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Nonlinear quantum transport of light in a cold atomic cloud
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We outline the nonperturbative theory of multiple scattering of resonant, intense laser light off a dilute cloud
of cold atoms. A combination of master equation and diagrammatic techniques allows a quantitative description
of nonlinear diffusive transport as well as of coherent backscattering of the injected electromagnetic field,
notwithstanding the exponential growth of Hilbert space with the number of atomic scatterers. As an exemplary
application, we monitor the laser light’s intensity profile within the medium, the spectrum of the backscattered
light, and the coherent backscattering peak’s height with increasing pump intensity. Our theory establishes a
general, microscopic, scalable approach to nonlinear transport phenomena in complex quantum materials.
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I. INTRODUCTION

Wave transport in disordered media is an important subject
of research in many areas of physics, ranging, e.g., from the
conductance of electrons in disordered metals to multiple scat-
tering of photons in turbid samples [1]. For three-dimensional,
linear media, i.e., if the properties of the scattering medium
are not modified by the scattered wave itself (a point to which
we will come back below), one distinguishes two fundamen-
tally different regimes of transport, which are usually referred
to as the regime of “weak disorder” and “strong disorder,”
respectively.

Weakly disordered media, defined by the condition k��1
(with wave number k and mean-free path �), essentially give
rise to diffusive transport of the average wave intensity. De-
viations from a purely diffusive behavior, however, become
visible when measuring the average intensity in the direc-
tion exactly opposite to the incident wave, where a coherent
backscattering peak appears as a result of interference be-
tween wave amplitudes propagating along reversed scattering
paths [2,3]. A detailed, microscopic understanding of these
and other related effects of mesoscopic transport in weak
disorder, such as weak localization [4] or universal conduc-
tance fluctuations [5], is provided by diagrammatic multiple
scattering theory [6,7], where 1

k�
� 1 is used as a perturbation

parameter in order to select the relevant diagrams.
The situation is different in the regime of strong disor-

der (i.e., k� � 1 or smaller), where complete suppression of
diffusion due to Anderson localization [8] is expected, and
indeed has been observed in many different physical systems
(e.g., sound waves [9] or matter waves [10]). Whether it is
possible to achieve Anderson localization of light is, accord-
ing to present knowledge [11,12] and due to the absence of a
microscopic theory of multiple scattering in strong disorder,
an open question. Similarly, the understanding of recurrent or
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collective scattering effects [13–16], which play an important
role in the case of strong disorder, is far from complete.

A good candidate to study fundamental questions of mul-
tiple scattering theory is the scattering of light by cold atoms
[17–22]. The scattering properties of single atoms are well
known and tunable, e.g., by changing the wavelength or the
intensity of the incident laser. Using atoms with a suitable
level structure, it is furthermore possible to let the atom
interact with several laser beams in a nonlinear way, such that
one beam can be used to control a second one (e.g., to slow
down its group velocity using the effect of electromagnetically
induced transparency [23]). Therefore, apart from its funda-
mental interest as a generic quantum transport scenario, a
precise understanding of multiple scattering effects in atomic
gases is also desirable in view of applications such as quantum
memories [24], random lasers [25], or photonic devices in
disordered media [26].

Coherent backscattering of light was experimentally ob-
served for atoms with degenerate and nondegenerate ground
states [17,27], at low temperatures, i.e., when the thermal
motion of the atoms can be neglected. In the linear regime
of small laser intensity, the results agree well with predictions
of diagrammatic multiple scattering theory [28–30]. The latter
usually assumes that there exists a scattering matrix through
which the outgoing field is linearly related to the incident
field. This assumption, however, breaks down for larger laser
intensity. First, the atomic response becomes nonlinear due
to the saturation of the atomic transition. Second, the light
scattered by near-resonant atoms exhibits fluctuations due to
the quantum mechanical coupling of the atoms to the electro-
magnetic vacuum. These fluctuations are responsible for the
incoherent or inelastic component of resonance fluorescence
[31], where the frequencies of emitted photons differ from the
frequency of the incident laser.

Whereas a decrease of the coherent backscattering interfer-
ence peak with increasing saturation of the atomic transition
was observed experimentally [32–34], no satisfying theory so
far exists for incorporating nonlinear and inelastic scattering
into a multiple scattering approach. A theory for coherent
backscattering by nonlinear, classical scatterers was presented
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in [35,36], but does not take into account any quantum fluc-
tuations due to inelastic scattering. A perturbative method
based on the scattering matrix of two photons was proposed
in [37,38], but is only valid if incident light intensity and
optical thickness of the atomic medium are small. Similarly,
approaches based on the truncation of a hierarchy of corre-
lation functions [39,40] fail to describe inelastic scattering
occurring for large laser intensities since they do not properly
account for correlations between atomic operators at different
times, which, in turn, determine the spectrum of the scattered
light. On the other hand, standard tools of quantum optics
(master equations, optical Bloch equations, etc.) are well
adapted to describe the atom-field interaction for arbitrary
intensities of the incident field, but are restricted to a small
number of atoms coupled to each other by photon exchange
[41–43]. This is due to the fact that the dimension of the
atomic Hilbert space grows exponentially with the number
of atoms. With all above methods having their limitations,
the problem of multiple inelastic scattering of intense laser
light in cold atomic ensembles has hitherto been considered as
unsolvable.

However, as we here show, this problem can be overcome
under the following two assumptions: (i) The atoms are
placed independently from each other at random positions.
Experimentally measurable quantities like the spectrum of
the radiated light are averaged over the atomic positions.
(ii) The atomic medium is dilute, i.e., the typical distance
between neighboring atoms is larger than the wave length
of the incident laser. For near-resonant atomic scatterers,
these assumptions correspond to the regime k� � 1 of weak
disorder mentioned above. Using a diagrammatic multiple
scattering representation derived from the quantum optical
N-atom master equation, we identify certain types of mul-
tiple scattering processes, described by so-called ladder and
crossed diagrams [7], which survive the ensemble average
over the atomic positions. As explained in this paper, the
restriction to this set of diagrams amounts to neglecting
quantum correlations between the scattered photons, which
therefore can be represented as a classical stochastic field.
This field is then acting on each individual atom and, vice
versa, the spectrum of the light emitted by each atom deter-
mines the field. Thereby, we obtain a system of self-consistent
and numerically solvable transport equations describing, both
nonlinear diffusive transport of photons in the atomic cloud as
well as coherent backscattering.

As already mentioned above, a similar diagrammatic ap-
proach has already been developed for nonlinear classical
scatterers [35,36]. Within this model, the light is scattered
purely elastically, provided that a stationary scattering state
is assumed in spite of the nonlinearity [44,45]. This paper
fully takes into account inelastic scattering induced by the
quantum-mechanical nature of the atom-field interaction. In
contrast to the classical model, a unique stationary state is
always reached in this case, as proven in Appendix A.

The paper is organized as follows: In Sec. II, we introduce
our model consisting of N two-level atoms at fixed, random
positions, which are driven by a monochromatic laser and
coupled to the electromagnetic vacuum. After tracing over
the quantized radiation field, we arrive at a master equation
describing the time evolution of atomic observables.

In Sec. III, we rewrite the master equation as a generalized
optical Bloch equation for N atoms. Formal solutions for the
stationary state of the generalized N-atom Bloch vector and
the corresponding power spectrum of the light emitted by the
atoms in this stationary state are derived.

On the basis of this formal solution, we introduce a
diagrammatic multiple scattering representation in Sec. IV.
Using this representation, the radiation emitted by N atoms is
expressed in terms of single-atom building blocks. We argue
that, in the case of a dilute atomic medium, only certain
types of diagrams survive the ensemble average over the
atomic positions: ladder diagrams describing nonlinear diffu-
sive transport, and crossed diagrams giving rise to coherent
backscattering.

In Sec. V, we perform the summation of all ladder dia-
grams after averaging over the atomic positions. We show that
the light field incident on each single atom can be modeled
as a stochastic polychromatic classical field. Thereby, the
average power spectrum of the light emitted by a single atom,
as well as the refractive index determining the propagation
of light in the effective atomic medium, can be determined
by solving the corresponding single-atom Bloch equations.
Finally, the sum of all ladder diagrams corresponds to the
solution of coupled transport equations for the laser amplitude
E+

L (r), on the one hand, and the average spectral irradiance
I (ω, r) of the scattered fields, on the other hand.

In Sec. VI, the effect of coherent backscattering is quanti-
fied by the summation of crossed diagrams. For this purpose,
we identify the building blocks out of which the crossed
diagrams are composed, and give the rules according to which
these building blocks are connected to each other. Thereby,
we arrive at a “crossed transport equation” which describes
the propagation of a pair of conjugate amplitudes along re-
versed scattering paths, which, in turn, gives rise to coherent
backscattering, i.e., to an enhancement of the scattered inten-
sity in the direction exactly opposite to the incident laser.

Results obtained by numerical solutions of the ladder and
crossed transport equations are presented in Sec. VII. We
consider a slablike scattering geometry, where all atoms are
confined (with uniform density) to a slab with finite length
in the direction of the incident laser, and infinite extension
in the perpendicular directions. We show and explain how
increasing the incident laser intensity changes the intensity
profile of light propagating inside the slab, the spectrum of
backscattered light, and the height of the coherent backscat-
tering peak.

Finally, we provide conclusions and outlook in Sec. VIII.
In the Appendices, we prove that the generalized N-atom
Bloch equation exhibits a unique stationary state (Appendix
A), provide technical details concerning the solution of Bloch
equations with stochastic driving fields (Appendix B), verify
that our ladder transport equations respect the property of flux
conservation (Appendix C), and give the complete mathemat-
ical expressions of the crossed building blocks (Appendix D).

Due to the length of our paper, we indicate two possible
shortcuts (from the introductory paragraph of Sec. IV to
Sec. V D, and again from the end of Secs. V D to VII) for
those readers who are primarily interested in the application
and results of our theory rather than following the details of
its derivation.
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II. MODEL

As described above, we consider an ensemble of N two-
level atoms at fixed positions r1, . . . , rN . These positions
are assumed to be to be static on the timescale of a typical
multiple scattering process. This assumption is adequate if the
atomic gas is cooled to sufficiently low temperature (in the
range of 1mK [32]) and if the recoil induced by scattering
of photons remains small throughout the experiment [32].
All atoms are driven by a monochromatic laser (which we
treat classically) and coupled to the electromagnetic vac-
uum (which we treat quantum mechanically). In this article,
we will, for the sake of clarity and simplicity, model the
electromagnetic field as a scalar field. As further discussed
in the conclusions, however, our theory can be generalized
to vectorial fields and atoms with more complicated level
structure.

After defining the Hamiltonian of our system in Sec. II A,
we introduce the master equation describing the time evolu-
tion of atomic observables in Sec. II B, which will serve as
the starting point for the development of our theory in the
following chapters.

