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Polarization effect on optical manipulation in a three-beam optical lattice
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We study the effect of polarization on optical micromanipulation in a hexagonal optical lattice formed by
three equiamplitude plane waves that have their wave vectors lying equiangularly in a plane, taking into account
the vectorial characteristic of the electromagnetic waves. It is demonstrated that different polarizations generate
different optical force landscapes, resulting in a trapping versus detrapping phenomenon tunable by tailoring the
polarization of the incident beams. The physical origin of the polarization effect on the force landscapes is then
traced to the ratio between the conservative (gradient) and nonconservative (scattering) optical forces acting on
a particle immersed in the three-wave optical lattice. The trapping-detrapping transition phenomenon due to the
change of polarization in small particles, where the gradient force dominates, is revealed to originate from the
reverse of the conservative optical force, which manifests itself by a transition of the optical potential energy
landscape from one exhibiting a periodic distribution of pits to one showing a distribution of humps over space.
Our results suggest an alternative handle to manipulate small particle by tuning the polarization.
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I. INTRODUCTION

Light transfers momentum to an object in the way of
its propagation and exerts a force on the latter along the
propagation direction. This is known as the radiation pres-
sure. The concept of radiation pressure was confirmed by the
classical theory of electromagnetism [1], which laid the solid
theoretical foundation for further investigation of the optical
force. The successful experimental trapping of microparticles
by employing two laser beams was first realized in [2]. Later
on, the optical trapping of a dielectric particle by a single
highly focused laser beam was implemented experimentally
in [3]. The single-beam optical trappings, known later as
optical tweezers [4], have been applied to a variety of objects
ranging in size from cells to atoms [5], rated among the most
recognized applications of the optical force.

The technique of noncontact optical manipulation, in-
cluding optical trapping, accelerating, transporting, and even
pulling, has been extensively investigated in a variety of areas
[4–19]. The target of optical manipulation is not limited to
a single particle, but includes multiple particles as well. To
achieve multiparticle manipulation, one can employ the opti-
cal field composed of interfering beams to produce periodic
arrays of trapping sites [20–25], enabling particles to be
trapped in these sites and forming optical matter, provided
particles are small enough so that the interaction stemming
from multiple scattering can be ignored. Thus, the inves-
tigation of the optical trapping of a particle in a periodic
optical field, termed the optical lattice, can be considered as a
pathfinder for constructing optical matter made up of multiple
particles.

In this paper we study the optical force field acting on
a particle immersed in a simple three-beam optical lattice
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that is formed by three identical (with the same polarization
and amplitude) plane waves with their wave vectors lying
equiangularly in a plane, namely, the angle between any two
wave vectors is 120◦. We focus on how the polarization of the
incident plane waves affects the force landscape and yields
different physical consequences in optical manipulation, tak-
ing into consideration the vectorial characteristic of the optical
field. Using the above configurations, previous works have
reported the particles of a dipole (r � λ) [25]. Meanwhile, the
particles in the ray optics regime (r � λ) were theoretically
and experimentally studied by Hou et al. [26]. However, Mie
particles (r ≈ λ), which are commonly used in experiments,
have not been studied due to the region beyond the dipole
approximation and ray optics approximation. Following the
work of Ng and co-workers [27,28], we rigorously decom-
pose the total optical force exerted on spherical particles of
arbitrary size into the gradient and scattering forces in the
three-beam optical lattice and study the polarization effects
of the dipole and Mie particles. We demonstrate that the
polarization effect in the simple three-beam optical lattice
owes its physical origin to the ratio between these two force
components. Our results thus suggest an alternative way of
optical manipulation of a microparticle by tailoring the polar-
ization. A typical example is given in which one can tune the
optical potential energy landscape from a periodic distribution
of pits to a distribution of humps, leading to a transition from
trapping to detrapping through modulating the polarization of
the constituent beams of the optical lattice.

