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Dissipative Kerr soliton frequency combs generated in high-Q microresonators may unlock novel perspectives
in a variety of applications and crucially rely on quantitative models for systematic device design. Here, we
present a global bifurcation study of the Lugiato-Lefever equation which describes Kerr comb formation.
Our study allows systematic investigation of stationary comb states over a wide range of technically relevant
parameters. Quantifying key performance parameters of bright and dark-soliton combs, our findings may serve
as a design guideline for Kerr comb generators.
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I. INTRODUCTION AND MAIN RESULTS

Kerr frequency combs have the potential to revolutionize a
variety of applications such as high-speed data transmission
[1–3], high-precision optical ranging [4,5] and spectroscopy,
[6] as well as highly accurate optical frequency synthesis [7].
Kerr frequency combs stand out due to their high optical
bandwidth that may exceed an octave of frequencies, narrow
linewidths down to 1 kHz, and large line spacings of tens
of GHz [8–10]. Moreover, Kerr comb generators feature a
small footprint and are amenable to efficient wafer-level mass
production, thereby paving the path to large-scale industrial
deployment. On a physical level, Kerr comb generators rely
on third-order nonlinear interaction in high-Q microresonators
that are pumped by a continuous-wave (CW) laser [11]. Under
appropriate pump conditions, cascaded degenerate and non-
degenerate four-wave mixing can lead to a soliton waveform
that circulates in the cavity, balancing self-phase modulation
and dispersion, as well as cavity loss and parametric gain
[12]. These dissipative Kerr soliton combs consist of strictly
equidistant phase-locked optical tones and stand out due to
smooth spectral envelopes and extraordinary robustness with
respect to variations of the pump conditions.

Mathematically, Kerr frequency comb generators are rep-
resented by nonlinear systems with rather complex dynamics.
Systematic design and theory-guided improvement of Kerr
comb sources therefore require reliable mathematical models
that cover practically relevant parameter spaces and that com-
bine intuitive qualitative understanding with quantitatively
correct predictions of the behavior of the nonlinear system.
Kerr comb dynamics are described by the Lugiato-Lefever
equation (LLE), a damped, driven and detuned nonlinear
Schrödinger equation [13–15]. The LLE has been extensively
studied, using, e.g., numerical simulations of the temporal
comb formation dynamics, which have reached remarkable
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accuracy in predicting and explaining experimental results
[16,17]. However, time-domain integration of the LLE only
allows to access specific comb states that strongly depend on
the individual device parameters as well as on the complex
interplay of the initial conditions and the time-dependent
tuning of the pump. Specifically, time-integration techniques
do not permit us to globally study the variety of different
stationary Kerr comb states that can be accessed by exploiting
the full range of technically accessible device and operation
parameters. This gap can be closed by bifurcation analysis,
which allows us to investigate the structure of stationary
solutions and to obtain qualitative as well as quantitative
insights. So far, stationary states of the LLE have been mainly
investigated by local bifurcation analysis [14,15,18–24], fo-
cusing on states in the vicinity of the trivial LLE solution
that consists of a single CW tone at the pumped resonance.
Global aspects, in particular, concerning the snaking behav-
ior of solution branches are discussed in Refs. [15,19,20]
and, recently, a rigorous stability analysis of stationary states
closing the gap between linearized stability and nonlinear
stability was achieved in Ref. [25]. These methods revealed
a large variety of comb states, and were partially extended
via numerical continuation methods to regions further away
from the trivial state where solitons occur. However, a global
study that identifies pronounced soliton states and favorable
operation regimes across the full range of technical accessible
device and operation parameters has not been presented so far.

In this paper, we present a global bifurcation study of
the LLE, covering a large space of technically accessible
parameters. Our analysis comprises both bright-soliton (BS)
states in resonators with anomalous group-velocity dispersion
(GVD) [12] as well as dark-soliton (DS) states that form in
the presence of normal GVD [26]. For both types of combs,
we classify branches associated with single and multisoliton
states and characterize single-soliton states by their optical
bandwidth as well as by the pump-to-comb power transfer
efficiency. Our bifurcation analysis hence allows determining
and systematically optimizing the performance of Kerr comb
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generators in integrated photonic systems, which is of signifi-
cant importance for industrial adoption of these devices.

This paper is organized as follows: In Sec. II, we introduce
the LLE and derive sufficient conditions for bifurcations from
the trivial state. In Sec. III, we identify bifurcation branches
leading to single-soliton states and investigate the behavior
of the soliton and its characteristics along these branches.
Section IV is dedicated to a quantitative characterization of
single-soliton frequency combs using the bandwidth and the
power conversion efficiency as performance metrics. Mathe-
matical details and derivations can be found in Appendices
A–E.

II. BIFURCATION ANALYSIS FOR THE
LUGIATO-LEFEVER EQUATION

We start our our analysis from the LLE,

i
∂a

∂t
= −da′′ − (i − ζ )a − |a|2a + i f , (1)

and its stationary version,

−da′′ − (i − ζ )a − |a|2a + i f = 0. (2)

Here, a(t, x) represents the optical intracavity field as a func-
tion of normalized time t and angular position x ∈ [0, 2π ]
within the cavity. Hence a is 2π -periodic with respect to x.
Moreover, d is the GVD parameter, and ζ the detuning of the
input pump laser as a free real-valued parameter. The forcing
f corresponds to the amplitude of the optical driving field.
Relations that connect the normalized quantities d, ζ , f to
their physical counterparts can be found in Appendix D. In
the following, we consider 2π -periodic solutions a of Eq. (2),
which feature even symmetry about x = π and therefore fulfill
the Neumann boundary conditions:

a′(0) = a′(π ) = 0. (3)

Thus, from now on we restrict our attention to functions
a : [0, 2π ] → C, which satisfy Eq. (2) on [0, π ] together with
Eq. (3) and are evenly reflected around x = π . In Fourier
modes, the solution is represented as a(x) = ∑

k∈Z âkeikx with
â−k = âk . The intracavity power of the field is given by the
square of the L2-norm ‖a‖2

2 := ∑
k∈Z |âk|2. There are trivial

solutions a0 of Eqs. (2) and (3) which are complex constants.
Let us assume that the trivial solution a0 can be parametrized
(locally) as a0 = a0(ζ )1. As an example, the curve (ζ , a0(ζ ))
of constant solutions is shown in black for f = 2 in Fig. 1(a)
in the case of anomalous dispersion (d = 0.1) and in Fig. 1(d)
in the case of normal dispersion (d = −0.1). For each ζ , the
squared L2-norm of a0(ζ ) is plotted.2 Note that three different
constant solutions exist for certain values of ζ . Nontrivial
solutions associated with frequency combs may arise from
the curve of trivial solutions at bifurcation points, which can

1This assumption is for simplicity of the presentation. It fails only
at the turning points of the trivial curve, which does not lead to
any undesirable effect. Other parametrizations ζ0 = ζ0(t ) = f 2(1 −
t2) + t√

1−t2
, a0 = a0(t ) = f (1 − t2) − i f t

√
1 − t2 with t ∈ (−1, 1)

are also possible, cf. Ref. [21].
2In all figures, units on axes are dimensionless.

be defined in the simplest form applicable for our purposes as
follows: A point P = (ζ0, a0(ζ0)) ∈ R× C on the trivial curve
is called a bifurcation point for Eqs. (2) and (3) if there exists a
second curve (ζs, as) of solutions of Eqs. (2) and (3), which is
parameterized by s in some interval and crosses transversally
the trivial curve at P.