A. Hamiltonian

The full Hamiltonian of our system decomposes as follows:
H (t ) = H̃A(t ) + HF + HV , where H̃A(t ) refers to the atoms
driven by the classical laser field, HF to the quantized electro-
magnetic field, and HV to the interaction between the atoms
and the quantized field. The atomic part reads as

H̃A(t ) =
N∑

j=1

[h̄ω̃0σ
+
j σ−

j + dEL(r j, t )(σ+
j + σ−

j )] (1)

with ω̃0 the (bare) atomic resonance frequency and d the
dipole moment of the atomic transition. Furthermore, σ−

j =
|1〉 j〈2| j and σ+

j = |2〉 j〈1| j , with |1〉 j and |2〉 j the ground
and excited states of atom j, denote the atomic lowering and
raising operators. The laser field

EL(r, t ) = EL cos(ωLt − kL · r) (2)

describes a plane, monochromatic wave with amplitude EL,
frequency ωL, and wave vector kL.

The field Hamiltonian HF can be expressed in terms of an-
nihilation and creation operators ak and a†

k of electromagnetic
field modes k (where, as mentioned above, the polarization
degree of freedom is neglected):

HF =
∑

k

h̄ωka†
kak. (3)

Finally, the interaction between the atoms and the quantized
field in dipole approximation is given by

HV =
N∑

j=1

dÊ (r j )(σ
+
j + σ−

j ), (4)

where the field operators

Ê (r) = Ê+(r) + Ê−(r) (5)

are split into the following positive- and negative-frequency
components:

Ê+(r) = i
∑

k

(
h̄ωk

2ε0V

) 1
2

akeik·r, (6)

Ê−(r) = −i
∑

k

(
h̄ωk

2ε0V

) 1
2

a†
ke−ik·r (7)

with quantization volume V .

B. Master equation for N atoms

By tracing over the quantized radiation field, and applying
several standard approximations (i.e., rotating wave, Born-
Markov, and secular approximation), it is possible to derive a
master equation governing the evolution of the reduced atomic
density matrix [46–50]:

ρ̇ = − i

h̄
[HA, ρ]

+�

2

N∑
j,k=1

Wjk
(
2σ−

k ρσ+
j − ρσ+

j σ−
k − σ+

j σ−
k ρ

)
, (8)

where HA describes the effective atomic Hamiltonian (in the
frame rotating at the laser frequency ωL)

HA = −h̄
N∑

j=1

[
δσ+

j σ−
j + 1

2
(	 jσ

+
j + 	∗

jσ
−
j )

]

− h̄�

2

N∑
j �=k=1

cos(kLr jk )

kLr jk
σ+

j σ−
k (9)

with r jk = |rk − r j |. As compared to the bare atomic Hamilto-
nian H̃A(t ) [see Eq. (1)], the second term in Eq. (9) addition-
ally describes coherent (or reversible) far-field dipole-dipole
interactions between atoms due to exchange of real photons.
Furthermore, δ = ωL − ω0 denotes the detuning of the laser
frequency with respect to the atomic resonance frequency ω0.
Due to the atom-field interaction, the latter is shifted with
respect to the bare frequency ω̃0 [46]. Moreover, 	 j = 	(r j ),
with 	(r) = 	eikL ·r and 	 = dEL/h̄, defines the atomic Rabi
frequency induced by the laser at position r j .

The second term in Eq. (8) contains the coupling matrix

Wjk =
{

1 if j = k,

sin(kLr jk )
kLr jk

if j �= k
(10)

with the diagonal elements ( j = k) describing incoherent (or
irreversible) spontaneous emission of photons from single
atoms with rate

� = ω3
0d2

2πε0h̄c3
, (11)

whereas the nondiagonal elements ( j �= k) give rise to col-
lective decay from pairs of atoms. The approximations men-
tioned above are fulfilled with very high accuracy, essentially
due to the fact that the atomic resonance frequency is many
orders of magnitude larger than all other relevant frequencies
(such as the Rabi frequency 	, the atom-laser detuning δ, or
the spontaneous decay rate �).
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Switching to the Heisenberg picture, Eq. (8) can be rewrit-
ten as an equation for the quantum-mechanical expectation
value of an arbitrary observable Q of the N-atom system

〈Q̇〉 =
N∑

j=1

〈
− iδ[σ+

j σ−
j , Q] − i

2
[	 jσ

+
j + 	∗

jσ
−
j , Q]

−�

2
(σ+

j σ−
j Q + Qσ+

j σ−
j − 2σ+

j Qσ−
j )

〉

+
N∑

j �=k=1

〈
i

2
Tjk[σ+

j Q, σ−
k ] − i

2
T ∗

k j[σ
+
j , Qσ−

k ]

〉
. (12)

Here, the reversible and the irreversible parts of the far-field
atom-atom interaction are both contained in the complex-
valued couplings

Tjk = T (|rk − r j |) (13)

which, in turn, depend on the distance between the atoms j
and k as follows:

T (r) = �
e−ikLr

kLr
. (14)

The far-field approximation is adequate since, throughout this
paper, we assume that the distances r jk = |rk − r j | between
atoms fulfill kLr jk�1. On the other hand, we assume r jk�c/�
such that the time delay due to the propagation of photons can
be neglected as compared to the timescale �−1 of the atomic
evolution.

The electromagnetic field scattered by the atoms can be
expressed as follows in terms of the atomic raising and
lowering operators:

E+
sc (r, t ) = h̄

2d

N∑
j=1

T ∗(|r − r j |)σ−
j (t ), (15)

E−
sc (r, t ) = h̄

2d

N∑
j=1

T (|r − r j |)σ+
j (t ). (16)

With the Wiener-Khinchine theorem [51], the spectrum
(or spectral irradiance) of the scattered field finally results as

I (ω, r, t ) = cε0

π

∫ ∞

−∞
dτ e−iωτ

×
〈
E−

sc

(
r, t + τ

2

)
E+

sc

(
r, t − τ

2

)〉
, (17)

where, due to the rotating frame, ω denotes the detuning with
respect to ωL, i.e., the detected frequency in the laboratory is
given by ωD = ωL + ω.

III. FORMAL SOLUTION OF THE N-ATOM PROBLEM

As proven in Appendix A, every solution of the master
equation (12) relaxes toward a uniquely defined stationary
state. We will in the following focus our attention to this
stationary regime (i.e., we will not consider the transient
behavior observed directly after switching on the incident
laser). In this chapter, we will derive formal solutions for the
stationary state of the N-atom system and the corresponding
spectrum of the light emitted by the atoms.

A. Generalized optical Bloch equations for N atoms

For this purpose, let us first reformulate Eq. (12) as a
generalized optical Bloch equation for N dipole-dipole inter-
acting atoms. To start with, we introduce the 4N -dimensional
generalized Bloch vector


S = 〈
σ1 ⊗ · · · ⊗ 
σN 〉 (18)

which we write as the expectation value of the tensor product
of the single-atom vector operators


σ j =

⎛
⎜⎜⎜⎝
1 j

σ−
j

σ+
j

σ z
j

⎞
⎟⎟⎟⎠ (19)

with σ z
j = |2〉 j〈2| j − |1〉 j〈1| j . The vector 
S completely char-

acterizes the quantum state of the atomic system, and thus can
be interpreted as an alternative representation of the (2N×2N )-
dimensional atomic density matrix.

Evaluating the commutators in Eq. (12), the time evolution
of 
S can be written as


̇S = L
S = (A + V )
S (20)

with L = A + V , where A and V describe the independent and
interaction-induced evolution, respectively. Explicitly,

A =
N∑

j=1

Aj, (21)

V =
N∑

j �=k=1

(TjkB+
j C+

k + T ∗
k jB

−
k C−

j ), (22)

where we introduced the 4×4 matrices

Aj =

⎛
⎜⎜⎝

0 0 0 0
0 iδ − �

2 0 −i	 j/2
0 0 −iδ − �

2 i	∗
j/2

−� −i	∗
j i	 j −�

⎞
⎟⎟⎠

j

, (23)

B+
j =

⎛
⎜⎜⎝

0 0 1 0
1
2 0 0 1

2

0 0 0 0
0 0 −1 0

⎞
⎟⎟⎠

j

, B−
j =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
1
2 0 0 1

2

0 −1 0 0

⎞
⎟⎟⎠

j

,

(24)

C+
j =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 0 i
2

0 −i 0 0

⎞
⎟⎟⎠

j

, C−
j =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 − i
2

0 0 0 0
0 0 i 0

⎞
⎟⎟⎠

j

(25)

acting only on the four-dimensional space associated with
atom j [see Eq. (19)].

Whereas Aj describes the independent evolution of atom j
in presence of the laser field, B±

j and C±
j refer, respectively,

to the emission and absorption of negative- (B+
j and C+

j )
or positive-frequency (B−

j and C−
j ) photons by atom j. The

apparent asymmetry between the matrices B±
j on the one
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hand and C±
j on the other hand originates from the fact

that, as discussed above, the complex coupling Tjk describes
both the reversible far-field dipole-dipole interaction and the
irreversible collective decay. Whereas the former corresponds
to emission of a photon by atom j and subsequent absorption
of this photon by atom k, the latter can be interpreted as a
photon exchange from atom j to k immediately followed by
an irreversible decay of atom k [52]. Both processes differ
in their action on the second atom k, and the correspond-
ing operator C±

k describes the sum of both processes. For
simplicity, we will continue speaking of C±

k as describing
“photon absorption,” keeping in mind that this absorption may
be accompanied by an irreversible decay.

For later convenience, let us note the following general
properties of the above operators: Aj has one eigenvalue 0
and three eigenvalues with negative real parts. The real and
imaginary parts of the latter correspond to the widths and
positions, respectively, of the three peaks of the Mollow triplet
describing the single-atom resonance fluorescence spectrum
for strong enough driving field strengths [31].

The vector (1, 0, 0, 0) is left eigenvector of Aj associated
with the eigenvalue 0, i.e., (1, 0, 0, 0)Aj = (0, 0, 0, 0). The
corresponding right eigenvector 
s (0)

j , defined by

Aj
s (0)
j = 
0, (26)

and the normalization condition (1, 0, 0, 0)
s (0)
j = 1 denotes

the stationary Bloch vector of a single atom driven only by
the laser field.

From the above, it follows that also A = ∑
j A j [see

Eq. (21)] has exactly one eigenvalue zero. The correspond-
ing left eigenvector is given by (1, 0, . . . , 0) = (1, 0, 0, 0)
⊗ · · · ⊗ (1, 0, 0, 0), and the right eigenvector by


S0 = 
s (0)
1 ⊗ · · · ⊗ 
s (0)

N (27)

which fulfills

A
S0 = 
0 (28)

and (1, 0, . . . , 0)
S0 = 1. Finally, the vector (1, 0, . . . , 0) is
also left eigenvector of V . This follows from the fact that the
matrices C±

j [see Eq. (25)] have only zero entries in the up-
permost row. Therefore, (1, 0, . . . , 0) is also left eigenvector
of L = A + V , which governs the time evolution of the Bloch
vector [see Eq. (20)], i.e.,

(1, 0, . . . , 0)L = (0, 0, . . . , 0). (29)

This property ensures conservation of the total norm. In other
words, the expectation value of the identity operator must
remain equal to one at all times. Using this property, it is
possible to reduce the Bloch equation (20) to a (4N − 1)-
dimensional equation for the remaining elements of the Bloch
vector. In the following, however, we will continue working
with the 4N -dimensional form of the Bloch equation since this
will allow us to exploit the tensor product structure expressed
in Eq. (18).