II. RESULTS AND DISCUSSION

The electric field of the simple three-beam optical lattice is
given by

E(r, t ) = E1(r, t ) + E2(r, t ) + E3(r, t ),

E j (r, t ) = E0
(
pθ̂k j + qφ̂k j

)
eikk̂ j ·r−iωt , j = 1, 2, 3, (1)
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FIG. 1. (a) Schematic illustration of the coordinate system,
where k̂, θ̂, and φ̂ represent the direction of wave propagation
and the directions of increasing polar angle and azimuthal angle,
respectively. (b) Schematic plot of three wave vectors lying in the
x-o-y plane for the three-beam optical lattice. The angle between any
two of the wave vectors is 120◦. A particle is immersed in the optical
field with its center located at (x0, y0 ). The optical force acting on the
particle is written as F = Fρ êρ + Fφ êφ for stability analysis.

where θ̂k , φ̂k , and k̂ are the unit vectors in the spherical
coordinate system [see Fig. 1(a)], ω and k represent the cir-
cular frequency and wave number in the background medium,
respectively, and k̂ denotes the direction of the wave vector
k = kk̂. In our case, the three wave vectors are all lying in the
x-o-y plane, with the angle between any two of them being
120◦, as shown in Fig. 1(b), to form a regular three-beam
optical lattice. To be specific, the three wave vectors are
given by

k1 = êx, k2 = −1

2
êx +

√
3

2
êy, k3 = −1

2
êx −

√
3

2
êy,

(2)

where êx and êy are two basis unit vectors in the Cartesian
coordinates. Two complex numbers p and q characterize the
polarization of each constituent plane wave making up the
three-beam optical lattice. They constitute a two-dimensional
complex vector (p, q) known as a polarization vector, with,
e.g., (p, q) = (1, 0) and (0,1) representing the linear polariza-
tion and (p, q) = (1, i) corresponding to the left circular po-
larization [29]. Throughout this paper, the polarization vector
(p, q) is normalized by |p|2 + |q|2 = 1 in all numerical calcu-
lations. We note that the three waves share the same amplitude
E0 > 0 and polarization (p, q). The incident wavelength in the
calculation is fixed to λ = 720 nm and the spherical particle
is suspended in vacuum. The optical forces shown in any
figure are in units of ε0E2

0 /k2. We will focus on the effect
of the polarization denoted by (p, q), while some previous
studies [25] simply set the electric field to be along z, namely,
perpendicular to the plane formed by three wave vectors and
limited to the case with (p, q) = (1, 0) in our notation.

The time-averaged optical force F exerted on a particle
by the optical field is computed based on the Maxwell stress
tensor method [29–31] as well as the generalized Lorenz-
Mie theory [32]. Due to the translational invariance of the
system along z, we limit ourselves to the study of an optical
force parallel to the wave-vector plane and present the force
landscapes in the x-o-y plane. Figure 2 shows the landscapes
of the radial component Fρ of the optical force [see Fig. 1(b)

FIG. 2. Spatial profiles of the radial component of the optical
force Fρ on a gold particle with (a) and (b) r = 0.1 μm and (c) and
(d) r = 0.31 μm, immersed in the simple three-beam optical lattice.
The left and right panels correspond to different polarization with
(a) and (c) (p, q) = (1, 0) and (b) and (d) (p, q) = (0, 1). The results
demonstrate transitions between trapping and detrapping induced by
polarization.

for a schematic illustration] exerted on a gold particle of radii
r = 0.1 and 0.31 μm, which correspond to dipole and Mie
particles, respectively. The permittivity of gold refers to the
Drude fit of experimental results and is set as ε = −17.46 +
1.08i [33,34]. Each point in the force landscape displayed in
Fig. 2 denotes the value of Fρ acting on the particle centered
therein. It is obvious that for a conventional optical lattice
with the electric field polarized along z that circumvents the
vectorial property of the electromagnetic field (corresponding
to q = 0), a small gold particle can be trapped stably at the
origin of the coordinate system [25] [see Fig. 2(a)] since the
trapped particle will return to its equilibrium when displaced
slightly, subject to the negative radial force. The trapping of
multiple particles can therefore be expected from the peri-
odicity of the optical lattice. However, when one changes
the polarization to p = 0, with the electric field lying within
the wave-vector plane, Fig. 2(b) implies that the trapping
becomes unstable due to a sign change in the radial force.
When a particle is displaced slightly from the equilibrium, it
will be pushed farther away by the positive radial force. One
may intuitively imagine that the vectorial character of light
is unfavorable to the trapping, as observed from Figs. 2(a)
and 2(b). The situation turns out being quite different when
the particle size is increased. In Figs. 2(c) and 2(d) we show
the radial force landscapes for a 0.31-μm-radius gold particle.
Comparing Fig. 2(c) with Fig. 2(a), it is remarkable to find that
aligning the electric field to z to avoid the vectorial property
of light is not always favorable to the optical trapping. Tuning
the polarization to make the electric field polarize within the
wave-vector plane, where the vectorial property of the field
comes into play, favors the trapping, as visualized in Fig. 2(d).
One therefore concludes that the polarization will surely
change the spatial distribution of the optical force, leading
to a diversity of force landscapes and resulting in a trapping
to detrapping transition. As a result, one can manipulate the
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FIG. 3. Spatial profiles for the magnitudes of (a) and (b) total
optical forces F, (c) and (d) gradient forces Fg, and (e) and (f)
scattering forces Fs acting on a gold particle with radius r = 0.31 μm
immersed in the three-beam optical lattice with different polariza-
tions. The polarization vectors are (a), (c), and (e) (p, q) = (1, 0)
and (b), (d), and (f) (p, q) = (0, 1). The diversity of optical force
landscapes shown in (a) and (b) is caused by the change of relative
magnitude in the gradient and scattering forces, which keep their
spatial profiles unchanged with respect to different polarizations, as
displayed in (c)–(f).