The structure of the solution set near (ζ0, a0(ζ0)) depends
on the properties of the linearized operator L, defined by

Lφ := −dφ′′ − (i − ζ0)φ − 2|a0|2φ − a2
0φ̄, (4a)

φ′(0) = φ′(π ) = 0, (4b)

where we write a0 instead of a0(ζ0). The spectrum of L
consists of countably many complex eigenvalues whose real
parts tend to +∞ in the case d > 0 and to −∞ in the case
d < 0. This can be shown via Fourier series expansion as in
Ref. [21, Proposition 4.3]. Because of the implicit function
theorem, cf. Ref. [27, Theorem I.1.1], nontrivial solutions can
only bifurcate from the trivial branch at (ζ0, a0(ζ0)) if the
kernel Ker L = {φ : Lφ = 0, φ′(0) = φ′(π ) = 0} is at least
one-dimensional. This is the case provided that there is an
integer k ∈ N such that

(ζ0 + dk2)2 − 4|a0(ζ0)|2(ζ0 + dk2) + 1 + 3|a0(ζ0)|4 = 0.

(5)

Solving Eq. (5) yields

k1,2 :=
√

2|a0(ζ0)|2 − ζ0 ±
√

|a0(ζ0)|4 − 1

d
. (6)

For details on the derivation of Eqs. (5) and (6), see Ap-
pendix A. The wave number k1,2 obtained by evaluating the
expression on the right side of Eq. (6) defines the angular
periodicity 2π/k1,2, after which the nontrivial comb state
in the vicinity of the bifurcation point repeats itself, i.e.,
a(x) = a(x + 2π/k1,2). Equations (5) and (6) naturally occur
in bifurcation studies of Eq. (2). In Refs. [14,15,19,24], for
instance, bifurcations are considered from the point of view of
spatial dynamics both for normal and anomalous dispersion,
and parameter regimes are determined where Turing patterns
as well as 1-soliton states bifurcate from trivial solutions. In
Ref. [20], a similar approach is taken to study bifurcation of
DSs from trivial solutions in the normal-dispersion regime.
In most of these works, local bifurcations from the trivial
solution family are determined analytically and a numerical
global bifurcation analysis is performed for periodic solutions
(cf. Refs. [15,19,20,24]). Typically, the forcing parameter f
is taken as the bifurcation parameter. In contrast, we study
global bifurcations of 2π -periodic solutions with respect to
the detuning ζ , whose physically accessible parameter space
is usually larger than the parameter space for f . Our central
goal is the localization of the most pronounced 1-solitons in
the global bifurcation picture. With the help of Eq. (6), we
can formulate the following bifurcation result, which explains
under what conditions bifurcations from the line of trivial
solutions occur:

For a point P = (ζ0, a0(ζ0)) on the curve of trivial solutions,
the following is true:
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FIG. 1. Bifurcation maps and nontrivial comb states for bright solitons in anomalous-dispersion (d > 0, top) and dark solitons in normal-
dispersion microresonators (d < 0, bottom). Quantities on axes are dimensionless. (a) Bifurcation map of the LLE for f = 2 and d = 0.1,
indicating the normalized intracavity power ||a||22 vs. the normalized detuning ζ . The constant solution is indicated in black, the single soliton
state bifurcation branch (m = 1) in red, while blue corresponds to other bifurcation branches of multisoliton states with m = 2, . . . , 8 pulses
circulating in the cavity. Circles indicate bifurcation points. (b) Spatial power distribution as a function of normalized intracavity position x of
single-soliton states corresponding to points A, B, and to the turning point C indicated in (a). (c) Spectral power distribution of single-soliton
states corresponding to points A, B, and to the turning point C indicated in (a). Note that for illustrative purposes, a relatively low forcing
f = 2 was chosen, resulting in a quick drop of the power of spectral modes further away from the pump. Here the bifurcation-and-continuation
method is sufficiently precise to correctly predict spectral components which are more than 150 dB below the pump, hence safely covering
technical relevant power ranges. (d) Bifurcation map of the LLE for f = 2 and d = −0.1, indicating the normalized intracavity power ||a||22
vs the normalized detuning ζ . Black denotes again the constant solution, red the single-soliton state bifurcation branch, and blue corresponds
to other bifurcation branches. Here, circles also mark bifurcation points. (e) Spatial power distribution as a function of normalized intracavity
position x of single-soliton states corresponding to points D, E, and to the turning point F indicated in (d). (f) Spectral power distribution of
single-soliton states corresponding to points D, E, and to the turning point F indicated in (d).

(i) If exactly one of the two numbers k1,2 from Eq. (6) is an
integer and if the transversality condition

2|a0(ζ0)|4(|a0(ζ0)|2 − ζ0)

∓(1 + ζ 2
0 − |a0(ζ0)|4)

√
|a0(ζ0)|4 − 1 	= 0 (7)

holds with − if k1 ∈ N and + if k2 ∈ N, then P is a bifurcation
point for Eqs. (2) and (3).

(ii) If neither k1 nor k2 is an integer, then P is not a
bifurcation point for Eqs. (2) and (3), and near P only trivial
solutions of Eqs. (2) and (3) exist.

In the remaining cases, where either the condition from
Eq. (7) fails or both k1 and k2 are integers, no statement can
be made. Let us add that Eq. (7) is in general not implied by
Eq. (6) and therefore has to be checked separately. The above
result mainly goes back to Theorem 4 in [21]. Compared
to Ref. [21], its present formulation as well as its proof
allow substantial simplifications as we will show in Appendix
B. Computations reveal that our bifurcation points on the
trivial solution family are either of center or of saddle center
type in the language of spatial dynamics as used, e.g., in
Ref. [20, Table 1]. To see this, notice that for the bifurcation

of periodic solutions from a constant solution y0 of y′ =
F (y), y = (Re a, Im a, Re a′, Im a′) at least one pair of purely
imaginary eigenvalues of F ′(y0) is necessary. The eigenvalues
λ of F ′(y0) solve Eq. (5) with k replaced by ±iλ, and the
solutions eλx(v1, v2, v3, v4) of the linearized spatial dynamics
system correspond to solutions cos(kx)(v1 + iv2) in the kernel
of L as defined in Eqs. (4).

For the cases f = 2 and d = ±0.1, we numerically com-
puted the bifurcation points determined by Eq. (5). We also
checked, for all bifurcation points, which of the numbers
k1,2 in Eq. (6) is an integer, and whether the transversality
condition from Eq. (7) holds, cf. Table I. The computed bi-
furcation points on the trivial branch are marked by circles in
Figs. 1(a) and 1(d) for d = 0.1 and d = −0.1, respectively. In
case (i) of the above result, we may apply Rabinowitz’s global
bifurcation theorem from Ref. [28]. As a result, we obtain that
a branch bifurcating from the trivial curve at (ζ0, a0(ζ0)) either
returns to the trivial curve at some other bifurcation point or
joins another branch of nontrivial solutions, since unbounded
branches are excluded due to Theorems 1 and 2 in Ref. [21].

