for the density matrix elements should be solved to
find the dependence of these elements and the total field
� on the external field �0. The two fields are related by
Eq. (5g) which we rewrite for convenience in the following
form:

�0 = � − (γR + i�L )(ρ21 + μρ32). (B2)

Traditionally, one or another numerical method of direct so-
lution of the nonlinear system (B1a)–(B1f) is used. Below
we propose a much more efficient and essentially linear
parametric method to solve this nonlinear problem.

First, we note that Eqs. (B1a)–(B1f) and (B2) are invariant
under the following phase transformation:

ρ21 �→ ρ21 ei ϕ, ρ32 �→ ρ32 ei ϕ, ρ31 �→ ρ31 e2i ϕ, (B3a)

� �→ � ei ϕ, �0 �→ �0 ei ϕ, (B3b)

where ϕ is an arbitrary phase. Second, the system of
Eqs. (B1a)–(B1f) is linear in the density matrix elements
if � is considered to be a parameter. Furthermore, Eq. (B3b)
suggests that instead of (naturally) treating the external field
amplitude �0 as a real quantity, one can consider the total
field amplitude � to be real (the phase of � can be chosen
arbitrarily; the zero phase is just the most conventional
choice).

Importantly, the system of Eqs. (B1a)–(B1f), as being a
system of linear equations, can be solved analytically and the
unique parametric dependence of all density matrix elements
on � can be obtained. Then, Eq. (B2) provides the unique
parametric dependence of the external field �0 on the real
total field �. The sought dependencies of the density matrix
elements on the external field �0 can then be obtained in
the parametric way, varying the real � within an appropriate
interval of values. Finally, to recover the “traditional”
case, in which the external field amplitude �0 is real, the
transformations (B3) can be used with the phase ϕ = −arg �0

given by

ϕ = −arg[ � − (γR + i�L )(ρ21 + μρ32) ]. (B4)

To conclude, we note that our method of solving the
nonlinear mean field steady-state equations for the density
matrix elements is quite general and, therefore, can probably
be applied to a broad class of similar systems.
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