particle state such as from stable trapping to transporting,
and vice versa, by modulating the polarization, taking full
advantage of the vectorial feature of the light field.

To trace the physical origin of the polarization effect,
following Ng and co-workers [27,28,35], we decompose the
time-averaged optical force into the gradient and scattering
parts Fg and Fs, respectively, given by

F = Fg + Fs,

Fg = −∇ϕ, Fs = ∇ × ψ, (3)

where ϕ and ψ are the potential energy and vector poten-
tial, respectively. Therefore, Fg and Fs correspond to the
conservative and nonconservative forces [36], respectively.
The landscapes for both the gradient and scattering forces,
together with the total optical force F, are illustrated in Fig. 3
for a 0.31-μm-radius gold particle. It can be observed that
the spatial profiles for either the gradient or scattering do
not change in the three-beam optical lattice, except for the
magnitude, in agreement with the findings by Jiang et al. [35],
as displayed in Figs. 3(c)–3(f). The change of optical force
landscapes, as visualized in Figs. 3(a) and 3(b), arises from the
relative magnitude of the conservative and nonconservative
components. The invariance in the spatial profile is hidden

with the conservative and nonconservative components [35].
The change of the polarization modifies the distribution of
the electric and magnetic fields over space, giving rise to the
variation in the magnitudes of the conservative and nonconser-
vative forces and thus bringing about a variety of polarization-
dependent optical force landscapes as shown in Figs. 3(a) and
3(b).

The physics manifests itself further by an analytical expres-
sion [35] for the optical force exerted on a spherical particle
of arbitrary size residing in the three-beam optical lattice
described by Eqs. (1) and (2). It is derived that [35]

Fg = A∇|E|2 + C∇|B|2,
Fs‖ = (D|p|2 + G)Re(E × B∗)‖, (4)

where the real parameters A, C, D, and G, carrying appro-
priate physical units, show a very complicated dependence
on the Mie coefficients [37], but they are independent of the
polarization vector (p, q) [35]. The subscript ‖ denotes the
in-plane (perpendicular to z) components of the scattering
force. The gradient of the electric field intensity depends on
the polarization through

∇|E|2 = 3(1 − 3|p|2) cos

√
3η

2
sin

3ξ

2
êx

+
√

3(1−3|p|2)

(
cos

3ξ

2
+2 cos

√
3η

2

)
sin

√
3η

2
êy,

(5)

where ξ and η are reduced Cartesian coordinates, given by
ξ = kx and η = ky. The gradient ∇|B|2 of the magnetic field
is obtained by replacing p with q in Eq. (5), due to electro-
magnetic duality. The in-plane time-averaged Poynting vector
1
2 Re(E × B∗)‖ is independent of the polarization, reading

Re(E × B∗)‖ =
(

cos
3ξ

2
cos

√
3η

2
− cos

√
3η

)
êx

+
√

3 sin
3ξ

2
sin

√
3η

2
êy. (6)

Equations (4)–(6) suggest the possibility of tuning the rel-
ative magnitude between the gradient and scattering forces
by changing the polarization, yielding a diversity of force
landscapes that affects the optical trapping and manipulation.
In addition, the dependence on the Mie coefficients of the
parameters A, C, D, and G allows for the manipulation of
particles with different sizes by different polarizations, as
illustrated in Fig. 2, where trapping of a 0.31-μm gold particle
requires the electric field to be polarized in the wave-vector
plane (normal to z) while trapping of 0.1-μm particle needs
the electric field polarized along z, as a typical manifestation
of the polarization effect on the optical trapping.