In Fig. 1(a), a complete picture of all branches bifurcating
from the trivial branch is shown for anomalous dispersion
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TABLE I. Bifurcation points on the trivial branch for anomalous
dispersion d = 0.1, f = 2. The coordinates (ζ0, a0(ζ0 )) shown in the
first two columns are determined so at least one of the values k1,2

(third and fourth columns) from Eq. (6) is an integer. The integer
value of either k1 or k2 determines the periodicity of the field in
the vicinity of the corresponding bifurcation point. The last column
lists the values obtained from evaluating the left side of Eq. (7) to
determine whether the transversality condition is fulfilled.

ζ0 a0(ζ0 ) k1 k2 Transv.

−0.6770 0.51 + 0.87i 5.44 5 3.67
−0.1117 0.66 + 0.94i 6 4.35 5.56
0.3325 0.79 + 0.98i 6.35 4 4.49
1.1508 1.05 + 1.00i 7 3.47 12.26
1.9646 1.34 + 0.94i 7.65 3 4.44
2.4179 1.50 + 0.87i 8 2.74 16.42
3.4759 1.87 + 0.49i 8.72 2 4.12
4.0242 2.00 − 0.05i 8.85 1 3.85
3.8603 1.73 − 0.68i 8 1.56i −22.26
3.4893 1.43 + 0.90i 7 2.13i −23.74
3.1793 1.17 − 0.99i 6 2.49i −21.14
2.9576 0.96 − 1.00i 5 2.76i −17.57
2.8218 0.80 − 0.98i 4 2.96i −14.19
2.7541 0.68 − 0.95i 3 3.09i −11.41
2.7293 0.61 − 0.92i 2 3.14i −9.32
2.7239 0.57 − 0.90i 1 3.15i −8.00

with d = 0.1. For clarity of the figures, we did not include
any secondary bifurcation branches, i.e., branches not directly
coming off the trivial branch. A discussion of secondary
bifurcation points is given in Appendix E. The analytical
and numerical description of secondary bifurcations coming
with the effect of period-doubling, -tripling etc. is provided
in Ref. [29]. Let us mention that this phenomenon was dis-
covered in earlier bifurcation analyses, cf. Refs. [24, Fig. 5]
and [15, Fig. 10] for BSs and [20, Fig. 12] for DSs. We
recall that in these studies the detuning was fixed and the
forcing parameter was considered as a bifurcation parameter.
The bifurcation branches in Fig. 1 were computed by the
software pde2path (cf. Refs. [30,31]) which is designed to
numerically treat continuation and bifurcation of PDE sys-
tems. Given a starting point on the trivial branch together with
a tangent direction, pde2path starts a continuation algorithm
to compute the trivial branch. Whenever a simple eigenvalue
of the linearization crosses zero, a bifurcation point is detected
and the bifurcating branch can be followed.

For the example given in Fig. 1(a), all calculated bi-
furcation points in Table I were reproduced by pde2path.
Bifurcation branches determined by pde2path are shown in
Fig. 1(a) as colored lines. Here, the single-soliton branch
(m = 1) is highlighted in red. Blue branches are related to
higher-order soliton frequency combs (m = 2, . . . , 8). Note
that the bifurcation branches seem to stop at the points where
a maximal value of ζ is reached. But, in fact, these points
are turning points, and each branch continues in opposite
directions on nearly the same path. A finer resolution of the
turning of the branches reveals a snaking behavior shown
in Fig. 4(b) in Appendix E. In Fig. 1(d), the same analysis

is performed for normal dispersion (d = −0.1). The single-
dark-soliton branch is again marked in red, higher-order soli-
ton branches are marked in blue. Note that pde2path does
not only generate the bifurcation map, but also allows us to
calculate the stationary solutions of the LLE along the various
branches.

Our choice of resonator length equals 2π in contrast to 100
in Ref. [24] and 160 in Refs. [15,20]. Rescaling the solutions
from larger periodicities to 2π changes the dispersion from
|d| = 1 in Refs. [15,20,24] to values of |d| ≈ 10−3, which
is much smaller than our choice of |d| = 0.1. Notice that
smaller dispersion parameters |d| lead to a larger number of
bifurcation points, cf. Ref. [21, Theorems 1.4 and 1.5], so it
is to be expected that the diagrams in Refs. [15,20,24] show
more bifurcation branches than shown here. Our choice of
f = 2 is for illustrative purposes, so global features in Fig. 1
can be visualized more easily.

Complementing Fig. 1, we give further information on the
connectedness of the branches as well as stability properties of
solutions including those with multiple peaks in Appendix E.
In the following, we will study the properties of the 1-solitons.

III. SOLITONS ALONG BIFURCATING BRANCHES

For a global study, we use pde2path to explore a much
more extensive parameter space aiming at the detection of
1-soliton states on bifurcating branches. Based on a large
number of numerical experiments, we developed heuristics
that allow us to identify branches with single-soliton states
and to find the solitons with the strongest spatial localization.
Let us number the bifurcation points and bifurcating branches
along (ζ , a0(ζ )), starting from the left end of the trivial
branch.

(i) For anomalous dispersion (d > 0), bright 1-solitons
occur on the last bifurcating branch. The most localized
1-solitons occur near the first turning point of this branch
(locally maximizing ζ ). In Fig. 1(a), the corresponding branch
is labeled m = 1. It contains the solutions A,B,C that are illus-
trated with regard to the spatial and spectral power distribution
in Figs. 1(b) and 1(c), respectively. The first turning point is
indicated by C.

(ii) For normal dispersion (d < 0), dark 1-solitons occur
on the first bifurcating branch. The most localized 1-solitons
occur near the second turning point of this branch (locally
maximizing ζ ). In Fig. 1(d), the corresponding branch con-
tains the solutions D,E,F that are illustrated with regard to the
spatial and spectral power distribution in Figs. 1(e) and 1(f),
respectively. The second turning point is indicated by F.

These heuristics are illustrated in Fig. 2, where the full
width at half maximum (FWHMa) in case of BSs as well
as the full width at half minimum (FWHMi) in the case of
DSs are plotted for the spatial field distribution along the
bifurcating branch starting from the initial bifurcation point.
Note that the bright 1-soliton at point C in Fig. 1(a) has
slightly smaller FWHMa = 0.3330 than the bright 1-soliton
at point B (FWHMa = 0.3393). Both for normal and anoma-
lous dispersion, the common feature of the most localized
1-solitons is their occurrence at maximal detuning values
within all turning points of the bifurcating branch. These
heuristics are illustrated in Fig. 1. For different points A, B,
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FIG. 2. Full width at half maximum (FWHMa) of bright solitons
along the bifurcating branch for anomalous dispersion (red, d = 0.1)
and full width at half minimum (FWHMi) of dark solitons for
normal dispersion (blue, d = −0.1) for f = 2. Horizontal axis shows
normalized arc length along bifurcation branches. Quantities on both
axes are dimensionless.

C along the bright-single-soliton branch and D, E, F along
the dark-single-soliton branch, respectively, comb states are
depicted in the spatial and frequency domain in Figs. 1(b),
1(c), 1(e), and 1(f). As expected, the comb states with the
smallest FWHMa/i identified in points C and F by using the
aforementioned heuristics show the strongest localization in
the spatial domain. Furthermore, we can see that in the case
of anomalous dispersion, there is no other state on the branch
m = 1 for the same value of ζ . However, in the case of normal
dispersion, we find another DS state with equal detuning
marked by point D in Fig. 1(d), cf. Ref. [14]. Yet point F in
Fig. 1(d) shows a stronger spatial localization, cf. Fig. 2, and
has a broader frequency comb than D.