B. Stationary state

As shown in Appendix A, under the condition that the dis-
tances between all pairs of atoms are nonzero, the generalized

Bloch equation (20) has a unique stationary state defined by

L
S = 
0 (30)

and the normalization condition (1, 0, . . . , 0)
S = 1. In the
following, the symbol 
S will always refer to this stationary
solution (unless indicated otherwise). Moreover, we show in
Appendix A that a formal solution for 
S is obtained as follows:


S = lim
ε→0

(
1

ε − L
V + 1

)

S0. (31)

On the basis of this formal solution, a diagrammatic multiple
scattering description is obtained by expanding the operator
(ε − L)−1 in powers of the interaction V (see Sec. IV A
below).

C. Spectrum emitted by N atoms

In the stationary state, the spectrum of the light emitted by
N atoms can be expressed in terms of the following spectral
correlation function [53]:

Pil (ω) = P+
il (ω) + P−

il (ω) (32)

between the atomic raising and lowering operators for atoms
i and l , respectively:

P+
il (ω) =

∫ ∞

0

dτ

2π
e−iωτ 〈σ+

i (τ )σ−
l (0)〉, (33)

P−
il (ω) =

∫ ∞

0

dτ

2π
eiωτ 〈σ+

i (0)σ−
l (τ )〉, (34)

where we assume that the stationary state is reached at time
t = 0. The spectrum measured by a detector placed in the
far field (distance R from the atomic cloud) then results from
Eqs. (15)–(17) as follows:

ID(ω) = h̄ω0�

4πR2

N∑
i,l=1

ei(ri−rl )·kD Pil (ω) (35)

with |kD| = kL, whereas the direction of kD = kLeD indicates
the direction in which the detector is placed with respect to
the atomic cloud. To normalize the spectrum, we divide the
outgoing flux (through a sphere with radius R → ∞) by the
incoming flux:

γ (ω, eD) = lim
R→∞

4πR2

A
ID(ω)

IL
, (36)

where A denotes the transverse (with respect to the direction
kL of the incoming laser beam) area of the scattering medium,
and IL = cε0E2

L/2 the incident laser intensity. The total nor-
malized intensity

γ (eD) =
∫ ∞

−∞
dω γ (ω, eD) (37)

scattered into direction eD is a dimensionless quantity also
known as “bistatic coefficient” [54].

To calculate the spectra P±
il (ω) of the atomic dipoles, we

introduce the following vectors of correlation functions:


D+
l (τ ) = 〈(
σ1 ⊗ · · · ⊗ 
σN )(τ )σ−

l (0)〉, (38)


D−
i (τ ) = 〈σ+

i (0)(
σ1 ⊗ · · · ⊗ 
σN )(τ )〉. (39)
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Due to the quantum regression theorem [55], the correlation
functions follow the same equation as the Bloch vector 
S
[recall Eq. (20) above]:


̇D±
l = L 
D±

l . (40)

These equations must be solved with the initial conditions


D+
l (0) = B−

l

S, (41)


D−
i (0) = B+

i

S (42)

resulting from Eqs. (38) and (39) evaluated at τ = 0, together
with the operator identities 〈
σlσ

−
l 〉 = B−

l 〈
σl〉 and 〈σ+
i 
σi〉 =

B+
i 〈
σi〉 [which were also used in the derivation of Eqs. (20)

and (22) from Eq. (12)]. Solving Eq. (40) by means of Laplace
transform, the spectrum is obtained as

P+
il (ω) = lim

ε→0

1

2π

[
B+

i

1

iω − L + ε
B−

l

S
]

1

, (43)

P−
il (ω) = lim

ε→0

1

2π

[
B−

i

1

−iω − L + ε
B+

l

S
]

1

, (44)

where ε > 0 ensures the existence of the Laplace transform,
and [. . . ]1 refers to the first vector component, i.e., the one
which, for an arbitrary 4N -dimensional vector 
S (not necessar-
ily the stationary Bloch vector), is defined as the scalar prod-
uct with the vector (1, 0, . . . , 0), i.e., [ 
S]1 = (1, 0, . . . , 0) 
S .

The elastic component of the spectrum (i.e., the component
emitted at the same frequency as the laser frequency) origi-
nates from the eigenvalue 0 of L in Eqs. (43) and (44). Using
the corresponding left and right eigenvectors (1, 0, . . . , 0) and

S, we obtain

P(el)
il (ω) = 1

2π
lim
ε→0

(
1

iω + ε
+ 1

−iω + ε

)
[B+

i

S]1[B−

l

S]1

= δ(ω)〈σ+
i 〉〈σ−

l 〉, (45)

where we used [B±
i


S]1 = 〈σ±
i 〉 in the second line.

IV. REPRESENTATION OF THE FORMAL N-ATOM
SOLUTION IN TERMS OF DIAGRAMS

The above formal solutions (43) and (44) for the spectrum
of the light emitted by N atoms placed at arbitrary positions
r1, . . . , rN requires the inverse of 4N -dimensional linear oper-
ators (such as iω − L + ε). For large N , an exact calculation
of this inverse is impossible due to the exponentially large
dimension. In this section, we therefore introduce a dia-
grammatic multiple scattering representation, which will then
allow us (in the following two Secs. V and VI) to perform the
ensemble average over the atomic positions, provided that the
density N of atoms is sufficiently small, i.e., N � k3

L/(4π ).
First, the diagrammatic representation is introduced by

expanding the formal solution in powers of the atom-atom
interaction (see Sec. IV A). Each of the corresponding dia-
grams then specifies a certain sequence of photon exchanges
between a given set of atoms and, using a set of general
rules introduced in Sec. IV B, can be evaluated in terms of
four-dimensional (instead of 4N -dimensional) operators. The
resulting contribution to the spectrum of the light emitted by N

atoms can therefore be reduced to single-atom building blocks
(see Sec. IV C), which, in turn, are related to the solutions of
single-atom Bloch equations (see Sec. IV D). In Sec. IV E, we
finally discuss how the contribution of each diagram depends
on the positions of the respective atoms. We argue that, for
the case of a dilute (or weakly disordered) medium, only
certain types of diagrams survive the ensemble average over
the atomic positions.

Readers who are mainly interested in the application of our
theory may also omit the details of the derivation and jump
directly to our main result, the transport equations presented
in Sec. V D.

A. Expansion of the formal N-atom solution

The formal solutions (43) and (44) for the spectral function
Pil (ω) obtained in Sec. III C can be expanded in powers of the
interaction V using the relation

1

iω−L+ε
= G(ω)+G(ω)V G(ω)+G(ω)V G(ω)V G(ω)+ · · ·

(46)

with L = A + V (see above) and, hence,

G(ω) = 1

iω − A + ε
. (47)

In view of Eqs. (31) and (43), a typical term of the resulting
series has the following form:

P+
il (ω) = · · · + 1

2π
[B+

i G(ω)V G(ω)V G(ω)

× B−
l G(0)V G(0)V G(0)V 
S0]1 + · · ·

(48)

and similarly for P−
il . (From now on, we will omit the

limit ε → 0 and treat ε as an infinitesimally small positive
quantity.)

Let us now consider the operators V appearing in the
expansion (48). Each of them corresponds to a sum over
all atom pairs ( j, k) [see Eq. (22)]. In the following, we
adopt the following convention: for each factor TjkB+

j C+
k , we

draw a dotted line from atom j to atom k. Similarly, for
each factor T ∗

k jB
−
k C−

j , we draw a solid line from atom k to
atom j. Thereby, the exchange of negative-frequency (dotted
lines) and positive-frequency (solid lines) photons between
individual atoms can be visualized in form of a diagram. To
specify the indices i and l of the spectral function Pil (ω), we
attach an outgoing dotted arrow to atom i and a solid arrow
to atom l , which are both labeled by the frequency ω. An
example of a diagram contributing to the spectral function
P44(ω) of atom 4 is shown in Fig. 1. This diagram contains
four photon exchanges, represented by the solid and dashed
arrows pointing from atom 1 to atom 2, and from atoms 1, 2,
and 3 to atom 4. Note that the diagram does not specify the
order in which the respective interaction terms occur in the
series (48). Any diagram such as the one depicted in Fig. 1
thus implicitly contains a sum over all possible orderings. We
will come back to this point below.
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FIG. 1. Exemplary diagram contributing to the spectral function
P44(ω) [see Eq. (32)] of atom 4. The latter is subject to radiation
emitted by atoms 1, 2, and 3. The contribution of this diagram is
evaluated by expanding the formal solution given by Eqs. (31), (32),
(43), and (44) in first order of the couplings T14, T34 (dotted arrows
from 1 to 4 and from 3 to 4) and T ∗

12, T ∗
24 (solid arrows from 1 to 2

and from 2 to 4) indicated in the diagram.

B. Decomposition into single-atom evolutions

To set up a diagrammatic multiple scattering theory for
N atoms, our aim is to express the N-atom signal given by
Eq. (35) in terms of quantities involving only single atoms.
For this purpose, let us look at an arbitrary term of the
series (48), where the photon emission and absorption events
occur in a given order [see the example presented in Fig. 2
and Eq. (58) below]. Both the state 
S0 defined by Eqs. (27)
and (28), as well as the interaction V are already given in terms
of single-atom Bloch vectors 
s (0)

j or single-atom operators
B±

j and C±
j . Furthermore, also G(ω) can be decomposed into

single-atom contributions since it describes the evolution of
independent (noninteracting) atoms. For this purpose, it is

FIG. 2. (a) Same process as shown in Fig. 1 represented in a
different way, where the order in which the photon exchanges occur
is specified (i.e., t5 > t4 > t3 > t2 > t1 > 0) [see Eqs. (58) and (59)].
Vertical lines refer to exchange of photons between atoms and
horizontal lines to single-atom evolutions. (b) Process with the same
local orderings as in (a) (i.e., t1 > 0 for atom 1, t3 > t1 for atom 2,
and t5 > t4 > t3 > t2 > 0 for atom 4), but a different global ordering
(i.e., t1 > t2 instead of t2 > t1).

most convenient to switch to the time domain:

G(ω) =
∫ ∞

0
dt e−(iω+ε)t eAt (49)

and then use

eAt =
N∏

j=1

eAjt (50)

[see Eq. (21)], due to the fact that the operators Aj commute
with each other (since they act on different atoms). The oper-
ator eAjt expresses the time evolution of the Bloch vector for a
single atom j driven only by the laser with Rabi frequency 	 j .

We can now explore (49) and (50) for each G occurring
in (48). The resulting expression can be further simplified by
using the following rules valid for each single atom j:

eAjt2 eAjt1 = eAj (t2+t1 ), (51)

eAjt
s (0)
j = 
s (0)

j , (52)

[eAjt
s j]1 = [
s j]1. (53)

Equations (52) and (53) result from the fact that, as discussed
above, 
s (0)

j and (1,0,0,0) are right and left eigenvectors of
Aj with eigenvalue 0, respectively. Equation (53) is valid for
an arbitrary four-dimensional vector 
s j . Using these rules,
the evolution of each single atom in a given diagram can be
expressed as a sequence of photon absorption and emission
events (described by B+

j , B−
j ,C+

j , or C−
j ) with single-atom

propagators (eAjt ) sandwiched in-between [see also the exam-
ple (59) presented below].