The trapping to detrapping transition by tailoring the po-
larization is not limited to metallic particles only. It works on
dielectric particles as well, even in the case where the gradient
force is kept dominant when the polarization is modulated.
It is well known, based on the optical Earnshaw theorem
[38,39], that the scattering force will not trap any particle,
since it satisfies ∇ · Fs = 0, violating the necessary condition
of stable equilibrium ∇ · F < 0. One usually resorts to the
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FIG. 4. Spatial profiles for the magnitudes of (a) and (b) total
force F, (c) and (d) gradient force Fg, and (e) and (f) scattering
force Fs acting on a polystyrene particle (ε = 2.53) with r = 0.1 μm
immersed in the three-beam optical lattice given by Eqs. (1) and (2).
The left and right panels correspond to the polarization with (a), (c),
and (e) (p, q) = (1, 0) and (b), (d), and (f) (p, q) = (0, 1). In both
cases the gradient force far outweighs the scattering force.

gradient force for trapping. However, the dominant gradient
force by no means implies a stable trapping. This is shown
in Figs. 4, 5(a), and 5(b) for a polystyrene particle of radius
0.1 μm. In both cases with the polarization (p, q) = (1, 0)

FIG. 5. (a) and (b) Potential energy ϕ landscapes corresponding
to Figs. 4(c) and 4(d), visualizing the trapping and detrapping
phenomena due to the change of polarization. (c) and (d) Potential
energy landscapes corresponding to Figs. 2(c) and 2(d). Although
the scattering force is comparable to the gradient force, the potential
energy landscape demonstrates the physical origin of a detrapping to
trapping transition induced by the polarization.

and (p, q) = (0, 1) corresponding, respectively, to the electric
field polarized along z and perpendicular to z in the three-
beam optical lattice, the gradient force is nearly tenfold the
magnitude outweighing its counterpart, the scattering force.
The profiles of the magnitudes of the total optical force are
nearly the same, as shown in Figs. 4(a) and 4(b). However,
the two situations correspond, respectively, to trapping and
detrapping extremes. This is illustrated through a detailed
analysis of the optical potential energy landscape in Figs. 5(a)
and 5(b). The optical potential energy ϕ, in units of ε0E2

0 /k, is
derived from the gradient force in Eqs. (3) and (4). As shown
in both cases, the gradient force is overwhelmingly dominant
over the scattering force. The optical potential energy ϕ,
however, shows a change from a periodic distribution of pits
to that of humps, serving as a comprehensive picture for the
trapping to detrapping transition induced by the polarization.

In Figs. 5(c) and 5(d) we present the optical potential
energy for the case corresponding to Figs. 2(c) and 2(d), in
the case of a gold particle immersed in the three-beam optical
lattice with different polarization. Although in both cases the
scattering force is comparable to the gradient force, the poten-
tial energy derived from the latter still provides a vivid picture
for the detrapping to trapping transition. For the polarization
(p, q) = (1, 0), namely, with the electric field polarized along
z to avoid the vectorial feature of the electromagnetic field,
the potential energy landscape shows a periodic distribution
of protuberances [see Fig. 5(c)], ruining any possible trapping
since the scattering force will never construct a trap. On the
other hand, when the polarization switches to (p, q) = (0, 1),
with the electric field polarized normal to z and the vectorial
character coming into play, we see a dispersion of depressions
in the potential energy landscape [see Fig. 5(d)], which, when
tuned to surpass the scattering force, will leave us with a
stable trapping, as shown in Fig. 2(d) in the radial force
landscape, providing a typical example of achieving stable
optical trapping by the effect due to polarization.

III. CONCLUSION

In this paper we studied the polarization effect on the
spatial pattern of optical force acting on a particle immersed
in a simple three-beam optical lattice, determined by Eqs. (1)
and (2). A diversity of optical force landscapes was visualized
due to the change of polarization, implying tunability of
optical manipulation in optical lattice by simply modulating
the polarization of optical beam, which results from the vec-
torial property of optical field. We then traced the underlying
physical origin of the polarization effect in this three-beam
optical lattice to the relative magnitude of the two essentially
different types of optical force, namely, the conservative and
nonconservative forces. In addition, we also presented gen-
uine optical potential energy landscapes for optical lattices
with different polarizations. The potential energy landscapes,
either in the case where the conservative optical force is
overwhelmingly dominant over the nonconservative force or
in the case where the latter is comparable to the former,
provide a comprehensive picture to understand the trapping
and detrapping transition induced by the polarization. Our
results may shed some light on the understanding of light-
matter interaction, as well as suggesting an alternative way to
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tune the optical micromanipulation by changing polarization,
taking full advantage of the vectorial property of the optical
field.
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