In this example, the soliton character of the solutions, i.e.,
their strong localization in the spatial domain at the turning
point is visible but not yet very pronounced due to the mod-
erate value of f . With increasing f , the soliton localization as
well as the comb power and comb bandwidth will be much
enhanced. At the same time, the graphs of the bifurcation
branches will be less illustrative due to a steeply increasing
number and density of bifurcation points. Therefore, f = 2 is
chosen merely for illustrative reasons, and much larger ranges
of f are covered in Sec. IV.

IV. QUANTITATIVE CHARACTERIZATION OF
SOLITON FREQUENCY COMBS

Using the heuristics from the previous section, we are
able to identify single-soliton states with the strongest spatial
localization for any fixed forcing both in the normal as well
as anomalous-dispersion regime. Based on this approach,
we now characterize these comb states a(x) = ∑

k∈Z âkeikx

by their comb bandwidth 2k� and their power conversion
efficiency (PCE) η. The comb bandwidth is quantified by
the 3dB point, i.e., by the minimal integer k� that fulfills
|âk� |2 � 1

2 |â1|2. Note that the 3dB comb bandwidth is defined
with respect to the power |â1|2 of the mode directly adjacent
to the pumped mode rather than the power |â0|2 of the

pumped mode itself, which is usually much stronger than all
other modes of the comb. The PCE is the ratio between the
intracavity comb power

PFC =
∑

k∈Z\{0}
|âk|2 (8)

and the pump power f 2. Note that the intracavity comb power
does not contain the zero mode, since |â0|2 mostly stems
from the pump and is therefore nonzero even if no comb is
formed in the microresonator. For BSs, under the assumption
of small damping and small forcing, approximation formulas
for the comb bandwidth as well as the PCE exist, cf.
Refs. [12,32–35]. Assuming a detuning set to the maximum
value that permits a single soliton ζBS,max = π2 f 2/8 [12,33],
they read as follows:

2k�
BS,max ≈

√
2 ln(1 +

√
2)

f√
d

, (9a)

ηBS,max ≈ 1

f

√
d

2
. (9b)

More details on these equations can be found in
Appendix C. Expressions for the approximation of DSs re-
sembling a flipped sech function on top of a cw background
are given in Ref. [20]; compare the green curve in Fig. 1(e).
They are valid near the bifurcation point and are obtained
using multiple scale asymptotics. As mentioned before, these
kind of solitons, indicated in Fig. 1(d) by point D, is of
less interest due to its weaker localization, reduced comb
bandwidth, and power compared to the DS at point F. For DSs
of the latter type, no formula for the comb bandwidth or PCE
is available, to the best of our knowledge.

For dispersion parameters d = ±0.1,±0.15,±0.2,±0.25
and f > 1, we have carried out a large parameter study.
For d > 0, we computed the last bifurcation point and its
corresponding bifurcating branch. Based on the heuristics in
Sec. III, we stopped the computation as soon as we reached
the first turning point, i.e., point C in Fig. 1(a), where the
most localized BS is found. In the same manner, the strongest
localized DS in the case d < 0 is at the second turning point
of the first bifurcating branch, i.e., point F in Fig. 1(d). For
all of the above values of the dispersion d and the pump
power f , the corresponding solitons at the turning point were
investigated and their comb bandwidth as well as their PCE
were evaluated.

The results are plotted in Fig. 3. For BSs, gray lines
corresponding to the approximate expressions in Eqs. (9a)
and (9b) are also shown in Figs. 3(a) and 3(c). As mentioned
before, the validity of these approximations is guaranteed only
for small damping, small forcing, and large forcing/damping
ratio [34,35]. This explains the deviations from the curves
computed by numerical bifurcation and continuation which
occur for PCE in the small f regime [damping in Eq. (2) is
set to 1] in Fig. 3(c) and for comb bandwidth in the large
f regime in Fig. 3(a). The comb bandwidth increases with
an increasing f at the expense of a decreasing conversion
efficiency. Additionally, one can see that with d → 0 the
comb bandwidth increases whereas the PCE decreases.

For DSs, the overall dependence of the conversion effi-
ciency and comb bandwidth shows the same trends as for
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FIG. 3. Bandwidths 2k� and power conversion efficiencies (PCE) η for bright-soliton combs (a), (c) and dark-soliton combs (b), (d) as a
function of the forcing f and dispersion d = ±0.1, ±0.15, ±0.2, ±0.25. Quantities on axes are dimensionless. (a) Bandwidth of bright-soliton
combs obtained by numerical bifurcation and continuation (NBC, colored lines) along with an approximation according to Eq. (9a). The
linear approximation is in good agreement with the numerical results and deviates only for a strong forcing. A stronger dispersion leads to a
decreasing comb bandwidth. (b) Bandwidth of dark-soliton combs obtained by NBC. (c) PCE of bright-soliton states obtained by NBC (colored
lines) along with an approximation according to Eq. (9b) (gray lines). The approximation is in good agreement with the numerical results, but
deviates strongly for weak forcing. A weaker dispersion leads to a decreasing PCE. (d) PCE of dark-soliton states obtained by NBC. The PCE
decreases with an increasing forcing, but is overall higher as for bright solitons. Here, weaker dispersion also leads to a decreasing PCE.

BSs, see Figs. 3(b) and 3(d). In direct comparison, DSs
have a decreased bandwidth along with a higher conversion
efficiency for the same values of f and |d|. We attribute this
to the strong constant background of the DSs in the spatial
domain which enables a more efficient power transfer from
the CW pump to the soliton. However, the increased spatial
width of the DSs is also linked to a narrower frequency comb
in the spectral domain. We note that the comb bandwidth of
both BSs and DSs does not increase strictly linearly with an
increasing forcing. For DSs, the nonlinear behavior is more
pronounced.

For the physical properties of soliton frequency combs
in non-normalized units, the bandwidth 2k� as well as the
conversion efficiency η have to be converted. The physical
comb bandwidth 	ω/(2π ) is obtained by multiplying 2k�

with the free spectral range FSR of the resonator, i.e., the
inverse of the roundtrip time TR of the light inside:

	ω/(2π ) = FSR × 2k� = T −1
R × 2k�. (10)

To determine the physical conversion efficiency outside the
resonator ηout, the physical power coupling coefficient κ be-
tween the bus waveguide and the microresonator as well as the
physical roundtrip-power-loss coefficient α have to be taken

into consideration via the relation

ηout = 4κ2

(α + κ )2 η. (11)

For details on Eq. (11), see Appendix D. To achieve high
external power conversion efficiencies >30% as, e.g., in
Ref. [36], an overcoupled resonator with α � κ is preferable.
As visible in Figs. 3(c) and 3(d), a microresonator with normal
dispersion-enabling DS states will tend to improve the PCE.
It should be noted, however, that the generation of normal-
dispersion frequency combs generally requires an avoided
mode crossing for initial modulation instability [26], which
makes the design of the device more complex.

V. SUMMARY

We have performed a global bifurcation analysis of the
LLE and provided an overview on the structure of nontrivial
solutions. We find single-soliton frequency combs both in the
normal and anomalous-dispersion regime. Our investigation
covers a broad space of technically relevant device and oper-
ation parameters. It allows us to identify the broadest soliton
combs and to benchmark them with respect to bandwidth and
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pump-to-comb power conversion efficiency. Our findings are
in good agreement with simplified analytic models. Compar-
ing the results for BSs and DSs, we find that DSs outperform
BSs significantly in terms of power conversion efficiency at
the expense of a reduced bandwidth.