Finally, we switch back to the frequency domain by apply-
ing ∫ ∞

−∞

dω

2π
eiωt G j (ω) =

{
eAjt for t > 0,

0 for t < 0
(54)

with

Gj (ω) = 1

iω − Aj + ε
, (55)

to each single-atom time propagator eAjt . All of them are
evaluated at t > 0 [see Eq. (49)]. Since all poles of Gj (ω)
are located in the upper half of the complex plane (due to the
fact that ε > 0 and that the eigenvalues of Aj exhibit zero or
negative real parts, as mentioned above), Eq. (54) vanishes for
t < 0. Therefore, we may extend the limits of integration to
the entire real axis (from −∞ to +∞), for each time variable.
Doing so amounts to considering the sum of all terms that
arise from the original one by permuting the order of emission
and absorption events in such a way that the “local ordering”
for each single atom is preserved (see the example shown in
Fig. 2 below). The time integrals can then be performed using
the rule

∫ ∞
−∞ dt exp(iωt ) = 2πδ(ω).

Consider, e.g., a photon exchange event between atoms j
and k. If ω j and ω′

j denote the frequencies of the single-atom
evolutions Gj (ω j ) and Gj (ω′

j ) before and after the photon
exchange, respectively, and likewise for atom k, we obtain∫ ∞

−∞
dt ei(ω j+ωk−ω′

j−ω′
k )t = 2πδ(ω j + ωk − ω′

j − ω′
k ). (56)
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We see that the frequencies of atom j and k change by the
same amount, but with opposite sign: ω′

j − ω j = −(ω′
k − ωk ).

This defines the frequency of the exchanged photon. We
choose its sign such that each emission B±

j of a photon ω

changes the frequency of atom j by ∓ω and, correspondingly,
each absorption C±

j by ±ω.
In summary, the contribution of each single diagram with

given local orderings to (48) is determined as follows:
(i) The contribution of each single atom j is described by a

sequence

[
V

(n j )
j G j

(
ω

(n j−1)
j

)
V

(n j−1)
j . . .V (2)

j G j
(
ω

(1)
j

)
V (1)

j 
s (0)
j

]
1

of photon emission and absorption events V (m)
j ∈

{B+
j , B−

j ,C+
j ,C−

j }, according to the given local ordering.
Since [C±

j 
s j]1 = 0 for an arbitrary four-dimensional vector 
s j

[see Eq. (25)], the last event in this sequence must correspond
to a photon emission event, i.e., V

(n j )
j ∈ {B+

j , B−
j }.

(ii) The arguments ω
(m)
j of the single-atom evolutions Gj

are related to the frequencies ω(m) of the emitted or absorbed

photons as follows:

ω
(m)
j − ω

(m−1)
j =

{+ω(m) if V (m) ∈ {B−
j ,C+

j },
−ω(m) if V (m) ∈ {B+

j ,C−
j }, (57)

where ω
(0)
j = ω

(n j )
j = 0 (since no single-atom evolution Gi

occurs before the first or after the last photon emission or
absorption). If n j = 1, i.e., if atom j participates in only one
single event (which then must be a photon emission), the fre-
quency ω(1) of the corresponding photon vanishes according
to Eq. (57).

(iii) Multiply the contributions of each single atom, inte-
grate over the frequencies (divided by 2π ) of the exchanged
photons which are not determined by Eq. (57), multiply the
result by the prefactors Tjk and T ∗

jk originating from the prop-
agation of photons in the given diagram, and finally divide by
2π [see Eq. (48)].

To illustrate the above general recipe, consider the example
shown in Fig. 2(a). It shows the same process as Fig. 1 in
a different representation, where the ordering of the photon
emission and absorption events is specified (0 < t1 < t2 <

· · · < t5). As explained in Sec. IV A above, this diagram
corresponds to the following mathematical expression:

P(F2a)
44 (ω) = T14T34T ∗

12T ∗
24

2π
[B+

4 G(ω)B−
4 G(0)B−

2 C−
4 G(0)B+

3 C+
4 G(0)B−

1 C−
2 G(0)B+

1 C+
4


S0]1. (58)

Here (and in the following examples), P(FX )
il (ω) denotes the contribution to the spectral correlation function Pil (ω) defined by

the diagram shown in Fig. X (where X = 1, 2(a), 2(b), 5(a), or 5(b).
Next, we express each of the five terms G representing the evolution of N noninteracting atoms in presence of the laser driving

in terms of single-atom evolutions by using Eqs. (49) and (50). This leaves us with the following fivefold integral over the time
variables t1, . . . , t5:

P(F2a)
44 (ω) = T14T34T ∗

12T ∗
24

2π

∫ ∞

0
dt1

∫ ∞

t1

dt2· · ·
∫ ∞

t4

dt5
[
e(t5−t1 )A1 B−

1 et1A1 B+
1 
s (0)

1

]
1

[
e(t5−t3 )A2 B−

2 e(t3−t1 )A2C−
2 et1A2
s (0)

2

]
1

×[
e(t5−t2 )A3 B+

3 et2A3
s (0)
3

]
1

[
B+

4 e(t5−t4 )A4 B−
4 e(t4−t3 )A4C−

4 e(t3−t2 )A4C+
4 et2A4C+

4 
s (0)
4

]
1 e−iω(t5−t4 ), (59)

where we used the product rule (51). Now, rule (52) allows us to eliminate the evolutions et1A2 and et2A3 on the right-hand side
of the expressions for atoms 2 and 3, respectively. Similarly, rule (53) eliminates the propagators e(t5−t1 )A1 , etc., on the left-hand
side for atoms 1, 2, and 3. We now express each of the remaining six single-atom time propagators in frequency space [see
Eq. (54)], and extend the lower limits of all time integrations to −∞. Since Eq. (54) determines only the local ordering of
emission and absorption events for each single atom (i.e., t1 > 0 for atom 1, t3 > t1 for atom 2, and t5 > t4 > t3 > t2 > 0 for
atom 4), we thereby obtain an additional contribution from the process shown in Fig. 2(b), which exhibits the same local ordering
as Fig. 2(a), but a different global ordering (i.e., t1 > t2 instead of t2 > t1). Thus, the resulting expression directly yields the sum
of both diagrams in Figs. 2(a) and 2(b).

Applying the “δ-function rule” [e.g., Eq. (56)] for each time integral (which eliminates five among the six frequency
integrations), we are left with the following integral over the frequency ω1:

P(F2a)
44 (ω) + P(F2b)

44 (ω) = T14T34T ∗
12T ∗

24

2π

∫ ∞

−∞

dω1

2π

[
B−

1 G1(−ω1)B+
1 
s (0)

1

]
1

[
B−

2 G2(−ω1)C−
2 
s (0)

2

]
1

×[
B+

3 
s (0)
3

]
1

[
B+

4 G4(ω)B−
4 G4(0)C−

4 G4(ω1)C+
4 G4(ω1)C+

4 
s (0)
4

]
1. (60)

The frequency ω1 is associated with the photon exchanges
T14, T ∗

12, and T ∗
24, whereas the photon exchanged between 3

and 4 carries frequency zero (i.e., the same frequency as the
laser frequency). Analyzing the frequency arguments of the
single-atom evolution operators Gj ( j = 1, 2, 4), we verify

the general rule stated above [see Eq. (57)], according to
which each emission B−

j or B+
j of a positive- or negative-

frequency photon ω1 changes these arguments by +ω1 or
−ω1, and each absorption C−

j or C+
j by −ω1 or +ω1,

respectively.
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FIG. 3. Graphical representation of the single-atom building
blocks which can be used to construct every relevant diagram in
this article (i.e., ladder and crossed diagrams, see Sec. IV E). The in-
coming photons ω1, . . . , ωn may carry negative or positive frequency
(dotted or solid arrow), corresponding to superscript α j = + or − in
the respective symbols s(α1 ...αn ) and P(α1 ...αn ). In (a), the frequency
of the outgoing photon is fixed to ω = −∑

j α jω j , whereas ω =∑
j α jω j in (b) and ω − ω′ = ∑

j α jω j in (c) [see Eq. (65)]. All
three building blocks can be calculated by solving the optical Bloch
equations for a single atom driven by a polychromatic classical field
[see Eqs. (74)–(76)].

C. Single-atom building blocks

The procedure outlined in Sec. IV B allows us to ex-
press the contribution of any diagram involving an arbitrary
number of atoms in terms of single-atom evolutions which

are coupled to each other through the frequencies of the
exchanged photons. As we will argue in the next section,
for the case of a dilute atomic medium, only those diagrams
contribute to the average photodetection intensity ID(ω)
[see Eq. (35)], where each atom appears only once as an
emitter of an exchanged photon with positive or negative
frequency, respectively, corresponding to the application of
at most one photon emission operator B+

i and/or B−
i . Cor-

respondingly, we obtain three different single-atom building
blocks [56], which are depicted in Fig. 3. Summing over all
possible local orderings of the photon emission and absorp-
tion events, we obtain the corresponding expressions for the
building blocks shown in Figs. 3(a) and 3(b):

s±
ri

(ω1, . . . , ωn)(α1...αn )

=
∑

π ( j1,..., jn )

[
B±

i Gi

(
n∑

k=1

α jk ω jk

)
C

α jn
i . . . Gi(α j1ω j1

+α j2ω j2 )C
α j2
i Gi

(
α j1ω j1

)
C

α j1
i 
s (0)

i

]
1

, (61)

where π ( j1, . . . , jn) denotes n! permutations of indices
j1, . . . , jn ∈ {1, . . . , n}. This structure of the building blocks
s±

ri
follows from the general rules (i) and (ii) established in

Sec. IV B [see Eq. (57)]. The photon emission event B±
i oc-

curring at the end of the sequence determines the frequency of
the emitted photon as ω = ±∑

j α jω j according to Eq. (57).
The notation s±

ri
with index ri indicates that the dependence

on i enters only through the position ri, due to the position-
dependent laser amplitudes 	i. This will be important later
when performing the average over the atomic positions.

Similarly, the expression of the building block shown in
Fig. 3(c) involving two photon emission events B+

i and B−
i

reads as

Pri (ω1, . . . , ωn; ω)(α1...αn ) = P+
ri

(ω1, . . . , ωn; ω)(α1...αn ) + P−
ri

(ω1, . . . , ωn; ω)(α1...αn ), (62)

where

P+
ri

(ω1, . . . , ωn; ω)(α1...αn ) = 1

2π

∑
π ( j1,..., jn )

[
B+

i Gi(ω)Cα jn
i . . .C

α j2
i Gi

(
ω′ + α j1ω j1

)
C

α j1
i Gi(ω

′)B−
i 
s (0)

i

+B+
i Gi(ω)Cα jn

i . . .C
α j2
i Gi

(
ω′ + α j1ω j1

)
B−

i Gi
(
α j1ω j1

)
C

α j1
i 
s (0)

i

+ · · · + B+
i Gi(ω)B−

i Gi(ω − ω′)Cα jn
i . . .C

α j1
i 
s (0)

i

]
1, (63)

P−
ri

(ω1, . . . , ωn; ω)(α1...αn ) = 1

2π

∑
π ( j1,..., jn )

[
B−

i Gi(−ω′)Cα jn
i . . .C

α j2
i Gi

(−ω + α j1ω j1

)
C

α j1
i Gi(−ω)B+

i 
s (0)
i

+B−
i Gi(−ω′)Cα jn

i . . .C
α j2
i Gi

(−ω + α j1ω j1

)
B+

i Gi
(
α j1ω j1

)
C

α j1
i 
s (0)

i

+ · · · + B−
i Gi(−ω′)B+

i Gi(ω − ω′)Cα jn
i . . .C

α j1
i 
s (0)

i

]
1 (64)

with

ω′ = ω −
n∑

j=1

α jω j . (65)

Again, we sum over all possible permutations of the n absorption events C±
i and the two emission events B±

i . As explained
above, one of the two B±

i ’s must occur at the end of the sequence.
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The building block P as defined by the above equations
exhibits, both inelastic and elastic components. In this respect,
it differs from the corresponding quantity introduced in [56]
which contains only the inelastic component.