The bifurcation and continuation method allows us to
determine the performance parameters of single-soliton comb
states even for the cases where simplified analytic models are
not valid, e.g., for certain DSs. Our approach can be further
extended to include additional effects such as two-photon
absorption and to study their impact on the stationary comb
states, see Ref. [37]. The results of our investigation allow
for targeted design of soliton comb generators for specific
applications. In this context, the power conversion efficiency
and the comb bandwidth are key performance characteristics
that need to be optimized under technical restrictions such as
limited optical input power.
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APPENDIX A: IDENTIFICATION OF
BIFURCATION POINTS

Here we derive the expression that allows us to identify
bifurcation points on the curve of trivial solutions to the
stationary LLE with Neumann boundary conditions:

−da′′ − (i − ζ )a − |a|2a + i f = 0, (A1)

a′(0) = a′(π ) = 0. (A2)

The structure of the solutions a : [0, π ] → C near a point
(ζ0, a0(ζ0)) on the trivial curve depends on the properties of
the linearized operator L

Lφ : = −dφ′′ − (i − ζ0)φ − 2|a0|2φ − a2
0φ̄, (A3a)

φ′(0) = φ′(π ) = 0, (A3b)

where we write a0 instead of a0(ζ0), but we keep the no-
tation a0(ζ ) whenever we want to stress the ζ -dependence
of the trivial solution. We denote the kernel of the differ-
ential operator L by Ker L = {φ : Lφ = 0, φ′(0) = φ′(π ) = 0}
and its range by Rg L = {Lφ : φ′(0) = φ′(π ) = 0}, where the
functions φ : [0, π ] → C are twice continuously differen-
tiable. For such a function φ 	= 0, we denote by span{φ} =
{tφ : t ∈ R} the one-dimensional space of all real mul-
tiples of φ and by span{φ}⊥ = {ψ :

∫ π

0 φ(x)ψ̄ (x) dx = 0}
its L2-orthogonal complement. Let us abbreviate the non-
linearity in Eq. (A1) by g(a) = |a|2a − i f . The derivative
Dg(a)z := d

dt g(a + tz)|t=0 = 2|a|2z + a2z̄ for a, z ∈ C ap-
peared in Eq. (A3) in the definition of the linearized operator
L. It can also be written in the form

Dg(a)z=
(

3(Re a)2 + (Im a)2 2 Re a Im a

2 Re a Im a (Re a)2 + 3(Im a)2

)(
Re z

Im z

)
.

(A4)

Besides the linearized operator L given in Eq. (A3), we also
consider its adjoint operator,

L∗φ = −d
d2

dx2
φ + (i + ζ0)φ − Dg(a0(ζ0))φ, (A5a)

φ′(0) = φ′(π ) = 0, (A5b)

which will be used below. Next we will compute the
spaces Ker L, Ker L∗, which have the same finite dimen-
sion since both L and L∗ are Fredholm operators. Ow-
ing to the Neumann boundary conditions, any element φ ∈
Ker L can be expanded in the form φ(x) = ∑∞

l=0 αl cos(lx).
Since {cos(lx)}l∈N0 is a basis and L is linear the con-
dition that φ ∈ Ker L means that there is at least one
integer k ∈ N0 such that L(α cos(kx)) = (dk2 − i + ζ0 −
Dg(a0))α cos(kx) = 0 for some α = (Re α, Im α) ∈ C \ {0}.
Using Eq. (A4), it follows that dk2 must be an eigenvalue of
the matrix

N=
(−ζ0+3(Re a0)2+(Im a0)2 2 Re a0 Im a0−1

2 Re a0 Im a0+1 −ζ0+(Re a0)2+3(Im a0)2

)
,

(A6)

with eigenvector α. Nonzero elements in Ker L exist if
det(−dk2 Id +N ) = 0 and computing this determinant yields

(ζ0 + dk2)2 − 4|a0(ζ0)|2(ζ0 + dk2) + 1 + 3|a0(ζ0)|4 = 0.

(A7)

Solving for k leads to k1,2, given by the following equation:

k1,2 :=
√

2|a0(ζ0)|2 − ζ0 ±
√

|a0(ζ0)|4 − 1

d
. (A8)

Likewise, nonzero elements in Ker L∗ exist if
det(−dk̃2 Id +NT ) = 0 for some integer k̃ ∈ N0. Since
det(−dk̃2 Id +NT ) = det(−dk̃2 Id +N ), this leads to the
same formula Eq. (A8) for k̃1,2. In the remaining part of this
section, we write k as a shorthand for one of the two values
k1,2. Consequently, under the condition from Eq. (A7) there
is a vector α and a vector α∗ such that α cos(kx) ∈ Ker L and
α∗ cos(kx) ∈ Ker L∗.

Now we determine α and α∗ under the condition from
Eq. (A7). In the matrix N − dk2 Id, the first or the second line
could be zero (but not both). Therefore, the eigenvector α of
the matrix in Eq. (A6) is given in the form

α =
(

2 Re a0 Im a0 − 1

ζ + dk2 − 3(Re a0)2 − (Im a0)2

)
or

α =
(

ζ + dk2 − (Re a0)2 − 3(Im a0)2

2 Re a0 Im a0 + 1

)
, (A9)

such that (−dk2 Id +N )α = 0, and hence α cos(kx) belongs to
Ker L. The first choice can be taken if 2 Re a0 Im a0 − 1 	= 0
and the second choice if 2 Re a0 Im a0 + 1 	= 0. Likewise,

α∗ =
(

ζ + dk2 − (Re a0)2 − 3(Im a0)2

2 Re a0 Im a0 − 1

)
or

α∗ =
(

2 Re a0 Im a0 + 1

ζ + dk2 − 3(Re a0)2 − (Im a0)2

)
(A10)
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with α∗ = (Re α∗, Im α∗) ∈C satisfies (−dk2 Id +NT )α∗ = 0
and leads to an element α∗ cos(kx) ∈ Ker L∗. As before, the
first choice can be taken if 2 Re a0 Im a0 − 1 	= 0 and the
second choice if 2 Re a0 Im a0 + 1 	= 0.

We can exclude the case k1 = 0 or k2 = 0 in the bifurcation
condition from Eq. (A7) since it would only lead to bifurcation
of trivial solutions, and we are interested in nontrivial solu-
tions. The kernel of L will be one-dimensional provided that in
Eq. (A7) we have k1 ∈ N and k2 	∈ N or vice versa, and two-
dimensional if both k1, k2 ∈ N. If neither k1 or k2 are in N,
then Ker L = Ker L∗ = {0}, and the implicit function theorem
(cf. Ref. [27, Theorem I.1.1]) implies that solutions nearby the
point (ζ0, a0) are unique, and therefore trivial. Hence, (ζ0, a0)
cannot be a bifurcation point in this case, and therefore the
necessary bifurcation condition is that k1 ∈ N or k2 ∈ N. The
same condition, expressed in the form of Eq. (A7), is given in
Ref. [21, Proposition 10].

APPENDIX B: TRANSVERSALITY CONDITION

According to the Crandall-Rabinowitz theorem (cf. Refs.
[38, Theorem I.5.1] and [27]), two conditions are sufficient
for bifurcation. The first is that Ker L is one-dimensional, i.e.,
with k1, k2 from Eq. (A8), we need that k1 ∈ N, k2 	∈ N or vice
versa, and we write k for the one which is the integer. As we
will see, the second condition (the transversality condition) is
given by

2|a0(ζ0)|4(|a0(ζ0)|2 − ζ0)

∓ (1 + ζ 2
0 − |a0(ζ0)|4)

√
|a0(ζ0)|4 − 1 	= 0 (B1)

with − if k1 ∈ N and + if k2 ∈ N. To verify that Eq. (B1)
together with the one-dimensionality of the kernel is really
sufficient for bifurcation, we need to bring our problem into
the form used in Ref. [38]. Nontrivial solutions of Eqs. (A1)
and (A2) may be written as a(x) = a0(ζ ) + b(x) with b′(0) =
b′(π ) = 0. From Eqs. (A1) and (A2), we derive the equation
for the function b in the form

F (ζ , b) := −db′′ − (i − ζ )(a0(ζ ) + b) − g(a0(ζ ) + b) = 0,

(B2)

where F is defined on R × H with H given as the real Hilbert
space of twice almost everywhere differentiable functions
b : [0, π ] → C with b′(0) = b′(π ) = 0 and b, b′′ being square
integrable. Notice that F (ζ , 0) = 0 for all ζ , i.e., the curve of
trivial solutions (ζ , a0(ζ )) for Eqs. (A1) and (A2) has now
become the line of zero solutions (ζ , 0) for Eq. (B2). Let us
write D2

b,ζ F (ζ0, 0) for the mixed second derivative of F with
respect to b and ζ at the point (ζ0, 0). In our case, where F is
defined by Eq. (B2), we find for the mixed second derivative

D2
b,ζ F (ζ0, 0)φ = φ − D2g(a0)(φ, ȧ0)

= φ − 2ā0φȧ0 − 2a0φȧ0 − 2a0φ̄ȧ0, (B3)

where ȧ0 = d
dζ

a0(ζ )|ζ=ζ0 is the tangent direction along the
curve ζ �→ a0(ζ ) at the point ζ0. According to Ref. [38], the
transversality condition is expressed by

D2
b,ζ F (ζ0, 0)φ 	∈ Rg(DbF (ζ0, 0)),

with φ such that Ker(DbF (ζ0, 0)) = span{φ}. In our case,
DbF (ζ0, 0) = L, where L is the linearized operator given in
Eq. (A3). By the Fredholm alternative, cf. Ref. [39], Rg L =
(Ker L∗)⊥ = span{φ∗}⊥, where φ(x) = α cos(kx), φ∗(x) =
α∗ cos(kx) with α from Eqs. (A9) and α∗ from Eqs. (A10).
Here orthogonality u ⊥ v of two functions u, v ∈ H is
understood as vanishing of the inner product 〈u, v〉 =
Re

∫ π

0 u(x)v̄(x) dx. Hence, transversality is expressed as

〈
D2

b,ζ F (ζ0, 0)φ, φ∗〉 = Re
∫ π

0

(
D2

b,ζ F (ζ0, 0)φ
)
φ∗ dx 	= 0,

(B4)
and we will show next that this amounts to〈

D2
b,ζ F (ζ0, 0)φ, φ∗〉 = −π (2 Re a0 Im a0 ∓ 1)

3|a0|4 − 4|a0|2ζ0 + ζ 2
0 + 1

× (
(dk2 − ζ0)|a0|4

+ (
ζ 2

0 + 1
)
(2|a0|2 − dk2 − ζ0)

)
.

(B5)

To evaluate D2
b,ζ F (ζ0, 0)φ, we first need to determine the

tangent ȧ0 = d
dζ

a0(ζ )|ζ=ζ0 . Differentiating the equation (i −
ζ )a0(ζ ) + g(a0(ζ )) = 0 with respect to ζ and evaluating the
derivative at ζ0, we get

(Dg(a0) + i − ζ0)ȧ0 = a0.

Recalling that Dg(a0)z = 2|a0|2z + a2
0 z̄, we thus find

(2|a0|2 + i − ζ0)ȧ0 + a2
0ȧ0 = a0

and hence

ȧ0 = τa0 with τ = |a0|2 − ζ0 − i

3|a0|4 − 4|a0|2ζ0 + ζ 2
0 + 1

. (B6)

Inserting ȧ0 from Eq. (B6) into Eq. (B3), we deduce that the
transversality condition Eq. (B4) becomes〈

D2
b,ζ F (ζ0, 0)φ, φ∗〉
= π

2
Re

(
αα∗ − 4 Re τ |a0|2αα∗ − 2τa2

0ᾱα∗) 	= 0. (B7)

Depending on the alternatives in Eqs. (A9) and (A10) for the
actual form of α, α∗, we obtain

Re αα∗ = (2 Re a0 Im a0 ∓ 1)(2ζ0 + 2dk2 − 4|a0|2).

Likewise,
ᾱα∗ = (2 Re a0 Im a0 ∓ 1)(ζ0 + dk2 − (Re a0)2 − 3(Im a0)2) − (2 Re a0 Im a0 ∓ 1)(ζ0 + dk2 − 3(Re a0)2 − (Im a0)2)

− i
(
(2 Re a0 Im a0 ∓ 1)2 + (ζ0 + dk2 − 3(Re a0)2 − (Im a0)2)(ζ0 + dk2 − (Re a0)2 − 3(Im a0)2)︸ ︷︷ ︸

(A7)= 4(Re a0 )2 Im(a0 )2−1

)

= (2 Re a0 Im a0 ∓ 1)2ā2
0,
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where we have used the necessary bifurcation condition from
Eq. (A7). Taking the expressions for Re αα∗ and a2

0ᾱα∗ into
the transversality condition from Eq. (B7) finally leads to〈

D2
b,ζ F (ζ0, 0)φ, φ∗〉
= π

2
Re

(
αα∗ − 4 Re τ |a0|2αα∗ − 2τa2

0ᾱα∗)
= π

2
(2 Re a0 Im a0 ∓ 1)((2ζ0 + 2dk2 − 4|a0|2)

× (1 − 4 Re τ |a0|2) − 4 Re τ |a0|4) 	= 0.

Since the choices in Eqs. (A9) and (A10) were made so
the factor (2 Re a0 Im a0 ∓ 1) is nonzero, the nonvanishing of
the expression in brackets amounts to (after inserting Re τ =

|a0|2−ζ0

3|a0|4−4|a0|2ζ0+ζ 2
0 +1

)

(dk2 − ζ0)|a0|4 + (
ζ 2

0 + 1
)
(2|a0|2 − dk2 − ζ0) 	= 0.

We have therefore verified Eq. (B5), and using the definition
k1, k2 from Eq. (A8), we obtain the transversality condition in
its final form Eq. (B1), where only a0 and ζ0 appear.