Arbitrary diagrams involving at most one emission B+
i

and/or B−
i of an exchanged photon per atom can now be

constructed by connecting these building blocks to each other.
For this purpose, the outgoing arrow of one building block is
identified with an incoming arrow of another building block.
Each occurrence of a building block P leads to an integral
over the frequency of the exchanged photon since only the
difference between the outgoing frequencies ω and ω′ is
determined by the incoming frequencies in Fig. 3(c).

Remember, however, that the above building blocks in-
volve a sum over all possible local orderings. When con-
necting different building blocks to each other, we must
verify that these orderings are consistent with each other.
For example, if a positive- and a negative-frequency photon
are emitted by the same atom [see building block Fig. 3(c)],
and subsequently absorbed by another atom, the ordering of
the absorption events must coincide with the ordering of the
corresponding emission events. (Remember that time delays
resulting from propagation of photons between atoms are
neglected in our N-atom master equation.) This condition
may apparently be violated if one sums over all possible
orderings independently for each building block. However, all
“forbidden” combinations of terms (i.e., those which exhibit
an inconsistent ordering) vanish identically since, in the time-
domain representation, these combinations contain retarded
single-atomic propagators evaluated at negative times, which
vanish due to Eq. (54).

For performing the ensemble average over the atomic po-
sitions (see below), the dependence of the building blocks on
r plays an important role. Using the structure of the matrices
A, B±, and C± defined in Eqs. (23)–(25), it is possible to show
that

s±(α1...αn )
r = ei(α1+···+αn∓1)kL ·rs±(α1...αn )

0 , (66)

P(α1...αn )
r = ei(α1+···+αn )kL ·rP(α1...αn )

0 . (67)

As an example, let us illustrate the use of single-atom building
blocks in the example shown in Fig. 1. The final result for the
contribution of this diagram, including all possible orderings
of photon emission and absorption events, reads as follows:

P(F1)
44 (ω) = T14T34T ∗

12T ∗
24

∫ ∞

−∞
dω1 Pr1 (ω1)

×s−
r2

(ω1)(−)s+
r3

Pr4 (ω1, ω1, 0; ω)(+−+). (68)

D. Single-atom Bloch equations

So far, we have shown that the spectrum emitted by N
laser-driven atoms can be represented in terms of diagrams
composed of single-atom building blocks. This constitutes
the first main result of this paper, and generalizes the results
previously established for the cases of N = 2 [57] and N = 3
atoms [56] to an arbitrary number of atoms. In a second
step, we now establish a method to perform the sum over all
relevant diagrams.

To do so, we rely on the fact that the above building
blocks can be calculated by solving single-atom optical Bloch
equations for polychromatic driving fields representing the
incoming photons. Let us consider a field of the form

E (t ) = e−iωLt E+(t ) + eiωLt E−(t ) (69)

with positive- and negative-frequency components (in the
frame rotating with frequency ±ωL):

E+(t ) =
n∑

j=1

E+
j e−iω j t , (70)

E−(t ) =
n∑

j=1

E−
j eiω j t . (71)

The time evolution of the atomic Bloch vector 
s = 〈
σ 〉 for an
atom placed at position r driven by this field in addition to the
laser field with associated Rabi frequency 	(r) is given by


̇sr(t ) =
[

A(r) + C+ 2d

h̄
E−(t ) + C− 2d

h̄
E+(t )

]

sr(t ), (72)

where A(r),C+, and C− are the same 4×4 matrices as those
in Eqs. (23) and (25), but without subscripts, and 	 j replaced
by 	(r).

We consider the solution of Eq. (72) starting from an
arbitrary initial condition at time t0 � −1/�, such that a
quasistationary state is reached at time t = 0. Due to the time
dependence of the driving field, this state is not truly station-
ary, but quasistationary in the sense that it does not depend on
the initial condition, thus being uniquely determined by the
driving field. Let us expand this quasistationary solution in a
Taylor series with respect to the time-dependent driving fields:


sr(t ) = 
s(0)
r +

n∑
j=1

∑
α j=±

E
α j

j (t )
∂
sr(t )

∂E
α j

j (t )

+ 1

2!

n∑
j,k=1

∑
α j ,αk=±

E
α j

j (t )Eαk
k (t )

∂2
sr(t )

∂E
α j

j (t )∂Eαk
k (t )

+ · · · ,

(73)

where E
α j

j (t ) = E
α j

j e−iα jω j t , and the derivatives are evaluated
at E±

1 = · · · = E±
n = 0. In the quasistationary regime (i.e., for

t � 0), the partial derivatives thereby defined are independent
of t . Since the expansion of the quasistationary solution of
Eq. (72) in powers of the Rabi frequencies 	±

j = 2dE±
j /h̄

induced by the driving fields leads exactly to the same expres-
sion as given in Eq. (61), the building blocks s±

r are obtained
as the nth-fold partial derivative [58]:

s±
r (ω1, . . . , ωn)(α1...αn ) =

(
h̄

2d

)n
∂ns±

r (t )

∂E−α1
1 (t ) . . . ∂E−αn

n (t )
(74)

evaluated at E±
1 = · · · = E±

n = 0. Note that the superscript
αi = ± corresponds to a probe field with opposite sign E∓

i . A
similar rule applies to the third building block Pr, if we apply
the quantum regression theorem [55] to calculate the atomic
correlation functions 〈σ+(τ )σ−(0)〉r and 〈σ+(0)σ−(τ )〉r [see
Eqs. (B5) and (B6) in Appendix B, and expand these in a
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Taylor series as above:

P+
r (ω1, . . . , ωn; ω)(α1...αn )

=
(

h̄

2d

)n ∫ ∞

0

dτ

2π
e−iω′τ ∂n〈σ+(τ )σ−(0)〉r

∂E−α1
1 (τ ) . . . ∂E−αn

n (τ )
, (75)

P−
r (ω1, . . . , ωn; ω)(α1...αn )

=
(

h̄

2d

)n ∫ ∞

0

dτ

2π
eiωτ ∂n〈σ+(0)σ−(τ )〉r

∂E−α1
1 (τ ) . . . ∂E−αn

n (τ )
. (76)

Again, the partial derivatives are evaluated at E±
1 = · · · =

E±
n = 0. In principle, the Fourier transform of 〈σ+(τ )σ−(0)〉r

with respect to τ yields the spectrum as a function of the
frequency ω of the emitted negative-frequency photon in
Eq. (75). Due to the time dependence exp (i

∑
j α jω jt ) of the

incident fields together with Eq. (65), however, the frequency
ω is shifted to ω′ in Eq. (75), and vice versa (from ω′ to ω) in
Eq. (76).

E. Ladder and crossed diagrams

In Sec. IV C, we restricted ourselves to diagrams con-
structed from the single-atom building blocks shown in Fig. 3.
In this section, we justify this restriction, and further spec-
ify the types of diagrams considered in this paper. For this
purpose, we employ the assumption of a dilute (or weakly
disordered) medium, where the distances between atoms are
much larger than the wavelength of the scattered light. More
precisely, we assume that, at any point r inside the atomic
cloud, the density N (r) of atoms fulfills N (r) � k3

L/(4π ),
which, as we will see later (see Sec. VII A), implies the
condition kL� � 1 (with scattering mean-free path �) of a
weakly disordered medium mentioned in the Introduction.
Furthermore, we restrict ourselves to calculating the ensemble
average of the detected spectrum [Eq. (35)], where the average
is taken over the atomic positions r j . The latter are assumed
to be distributed independently from each other inside a
certain volume V . This assumption requires the temperature
of the atomic cloud to lie well above the threshold for Bose-
Einstein condensation since, otherwise, quantum-statistical
correlations between atomic positions become relevant [59].

Under these assumptions, standard diagrammatic methods
known from multiple scattering theory (e.g., [1,7]) can be
employed, which essentially correspond to an expansion in
the small parameter 1/(kL�). In particular, it is well estab-
lished that, for the case of a weakly disordered medium,
only diagrams exhibiting a certain simple structure survive
the ensemble average. This is demonstrated by noting that
the couplings Tjk between the atoms [see Eq. (14)] exhibit
phase factors eikLr which sensitively depend on the distance r
between the respective atoms. Under the condition kLr � 1
(dilute medium), the corresponding phase is approximately
uniformly distributed in the interval [0, 2π ], such that it van-
ishes on average. Therefore, the only diagrams which survive
the average are those where each coupling Tjk is accompanied
by its complex conjugate T ∗

jk or T ∗
k j , in order to compensate the

random phase of the former. In some cases, the phase of Tjk

can also be compensated by the phases of the laser amplitudes
	 j and 	k , as further discussed below.

In addition to the condition of vanishing phases, we may
furthermore neglect diagrams involving closed loops of pho-

FIG. 4. Processes involving closed loops of photons which we
neglect in our treatment. (a) Atom 1 emits a photon, which is
scattered by atoms 2, 3, and 4, and then reabsorbed by 1. This
process leads, in principle, to a change of the atomic decay rate
and resonance frequency as compared to an atom placed in vacuum
[46]. However, these changes are small for a dilute atomic cloud.
(b) Atom 3 emits a correlated pair of photons, which then meet again
at atom 1. Similarly as in (a), also this process involves a closed loop,
and its weight hence tends to zero in the limit of decreasing atomic
density. Both processes involve single-atom building blocks of higher
order (i.e., with more outgoing arrows) than those depicted in Fig. 3
[see atom 1 in (a) and atom 3 in (b)].

tons (see Fig. 4). These include both processes where a pho-
ton, described by a conjugate pair of solid and dotted arrows,
is emitted by an atom, scattered by other atoms, and then
reabsorbed by the former atom [see Fig. 4(a)], and processes
where an atom emits two photons which then meet again at
another atom [see Fig. 4(b)]. Even if their phase vanishes,
such processes can be neglected: It is known from the theory
of multiple scattering (e.g., [1,6,7]) that the probability of

FIG. 5. (a) Exemplary ladder diagram describing light emitted
by single atoms (here: atom 6). Atoms are irradiated either by single
incident fields (here: atom 2 by atom 1) describing the attenuation of
the laser amplitude inside the atomic cloud, or by pairs of positive-
and negative-frequency photon amplitudes (solid and dotted arrows)
following the same path through the atomic medium. The scattering
by atom 5 describes the refractive index of the atomic medium
modifying propagation between atoms 4 and 6 as compared to prop-
agation in vacuum. (b) Crossed diagram describing interference of
light emitted from atoms 3 and 6 leading to coherent backscattering.
This diagram is obtained from the ladder diagram by reversing the
scattering sequence 3 → 4 → 5 → 6 of the solid arrows in (a). As
argued in the main text, ladder and crossed diagrams describe the
average intensity of emitted light in the case of a dilute atomic
medium, where the distances between atoms are much larger than
the wavelength of the incident laser.
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“recurrent scattering,” i.e., the probability of a photon return-
ing to the same atom from which it has been emitted, scales
like 1/(kL�) (with mean-free path �) and thus can be neglected
in the dilute (i.e., weakly disordered) regime kL� � 1 (in 3D).
This “self-avoiding multiple scattering” (SAMS) assumption
was experimentally demonstrated to be valid [13] precisely
in the limit of weak disorder considered in this work. Due
to time-reversal symmetry, the same conclusion holds for
processes where two photons emitted by the same atom meet
again at another atom since these processes can be converted
to recurrent scattering processes by inverting the direction of
the arrows belonging to one of the two photons (see Fig. 4).
The neglect of closed loops allows us to restrict ourselves
to those diagrams which can be constructed from the three
single-atom building blocks defined above (see Fig. 3).

Among the latter, the diagrams with vanishing phase can
be divided into two classes called “ladder” and “crossed
diagrams” in the following. Ladder diagrams are defined by
the condition that two conjugate amplitudes (solid and dotted
arrows) of a photon emitted by one atom “remain together”
in the sense that they are absorbed by the same atom. In-
between, they may undergo an arbitrary sequence of scattering
events described by the building blocks s±

r , which, as we
will see later, describe the refractive index of the atomic
medium. An example is shown in Fig. 5(a). We see pairs of
copropagating conjugate photon amplitudes (solid and dotted

arrows) from atom 2 to atom 6, from atom 3 to atom 4, and
from atom 4 to atom 6, with intermediate scattering of the
solid arrow at atom 5 in the latter case. Due to the condition
of vanishing phases, this process contributes only if atom 5 is
placed in the vicinity of the straight line connecting atoms 4
and 6. In addition, atom 2 is irradiated by a single-photon
amplitude from atom 1 which, as discussed below, describes
the attenuation of the incident laser beam. If the line from
atom 1 to 2 is parallel to kL, the phase of the coupling T ∗

21
is compensated by the phases of the laser fields acting on
atoms 1 and 2 since s−

r1
∝ exp(ikL · r1) and Pr2 (0; ω3)(−) ∝

exp(−ikL · r2) according to Eqs. (66) and (67).
Crossed diagrams result from ladder diagrams by reversing

the direction of single arrows, thus describing interference
between counterpropagating amplitudes. The diagram shown
in Fig. 5(b), for example, contributes to the interference
P63(ω) between light emitted by atoms 3 and 6, respectively,
with corresponding phase factor exp[i(kD + kL ) · (r6 − r3)],
which follows from Eqs. (35) and (67). Therefore, crossed
diagrams contribute, on average, only in the vicinity of the
backscattering direction kD � −kL, giving rise to the coherent
backscattering cone. In contrast, the ladder diagrams do not
sensitively depend on the outgoing direction kD, and thus
describe the diffusive background of the scattered light.

The equations corresponding to the above exemplary dia-
grams are

P(F5a)
66 (ω) = |T34|2T46T ∗

45T ∗
56|T26|2T ∗

12

∫ ∞

−∞
dω1dω2dω3Pr3 (ω1)Pr4 (ω1, ω1; ω2)(+−)s−

r5
(ω2)(−)

×s−
r1

Pr2 (0; ω3)(−)Pr6 (ω2, ω2, ω3, ω3; ω)(+−+−), (77)

P(F5b)
63 (ω) = T ∗

43T34T46T ∗
54T ∗

65|T26|2T ∗
12

∫ ∞

−∞
dω1dω2dω3Pr3 (ω1; ω − ω1)(−)Pr4 (ω − ω1, ω2; ω − ω2)(+−)s−

r5
(ω2)(−)

×s−
r1

Pr2 (0; ω3)(−)Pr6 (ω − ω2, ω3, ω3; ω)(+−+). (78)

In accordance with the rules that determine the frequencies
of the outgoing photons in Fig. 3, we see that copropagating
photon pairs always carry the same frequency, i.e., ω1, ω2, or
ω3 in Fig. 5(a) and ω3 in Fig. 5(b), whereas the frequencies
(ωi, ω

′
i ) of counterpropagating photons are related by ω′

i =
ω − ωi, i.e., (ω1, ω − ω1) and (ω2, ω − ω2) in Fig. 5(b). In the
following, however, we will not be concerned with evaluating
the contributions of individual diagrams such as the ones
shown in Fig. 5, but rather derive transport equations the
solution of which yields the sum of all ladder and crossed
diagrams.

V. SUMMATION OF LADDER DIAGRAMS

In the previous Sec. IV, we introduced a diagrammatic
representation for the spectrum of light radiated by N atoms
and argued that only a special class of diagrams, known as
ladder and crossed diagrams, survive the ensemble average
over the atomic positions in the case N � k3

L/(4π ) of a dilute
(or weakly disordered) medium (where N denotes the density
of atoms and kL the wave number of the incident laser).
We now proceed with our presentation by deriving a set of
nonlinear integral equations, the solution of which yields the

sum of all ladder diagrams. In a first step (Sec. V A), we
show that the treelike structure of ladder diagrams allows us to
neglect quantum correlations between scattered photons, and
thereby to obtain the average spectrum of the light emitted by
an atom placed at a given position r by solving the single-atom
optical Bloch equations in the presence of a stochastic, poly-
chromatic classical field representing the light emitted from
all other atoms. Then, we determine the average refractive
index of the atomic medium describing the propagation of
light between two scattering events at r and r′ (Sec. V B)
and the attenuation of the incident laser beam (Sec. V C). In
Sec. V D, we finally combine all those ingredients to obtain
a coupled set of transport equations for the laser amplitude
E+

L (r), on the one hand, and the average spectral irradiance
I (ω, r) of the scattered fields, on the other hand.

A. Description of incident radiation as stochastic classical field

Let us first, for simplicity, concentrate on diagrams com-
posed of the building block P shown in Fig. 3(c). These
diagrams describe nonlinear and inelastic scattering of light in
the atomic cloud, while neglecting the effects of propagation
in the atomic medium between two subsequent scattering
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events, which, as discussed later, originate from the remaining
building blocks s± shown in Figs. 3(a) and 3(b). An example
of such a diagram is shown in Fig. 6. To arrive at a complete
summation of all these diagrams, we must take into account
that each atom can be irradiated by an arbitrary number n of
other atoms, and sum over n. The spectrum radiated by one
atom can then serve as incident spectrum for another atom,
and so on.

Taking the ensemble average over the atomic positions ri,
the sum of all these ladder diagrams can be expressed as a
nonlinear integral equation for the average spectral density

P (ω, r) =
N∑

j=1

Pj j (ω)δ(r − r j ) (79)

of the dipole correlation function of an atom placed at position
r:

FIG. 6. Exemplary ladder diagram. Each atom is irradiated by
the intensity emitted from other atoms (represented as pairs of solid
and dotted arrows) which, in turn, are again irradiated by other atoms,
and so on. Notice the treelike structure leading to the fact that, for
each single atom, the incident intensities are uncorrelated with each
other.

P (ω, r) = N (r)
∞∑

n=0

1

n!

∫
V

dr1 . . . drn

∫ ∞

−∞
dω1 . . . dωn

[
n∏

k=1

|T (|r − rk|)|2P (ωk, rk )

]
Pr(ω1, ω1, . . . , ωn, ωn; ω)(+−···+−). (80)

Here, N (r) denotes the density of atoms at r, i.e., N (r) = 0
for r /∈ V and

∫
V drN (r) = N . The factor 1/n! arises from

the selection of n out of N atoms [i.e.,
(N

n

) � Nn/n! for
N � n]. Equation (80) states that the spectrum P (ω, r) of
an atom at position r is influenced by the spectra emitted
from arbitrarily many other atoms placed at r1, . . . , rn. Due
to the treelike structure of the ladder diagrams (with different
branches referring to different atoms) (see Fig. 6), and due
to the fact that the atomic positions are distributed indepen-
dently, these incident spectra are uncorrelated with each other.
Therefore, the ensemble average over the product of these
spectra can be factorized, leaving us with a product of average
spectra

∏
k P (ωk, rk ) on the right-hand side of Eq. (80).

We now show that the right-hand side of Eq. (80) can be
expressed in terms of the spectrum radiated by a single atom
under the influence of a classical, stochastic driving field (in
addition to the laser field). For this purpose, we represent
the continuous frequency variables on a discrete lattice of
frequencies ω j = j�ω. The frequency spacing �ω must be
chosen small enough such that it does not influence the final
result presented below. (From our numerical calculations, we
find that �ω � � is sufficiently small.) Let us now consider
a classical field of the form

E±(t ) =
∞∑

j=−∞

M∑
k=1

E±
jke∓iω j t , (81)

where

E±
jk =

(
�ω I (ω j, r)

2cε0M

)1/2

e±iφ jk . (82)

The phases φ jk are independent random variables uniformly
distributed in the interval [0, 2π ], and M is a very large
number approximately of the same order as the number N of
atoms. Furthermore, I (ω j, r) represents the average spectrum

of the light emitted from all atoms:

I (ω j, r) = h̄2cε0

2d2�ω

∫ ω j+ �ω
2

ω j− �ω
2

dω

∫
V

dr′|T (|r − r′|)|2P (ω, r′).

(83)

Our claim is that the average spectrum P (ω, r) of the dipole
correlation function of an atom at r can be calculated by
modeling the fields emitted from all other atoms by the
stochastic classical field given by Eq. (81). To show this, we
remind ourselves of the fact that the building block Pr gives
the derivatives of the single-atom spectrum with respect to
an incident classical field [see Eqs. (75) and (76)]. Let us
therefore consider the single-atom spectrum

Pr(ω) =
∫ ∞

0

dτ

2π
e−iωτ 〈σ+(τ )σ−(0)〉r

+
∫ ∞

0

dτ

2π
eiωτ 〈σ+(0)σ−(τ )〉r (84)

induced by the above stochastic classical field (in addi-
tion to the laser field) in the quasistationary state, and ex-
pand the dipole correlation functions 〈σ+(τ )σ−(0)〉r and
〈σ+(0)σ−(τ )〉r in powers of the incident field amplitudes
E±

jk , in the same way as 
sr(t ) in Eq. (73). If we now take
the average with respect to the random phases φ jk (de-
noted by the overbar (cl) in the following), we see that
only such terms survive the average where each derivative
with respect to E+

jk is counterbalanced by a derivative with
respect to the complex-conjugate component E−

jk . Due to
the large number of different fields (remember that M is
very large), we can furthermore neglect double (and higher)
derivatives with respect to the same field component. Using
Eqs. (75) and (76) (where ω = ω′), the average of Pr(ω)
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with respect to the random phases φ jk is therefore given by

Pr(ω)
(cl) =

∞∑
n=0

∞∑
j1,..., jn=−∞

M∑
k1,...,kn=1

1

(2n)!