APPENDIX C: APPROXIMATIONS FOR THE
BRIGHT-SOLITON POWER CONVERSION EFFICIENCY

ηBS,max AND COMB BANDWIDTH 2k�
BS,max

For BSs, a closed form approximation [12,32–35] of the
intracavity field is given by

a(x) ≈ �0 + �1(x) = �0 + Beiϕ0 sech

(
B√
2d

x

)
. (C1)

Here, �1(x) represents the field of a BS on top of a constant
background field �0, B ≈ √

2ζ defines the width and the
amplitude of the soliton, and ϕ0 = arccos (

√
8ζ

π f ) is the relative
phase of the soliton with respect to �0. For strong solitons,
the intracavity field will be dominated by the soliton itself,
such that a(x) ≈ �1(x). For a given forcing, the maximum
detuning can be derived by the condition that the argument
of the arccos function may not exceed 1, cf. supplementary
information in Ref. [12]. With maximum detuning ζmax =
π2 f 2

8 , ϕ0 = 0, we find that the intracavity field reads

a(x) ≈ π f

2
sech

(
π f

2
√

2d
x

)
. (C2)

Given this expression, the power conversion efficiency at the
maximum detuning for BSs can be computed by an integral in
the spatial domain:

ηBS,max =
1

2π

∫ π

−π

∣∣∣π f
2 sech

(
π f

2
√

2d
x
)∣∣∣2

dx

f 2

= 1

f

√
d

2
tanh

(
π f

2
√

2d
π

)
≈ 1

f

√
d

2
. (C3)

To determine the comb bandwidth, we calculate the Fourier
coefficients associated with the various comb lines. The
power spectrum is given by the magnitude square of these

coefficients:

|âk|2 =
∣∣∣∣ 1

2π

∫ π

−π

π f

2
sech

(
π f

2
√

2d
x

)
e−ikx dx

∣∣∣∣2

≈
∣∣∣∣ 1

2π

∫ ∞

−∞

π f

2
sech

(
π f

2
√

2d
x

)
e−ikx dx

∣∣∣∣2

= d

2
sech2

(√
2d

f
k

)
. (C4)

The (FWHMa) bandwidth xFWHM of the sech2 function is
given by the condition

sech2
(xFWHM

2

)
= 1

2
, (C5)

which leads to xFWHM = 2 ln (1 + √
2). This leads to the

FWHM bandwidth 2k�
BS,max,

2k�
BS,max = f√

2d
xFWHM =

√
2 ln(1 +

√
2)

f√
d

. (C6)

For a representation of the Eqs. (C3) and (C6) in physical, i.e.,
non-normalized units, see, e.g., Refs. [32,33].

APPENDIX D: PHYSICAL POWER CONVERSION
EFFICIENCY OUTSIDE OF THE MICRORESONATOR

In physical terms, the time-dependent LLE [40] is given by

TR
∂E (T, τ )

∂T
= √

κ
√

Pin +
(

− α

2
− κ

2
− iδ0 − i

β2

2
L

∂2

∂τ 2

+ iγ L|E (T, τ )|2
)

E (T, τ ). (D1)

Here, TR is the roundtrip time of light circulating in the res-
onator, E the electric field, T the physical time, τ the roundtrip
position inside the resonator, κ the power-coupling coefficient
of the bus waveguide and the microresonator, Pin the power
of the pump light, α the power roundtrip loss, β2 the second
order dispersion coefficient, L the circumference, and γ the
nonlinearity coefficient of the microresonator. The detuning
δ0 = (ωr − ωp)TR is defined by the difference between the
angular frequency of the pump laser ωp, the angular resonance
frequency ωr and the round-trip time.

The normalized field a(t, x) for x ∈ [0, 2π ) and the nor-
malized quantities ζ and d satisfy the time-dependent normal-
ized LLE,

∂a(t, x)

∂t
= f +

(
−1 − iζ + id

∂2

∂x2
+ i|a(t, x)|2

)
a(t, x),

and are related to the physical parameters E and Pin, γ , α, κ ,
δ0, TR, and β2 via

a(t, x) =
√

2γ L

α + κ
E (T, τ ), (D2)

t = α + κ

2

T

TR
, (D3)

x = 2π

TR
τ, (D4)
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f =
√

2γ L

α + κ

2
√

κ

α + κ

√
Pin, (D5)

ζ = 2δ0

α + κ
, (D6)

d = −4π2β2L

(α + κ )T 2
R

. (D7)

For the field E (T, τ ) = ∑
k∈Z Êk (T )eik2πτ/TR , the intracavity-

power is given by 1
TR

∫ TR

0 |E (T, τ )|2 dτ = ∑
k∈Z |Êk|2. The

power of the frequency comb is defined as power of
the intracavity-field excluding the pumped mode, Pp,FC =∑

k∈Z\{0} |Êk|2. The pumped mode is excluded since it will
have a nonzero value even if no frequency comb is formed.
The physical power conversion efficiency ηin inside the mi-
croresonator can then be expressed as

ηin = Pp,FC

Pin
=

∑
k∈Z\{0} |Êk|2

Pin
. (D8)

When the comb is coupled out of the microresonator, the
field amplitude is decreased by the square root of the power-
coupling coefficient κ . Therefore, the physical conversion
efficiency with respect to the comb power outside of the
resonator ηout is given by

ηout :=
∑

k∈Z\{0} |√κÊk|2
Pin

= κηin. (D9)

Given the relations from Eqs. (D2) and (D5), the normalized
power conversion efficiency η defined as the ratio between the
power of the normalized frequency comb

∑
k∈Z\{0} |âk|2 and

the normalized forcing power f 2 can be expressed by physical
quantities as follows:

η =
∑

k∈Z\{0} |âk|2
f 2

=
∑

k∈Z\{0}
∣∣√ 2γ L

α+κ
Êk

∣∣2

(√ 2γ L
α+κ

2
√

κ

α+κ

√
Pin

)2

= (α + κ )2

4κ
ηin = (α + κ )2

4κ2
ηout. (D10)

This is equivalent to Eq. (11) of the main paper.

APPENDIX E: BIFURCATION MAPS, STABILITY, AND
MULTI-PEAK SOLUTIONS

In this Appendix, we explain and illustrate details on the
global bifurcation maps of Figs. 1(a) and 1(d). In particular,
we comment on the topics of connectedness of branches,
secondary bifurcations, and transition between soliton classes,
the use of a different norm to display certain aspects of the
branches, and finally on the issue of stability.

1. Connectedness of branches, secondary bifurcations, and
transition between soliton classes

At bifurcation points, branches of solutions intersect.
Those bifurcation points that lie on the curve of constant
solutions are called primary bifurcation points and they were
described in Sec. II. Bifurcation points which are not ly-
ing on the curve of constant solutions are called secondary
bifurcation points and they occur whenever two curves of

nonconstant solutions join. In Figs. 4(a) (anomalous disper-
sion d = 0.1, forcing f = 2) and 5(a) (normal dispersion
d = −0.1, forcing f = 2), we show which of the bifurcation
curves are connected to each other by secondary bifurcations.
Curves connected to each other by secondary bifurcations are
plotted with the same color. Note that in a trivial sense all
curves are connected to the curve of constant solutions via
primary bifurcations—but these connections are not used for
our coloring. All bifurcation points in Figs. 4(a) and 5(a) are
marked as unfilled circles. The bifurcation points on the black
curve of constant solutions are primary bifurcation points.
Most secondary bifurcation points in Fig. 4(a) occur at turning
points with the exception of one secondary bifurcation point
that occurs on the blue curve near ζ = 0.8. In Fig. 5(a), three
secondary bifurcation points occur at ζ = 2.73 (cf. zoom),
ζ = 2.84, and ζ = 3.36.