(
2n
n

)
n!

(
2d

h̄

)2n
�ω I (ω j1 , r)

2cε0M
· · · �ω I (ω jn , r)

2cε0M
Pr(ω j1 , ω j1 , . . . , ω jn , ω jn ; ω)(+−···+−).

(85)

The factor 1/(2n)! arises from the Taylor series (as prefactor
for all terms involving a 2n-fold derivative). The binomial
term

(2n
n

)
originates from selecting n out of the 2n fields as

fields with positive frequency. Finally, the factor n! describes
all possible pairings of the n positive-frequency fields with the
n negative-frequency fields. Together, these factors yield 1/n!
and thereby reproduce the corresponding term in Eq. (80).
Moreover, the sums over k1, . . . , kn drop out together with
the denominators 1/M. Together with Eq. (83), we see that
the right-hand side of Eq. (85) indeed reproduces, in the limit
�ω → 0, the right-hand side of Eq. (80) [apart from the factor
N (r), which arises in Eq. (79) from the probability to find an
atom at r]. Therefore,

P (ω, r) = N (r)Pr(ω)
(cl)

(86)

which proves our above claim.
Before proceeding, we note that, for large M, the field

defined by Eq. (81) can be simplified as follows: since the
intensity resulting from a sum of many fields carrying the
same frequency, but with random phases, is known to fulfill
Rayleigh statistics [60], we can rewrite Eq. (81) as follows:

E±(t ) =
∞∑

j=−∞

(
�ωI j

2cε0

)1/2

e∓i(ω j t−φ j ), (87)

where, again, φ j represents a random phase (uniformly dis-
tributed in [0, 2π ]), whereas I j � 0 is a random variable with

probability distribution p(I j ) given by the Rayleigh law:

p(I j ) = 1

I (ω j, r)
e−I j/I (ω j ,r). (88)

Thereby, the statistical properties of the stochastic classical
field are completely characterized in terms of the average
spectrum I (ω j, r) [see Eq. (83)].

B. Average refractive index of the atomic medium

As already mentioned above, the sum of all ladder di-
agrams expressed in form of a nonlinear integral equation
for the average spectral density P (ω, r) of the atomic dipole
correlation function [see Eq. (80)] does not take into account
effects due to the refractive index of the atomic medium. This
becomes evident in the fact that the propagation of photons
between atoms in Eq. (83) is described by the function T (r)
[see Eq. (14)], which amounts to propagation in vacuum.

For a dilute medium, it is possible to calculate the refractive
index by considering scattering from just one single atom. Let
us therefore examine the process depicted in Fig. 7(b). Here,
propagation between r1 and r2 is modified by the presence of
an atom at r. The corresponding single-atom building block
can be calculated (summing over arbitrarily many incident
intensities emitted from other atoms) in a similar way as
above. It turns out that the intensities emitted from the other
atoms can again be represented by the stochastic classical field
introduced in Sec. V A, whereas the additional incident field
emitted from r1 turns into a partial derivative ∂/∂E+

ω (t ):

∞∑
n=0

1

n!

∫
V

dr′
1 . . . dr′

n

∫ ∞

−∞
dω1 . . . dωn

[
n∏

k=1

|T (|r − r′
k|)|2P (ωk, r′

k )

]
s−

r (ω1, ω1, . . . , ωn, ωn, ω)(+−···+−−) = h̄

2d

∂s−
r (t )

∂E+
ω (t )

(cl)

.

(89)

To evaluate the right-hand side of Eq. (89), we consider the
solution s−

r (t ) of the single-atom Bloch equation (72) in the

FIG. 7. (a) The propagation of a positive-frequency photon (solid
line) between r1 and r2 in vacuum is described by the coupling
constant T ∗

12 [see Eq. (14)]. (b) Forward scattering by a single
atom placed between r1 and r2 yields the first-order correction of
propagation induced by the atomic medium, and thus determines
the refractive index nω(r). The latter, in turn, is influenced by the
intensities radiated from other atoms.

presence of the stochastic field defined above, plus an addi-
tional weak probe field with frequency ω. As explained in Ap-
pendix B, the derivative ∂s−

r (t )/∂E+
ω (t ) of s−

r (t ) with respect
to this probe field fulfills an equation similar to the optical
Bloch equation for 
sr(t ). Finally, the solution of this equation
must be averaged over many realizations of the stochastic
classical field. The fact that this average is reproduced by
the diagrammatic expression given on the left-hand side of
Eq. (89) can be proven by expanding ∂s−

r (t )/∂E+
ω (t ) into a

Taylor series with respect to the stochastic field components,
using Eqs. (74) and (83), and performing the average over
the stochastic field in the same way as explained between
Eqs. (84) and (85). Note that the quantity on the right-hand
side of Eq. (89) is proportional to the average electric suscep-
tibility of the atomic medium since it describes the change
of the atomic dipole s−

r induced by a weak field E+
ω with

frequency ω.
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To determine how the atomic medium thereby affects the
propagation of a photon from r1 to r2, we perform the average
over the position r in volume V with density N (r) in station-
ary phase approximation [61], using the fact that the average
susceptibility defined on the right-hand side of Eq. (89) and
the atomic density N (r) do not strongly vary when changing
r by a distance of the order of the wavelength:∫

V
drN (r) T ∗(|r2 − r|) h̄

2d

∂s−
r (t )

∂E+
ω (t )

(cl)

T ∗(|r − r1|)

= i�d

2ε0
eikLr12

∫ 1

0
dsN (r)

∂s−
r (t )

∂E+
ω (t )

(cl)
∣∣∣∣∣∣
r=sr2+(1−s)r1

, (90)

where the integral is taken over a straight line connecting r1

and r2. Let us compare this expression with the one that we
obtain when introducing a position- and frequency-dependent
refractive index nω(r) into the definition (14) of the vacuum
propagator T (r):

T ∗
ω (r2, r1) = �

kLr12
exp

[
ikLr12

∫ 1

0
ds nω[sr2 + (1 − s)r1]

]
.

(91)

Expanding this function in nω around nω = 1, the resulting
first-order term (since we consider scattering by only a single
atom) coincides with Eq. (90) if

nω(r) = 1 + dN (r)

2ε0

∂s−
r (t )

∂E+
ω (t )

(cl)

. (92)

Terms of higher order in nω, which are included in Eq. (91),
are described by diagrams where the photon ω is scattered
by more than one atom while propagating from r1 to r2. The
resulting refractive index then depends on the frequency ω

of the propagating photon, and, through the stochastic field
average, also on the fields emitted from other atoms, which,
in turn, depend on the position r inside the atomic cloud.

The imaginary part of the refractive index leads to an
exponential damping in Eq. (91), and thus yields the inverse
of the scattering mean-free path �ω(r):

1

�ω(r)
= 2kLIm{nω(r)}. (93)

As already indicated in the title of this section, the refractive
index described in terms of ladder diagrams implies an av-
erage over the atomic positions. For a single realization, the
elastic component of the intensity inside the atomic medium
exhibits short-range “speckle” fluctuations, giving rise to
fluctuations of the refractive index around its average value
given by Eq. (92) above. These fluctuations induce additional
scattering processes [62] which are ignored in our treatment
since they can be neglected in the case of a dilute medium.

C. Attenuation of the incident laser beam

The last ingredient needed for a complete summation of all
ladder diagrams is the attenuation of the incident laser beam
due to scattering in the atomic medium. For this purpose,
let us examine the diagram shown in Fig. 8. Since we seek
a result which is nonperturbative in the laser amplitude, we

FIG. 8. The fields radiated by atoms i1, . . . in and j1, . . . , jm

(carrying negative- and positive-frequency photons, respectively)
interfere destructively with the laser, and thus lead to an attenuation
of the laser beam incident on atom 1.

consider an arbitrary number n + m of different atoms emit-
ting negative- and positive-frequency photons, respectively,
which, as shown in the following, interfere with the incident
laser. Remember that each of the atoms i1, . . . , jm is itself
irradiated by the intensities emitted from other atoms, which,
for simplicity, are not explicitly indicated in Fig. 8. Again, in
a similar way as in Sec. V A, it can be shown that this amounts
to replacing the corresponding single-atom building blocks s+

ri

and s−
r j

by the stochastic field averages s+
ri

(cl)
and s−

r j

(cl)
. Thus,

the contribution of the diagram shown in Fig. 8 reads as

P(F8)
11 (ω) =

∞∑
n,m=0

(
n∏

k=1

Tik1s+
rik

(cl)
)

×
(

m∏
l=1

T ∗
jl 1s−

r jl

(cl)
)

Pr1 (0, . . . , 0; ω)(+···+−···−).

(94)

We recognize, again, the occurrence of the single-atom
building block P(α1,...,αn+m )

r1 carrying labels α1, . . . , αn+m with
α1, . . . , αn = +1 and αn+1, . . . , αn+m = −1. The frequencies
of all incident photons are equal to the laser frequency (i.e.,
frequency zero in the rotating frame). This can be traced back
to the fact that, in the quasistationary regime, the atomic Bloch
vector oscillates with the same frequency as the laser (i.e., it
is time independent in the rotating frame).

Using Eqs. (75) and (76), we see that Eq. (94) represents
the complete Taylor series (ignoring multiple derivatives with
respect to the same field component) of the spectrum of a
single atom driven by the following time-independent (in the
rotating frame) classical fields:

E+ = h̄

2d

N∑
j=2

T ∗
j1s−

r j

(cl)
, E− = h̄

2d

N∑
i=2

Ti1s+
ri

(cl)
(95)

which must be added to the positive- and negative-frequency
amplitudes EL exp(±ikL · r1)/2 of the laser field at atom 1.
After averaging over the positions r2, . . . , rN (and assuming
N � 1), the sum over all atoms except atom 1 in Eq. (95) can
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be represented as an integral over the atomic cloud:

E+ = h̄

2d

∫
V

drN (r)T ∗(|r − r1|)s−
r

(cl)
. (96)

Since the position-dependent phase of s−
r

(cl)
is given by

the phase of the incident laser EL exp(ikL · r)/2, the above
integral yields in stationary phase approximation

E+ = ikLeikL ·r1

∫ ∞

0
dz′ dN (r)

2ε0

s−
r

(cl)

eikL ·r

∣∣∣∣
r=r1−z′eL

, (97)

where eL = kL/kL is the unit vector pointing in the direction
of the incident laser. Since N (r) = 0 if r /∈ V (i.e., if the point
r lies outside the atomic medium V ), the integral over z′ can
be restricted to a finite interval corresponding to the distance
the laser beam covers in the medium before reaching r1.