Near secondary bifurcation points one can observe the
transition between solutions of a different number of peaks,
e.g., in the case of BSs in Fig. 4(b) a secondary bifurcation
occurs at the turning point C’. Taking the 1-solitons at points
A, C, B from Fig. 1(b) one can see their transition through
U, V, W in Fig. 4(d) into equally spaced 2-solitons shown at
Fig. 4(c) on the branch with A’, C’, B’. Following the branch
A’, C’, B’ further up, one finds another secondary bifurcation
at a turning point where one meets the branch of 4-solitons.
Similar observations can be made in the case of DSs. Fig. 5(a)
and 5(b) show a secondary bifurcation near ζ = 3.36. One can
see how dark 1-solitons at points D, F, E known from Fig. 1(e)
transform through X, Y, Z in Fig. 5(d) into equally spaced
2-solitons shown at Fig. 5(c) on the branch with D’, F’, E’.
The state Z approximates a two soliton somewhere between
F’ and E’. We also show in the zoom of Fig. 5(a) how the
curve of 1-solitons undergoes a secondary bifurcation with the
curve of 3-solitons near ζ = 2.73. Right after this bifurcation,
the curves split up again. Since this happens close to the trivial
curve, the visible effects on the solutions are marginal and are
therefore not displayed.

Secondary bifurcations coming with the phenomenon
period-doubling, -tripling etc. were found earlier in Refs. [15,
Fig. 7(b)] or [24, Fig. 5] for anomalous dispersion and in Ref.
[20, Fig. 12] for normal dispersion. An abstract result related
to global secondary bifurcations with applications to Eqs. (2)
and (3) can be found in Ref. [29].

2. Branches displayed in a different norm

In the case of anomalous dispersion, Fig. 4(a) shows the
branches in the conventional norm ‖a‖2

2 which represents the
intracavity power of the states. This norm does not capture
well the fact that eight branches snake back and forth after
having reached maximal values of ζ . In fact, comparing states
on a fixed branch for the same value of ζ , one finds that the
state obtained on the way out toward the maximal value of ζ

is different compared with the state obtained on the way back.
This effect can be visualized much better in Fig. 4(b), where
instead of ‖a‖2

2 we use the norm

‖a − aav‖2
2 with aav := 1

2π

∫ 2π

0
a(x) dx

with the average value aav being subtracted from a before
the intracavity power measure is taken. This has the effect of
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FIG. 4. Connected components of bifurcation graphs (top) and selected bright solitons (bottom) in anomalous dispersion for f = 2 and d =
0.1. Quantities on axes are dimensionless. (a) Same graph as in Fig. 1(a) shows normalized intracavity power ‖a‖2

2 vs normalized detuning ζ .
Bifurcation points are marked as unfilled circles. Primary bifurcation points lie on the black curve of constant solutions, secondary bifurcation
points lie off the black curve. Branches connected through secondary bifurcation points are plotted with the same color. (b) Detailed resolution
of red connected component from (a) using the norm ‖a − aav‖2

2 vs ζ . The black curve of constant solutions is now on the ζ axis. Stable states
lie on solid lines, unstable states on dashed lines. The curve of 1-solitons runs through the states A, C, B whose spatial power distribution
was shown in Fig. 1(b). Following this branch further leads to states U, V, W marking the transition from 1-solitons to 2-solitons before
meeting the branch of 2-solitons through A’, C’, B’ at the secondary bifurcation point C’. Following the A’, C’, B’ curve further up leads to
another secondary bifurcation with the branch of 4-solitons that eventually meets the trivial curve again near ζ0 = 0.3325. (c) shows the spatial
power distribution of selected 2-solitons and (d) shows how on the branch of 1-solitons the transition towards 2-solitons occurs before the two
branches join at point C’.

squeezing the black curve of trivial solutions onto the ζ -axis.
On the other hand, it visualizes more clearly that the states
before and after the turning points are different. One may even
observe the snaking behavior of the branches with respect to
the detuning in the range ζ > 2, which is quite similar to
the “foliated snaking” with respect to the forcing parameter
discussed in Ref. [15, Section V.B]. Notice that in both cases
secondary bifurcations occur at turning points of the curves,
i.e., at local extrema of the bifurcation parameter along the
curve. For the case of normal dispersion, the same comparison
between ‖a‖2

2 and ‖a − aav‖2
2 has been done in Figs. 5(a) and

5(b). Again, a snaking behavior can be seen on the branch of
1-solitons as well as on the 2-soliton branch, and a similar
behavior (collapsed defect-mediated snaking) is described in
Ref. [20] in case of bifurcation with respect to the forcing.

3. Stability

In Figs. 4(b) and Fig. 5(b), stable states are depicted
with solid lines and unstable states are shown with dashed
lines. Here, stability of a stationary state a means nonlinear
stability, i.e., solutions of the evolution equation (1) starting

in a small neighbourhood of a stay inside this neighbourhood
for all times. A necessary (but not sufficient) condition for
nonlinear stability of a is the spectral stability, by which
we mean that the spectrum of −iL lies in the left complex
plane, where L is the linearized operator defined in Eqs. (4)
with a0 replaced by a. Indeed, one of the main results of
Ref. [25] is that for the special case of the LLE (1) spectral
stability and nonlinear stability are equivalent. Notice that
the shift-invariance of solutions a of Eq. (2) generates the
eigenvalue 0 of the linearized operator L at any nontrivial
solution. This is the reason why in Ref. [25] only orbital
stability of stationary states can be deduced. In our case, we
have imposed Neumann boundary conditions at x = 0 and
x = π together with the even symmetry around x = π . This
eliminates the shift invariance so that 0 is an eigenvalue of L
only at bifurcation points, and hence (with the exception of
bifurcation points) proper nonlinear stability statements can
be deduced. For the purpose of indicating nonlinear stability
or instability in our graphs, we computed the finite spectrum
of the finite-element discretization of the operator L and
checked whether it belongs entirely to the lower complex
plane or not.
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FIG. 5. Connected components of bifurcation graphs (top) and selected dark solitons (bottom) in normal dispersion for f = 2 and d =
−0.1. Quantities on axes are dimensionless. (a) Same graph as in Fig. 1(d) showing normalized intracavity power ‖a‖2

2 vs normalized detuning
ζ restricted to the relevant range. Bifurcation points are marked as unfilled circles. There are six primary bifurcation points lying on the black
curve of constant solutions, and three secondary bifurcation points lying off the black curve. All branches are connected to each other and are
therefore shown in red. The zoom shows how the branch of 1-solitons starting on the trivial curve near ζ = 4 almost meets the curve of constant
solutions near ζ = 2.73. Instead, it connects at a secondary bifurcation point near ζ = 2.73 with the curve of 3-solitons and immediately
detaches from it again and then finally connects to the 2-solitons at the secondary bifurcation point near ζ = 3.36. (b) Detailed resolution of
red connected component from (a) using the norm ‖a − aav‖2

2 vs ζ . The black curve of constant solutions is now on the ζ axis. Stable states
lie on solid lines, unstable states on dashed lines. The curve of 1-solitons runs through the states D, F, E whose spatial power distribution was
shown in Fig. 1(e). Following this branch further leads to states X, Y, Z marking the transition from 1-solitons to 2-solitons before meeting
the branch of 2-solitons through D’, F’, E’ at a secondary bifurcation point near ζ = 3.36. (c) shows the spatial power distribution of selected
2-solitons and (d) shows how on the branch of 1-solitons the transition toward 2-solitons occurs before the two branches meet near ζ = 3.36.
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