The attenuated laser field at position r1 then results as

E+
L (r1) = ELeikL ·r1

2
+ E+. (98)

When evaluating the stochastic field average s−
r

(cl)
in Eq. (97),

we have to use the Rabi frequency 	(r) = 2dE+
L (r)/h̄ associ-

ated with the attenuated laser field (since, as mentioned above,
the atoms i1, . . . , jm are irradiated by the fields emitted from
other atoms). Equations (97) and (98) can be rewritten in the
following, more intuitive form:

E+
L (r) = EL

2
eikL ·r exp

[
ikL

∫ ∞

0
dz′ (nL(r − z′eL ) − 1)

]

(99)

with refractive index

nL(r) = 1 + dN (r)

2ε0

s−
r

(cl)

E+
L (r)

. (100)

The corresponding mean-free path �L(r) is obtained from
the imaginary part of nL(r) in the same way as in Eq. (93).
The refractive index nL(r) for the laser is different from
the refractive index nω(r) for the fields scattered between
atoms [see Eq. (92)]. This is not surprising since the laser
field is strong, whereas Eq. (92) has been derived under the
assumption of a weak field (described by a single photon)
propagating from one atom to another one. Only for a weak
laser beam, where the quotient in Eq. (100) can be interpreted
as a derivative, the two refractive indices nL(r) and nω(r)
coincide (for ω = 0).

Finally, let us remark that the above treatment of average
propagation must be modified in the case of more than one
incident laser beam. Then, additional coherent components
are produced by four-wave mixing processes [63]. These are
described by diagrams which are neither ladder nor crossed
diagrams, but nevertheless fulfill a phase-matching condition,
such as, for example, exp[i(k1 + k2) · r] = 1 in the case
k1 = −k2 of two opposite incident laser beams.

D. Ladder transport equations

We now have all ingredients at hand to formulate our final
result, which amounts to the complete summation of all ladder
diagrams. For the sake of those readers who have skipped

the preceding derivation, we repeat that the resulting transport
equations describe the propagation of the incident laser beam
and the scattered fields inside the atomic cloud after taking
the ensemble average over the atomic positions, under the
assumption that the density of atoms is sufficiently small, i.e.,
N (r) � k3

L/(4π ) at each point r ∈ V inside the atomic cloud.
First, we have shown in Sec. V A [see Eq. (86)] that the

average spectral density P (ω, r) of the dipole correlation
function of an atom placed at position r [see Eq. (79)] is

obtained as P (ω, r) = N (r)Pr(ω)
(cl)

. By virtue of Eq. (84),

Pr(ω)
(cl)

represents the spectrum of an atom placed at r driven
both by a classical stochastic field representing the radiation
emitted from all other atoms, and by the laser with associ-
ated Rabi frequency 	(r) = 2dE+

L (r)/h̄. The latter, taking
into account the attenuation due to scattering in the atomic
medium, is given by Eqs. (99) and (100). The stochastic
properties of the classical field [see Eqs. (87) and (88)] are
completely characterized by the average spectrum I (ωn, r)
of the scattered field on a sufficiently fine, discrete grid of
frequencies ωn = n�ω. This spectrum exhibits an inelastic
and an elastic component,

I (ωn, r) = I (in)(ωn, r) + δn,0

�ω
I (el)(r), (101)

which, in turn, are determined by the corresponding atomic
dipole spectra as follows:

I (in)(ωn, r) = h̄2cε0

2d2

∫
V

dr′|Tωn (r, r′)|2P (in)(ωn, r′), (102)

I (el)(r) = h̄2cε0

2d2

∫
V

dr′|Tω=0(r, r′)|2P (el)(r′), (103)

where, as compared to Eq. (83), the effect of the atomic
medium has been taken into account through Tω(r, r′) [see
Eqs. (91) and (92)]. Furthermore, we have split P (ω, r) into
its inelastic and elastic components

P (ω, r) = P (in)(ω, r) + δ(ω)P (el)(r), (104)

where, according to Eqs. (84) and (86), the latter is obtained
as

P (el)(r) = N (r) lim
τ→+∞ Re

{〈σ+(τ )σ−(0)〉(cl)
r

}
. (105)

The limit τ → ∞ exists only after taking the classical field
average since no truly stationary state is reached for a single
realization of the polychromatic classical field [see the dis-
cussion after Eq. (72)]. The inelastic component P (in)(ω, r)
is obtained from Eq. (84), after subtracting from the
dipole correlation functions their asymptotic values reached
at τ → ∞.

The above coupled system of equations can be solved
numerically by an iterative procedure. Initially, there are
no scattered fields, i.e., I (ωn, r) = 0 and the laser E+

L (r) =
ELeikL ·r/2 is given by a plane wave. We then calculate,
in a first iteration step, the spectra of the atomic dipoles
P (ωn, r) at each position inside the atomic cloud. According
to Eq. (86), this involves the solution of single-atom Bloch
equations for a large number of realizations of the stochastic
field, with subsequent averaging (see Appendix B). In a sim-
ilar way, the refractive indices nL(r) and nωn (r) are obtained
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by solving Eqs. (92) and (100). The laser amplitude follows
through Eq. (99) and, finally, the spectrum of the scattered
light via Eqs. (102) and (103). This scheme is repeated until
convergence is achieved.

Finally, the average normalized spectrum [see Eqs. (35)
and (36)] measured by a detector placed in the far field follows
as

γL(ω, eD) = h̄ω0�

IL

∫
V

dr
A P (ω, r)

× exp

[
−
∫ ∞

0
ds

1

�ω(r + seD)

]
. (106)

Again, the integral over s can be restricted to a finite interval
since the scattering mean-free path �ω(r + seD) tends to in-
finity if the point r + seD lies outside the scattering volume
V . Without the exponential factor, Eq. (106) reproduces the
ensemble average of the diagonal terms (i = l) in Eq. (35),
as can be seen from Eq. (79). The exponential factor then
takes into account additional (nondiagonal) terms arising in
the ladder approximation due to the final step of propagation
from the last scattering event through the atomic medium
toward the detector.

Taking into account Eq. (104), it is possible to extract the
elastic and inelastic components of the detected light from
Eq. (106):

γL(ω, eD) = γ
(in)

L (ω, eD) + δ(ω)γ (el)
L (eD). (107)

As shown in Appendix C, γL(ω, eD) fulfills the property of
flux conservation after integration over the frequency ω and
the angles eD and adding the flux of the coherently transmitted
light.

The coupled set of ladder transport equations (84), (86)–
(88), (91)–(93), and (99)–(107) possesses a physically trans-
parent structure, which can also be explained without using
diagrams. The most important assumption is the one that
the intensities emitted from different atoms are uncorrelated
with each other. A light field of this form can be modeled
as a classical field since quantum properties of light become
apparent only in the form of intensity-intensity correlations
[64]. Unlike the incoming laser field, this classical field is
not purely coherent, but exhibits stochastic properties. The
stochasticity can be traced back to two different physical rea-
sons: First, the quantum-mechanical fluctuations of the atomic
dipoles induce a certain probabilistic frequency distribution
of the scattered fields. Second, the classical average over
the atomic positions leads to a Rayleigh distribution of the
intensities at each single-frequency component [see Eq. (88)].
Finally, also the expressions for the refractive indices nω(r)
and nL(r) [see Eqs. (92) and (100)] can be understood in
terms of the susceptibility of the atomic dipoles with respect
to the small scattered fields, and by the fact that the elastically
forward-scattered light is phase coherent with the incident
laser, and thus attenuates the latter by destructive interference.

Nevertheless, the diagrammatic approach is useful for giv-
ing a more rigorous justification of the above heuristic argu-
ments. Furthermore, it allows us to include, in a systematic
way, the influence of nonlinear and inelastic scattering on
interference effects leading to weak localization and coherent

backscattering (see the following Sec. VI), which, up to now,
can only be explained within the diagrammatic approach.

Again, those readers who are mainly interested in the
behavior of diffusive transport may omit the following sec-
tion and continue with the numerical solution of the ladder
transport equations presented in Sec. VII.

VI. SUMMATION OF CROSSED DIAGRAMS

As discussed in Sec. IV E above, crossed diagrams describe
the interference between fields emitted from different atoms,
which gives rise to a coherent backscattering peak around
the direction kD � −kL opposite to the incident laser beam.
This interference peak must be added on top of the diffusive
background γL(ω, eD) [see Eq. (106) derived in the previous
section]. As evident from the example shown in Fig. 5, crossed
diagrams are constructed from the ladder diagrams discussed
in Sec. V by reversing a single photon line. In Fig. 5(b), for

FIG. 9. Building blocks for crossed diagrams, describing scat-
tering events for counterpropagating pairs of amplitudes. Arrows
attached to the horizontal bar at the bottom of (b), (d), and (e)
describe photons originating from the laser mode or propagating
toward the detector, respectively. In (e), the solid line may propagate
in either one of the two indicated directions. The black circles
indicate atoms that are driven by the laser field and the stochastic
classical field representing radiation emitted from other atoms. The
corresponding complex-conjugate building blocks (not shown) are
obtained by exchanging solid with dotted lines (while keeping the
arrows’ directions).
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example, the path of the positive-frequency photon (solid
lines) propagating from atom 3 to 6 via the intermediate
atoms 4 and 5 in Fig. 5(a) is reversed. This leaves us with
a pair of counterpropagating paths (solid and dotted lines
pointing in opposite directions) between atoms 3 and 6, re-
spectively. Due to the condition of energy conservation [see
Eq. (65)], the frequencies ω′

i and ωi of counterpropagating
photons are related by ω′

i = ω − ωi. Here, and in the re-
mainder of this section, ω always denotes the frequency of
the detected photon. As shown in the following, the sum of
all crossed diagrams can be expressed as the solution of an
integral equation describing transport of a counterpropagating
pair of amplitudes through the atomic medium. Diagrams
with more than a single pair of counterpropagating amplitudes
cannot occur due to our restriction to building blocks with at
most one outgoing dashed and/or solid arrow (see Fig. 3).

After identifying the building blocks which any crossed
diagram is composed of (Sec. VI A), we discuss the rules
according to which these building blocks are connected to
each other (Sec. VI B) in order to obtain the crossed transport

equations finally providing the coherent backscattering peak
(Sec. VI C).

A. Crossed building blocks

Since we are interested in the counterpropagating pair
of amplitudes, the diagrams presented below only indicate
the photon exchanges associated with these amplitudes. In
addition, each atom may be “dressed” by an arbitrary number
of incoming ladder intensities. In a similar way as above, it
can again be proven that these incoming ladder intensities
may be represented by the classical stochastic field introduced
in Sec. V A. For example, in Fig. 5(b), we see that atom 6
is subject to a ladder intensity emitted from atom 2. Atoms
driven by this stochastic field (in addition to the laser) are
represented by a filled circle in the following. Then, any
crossed diagram describing counterpropagating amplitudes
can be constructed from the building blocks depicted in Fig. 9.

The corresponding equations for these building blocks are
the following:

K (ω1, ω2, r) = h̄2N (r)

4d2

∫ ∞

0

dτ

2π

(
e−iω1τ

∂2〈σ+(τ )σ−(0)〉r

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

(cl)

+ ei(ω−ω2 )τ ∂2〈σ+(0)σ−(τ )〉r

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

(cl))
, (108)

KL(ω1, r) = h̄N (r)

2dE+
L (r)

∫ ∞

0

dτ

2π

(
e−iω1τ

∂〈σ+(τ )σ−(0)〉r

∂E−
ω−ω1

(τ )

(cl)

+ eiωτ ∂〈σ+(0)σ−(τ )〉r

∂E−
ω−ω1

(τ )

(cl))
, (109)

τ (ω1, ω2, r) = − ih̄2kLN (r)

8ε0d

∂3s+
r (t )

∂E+
ω2

(t )∂E−
ω1

(t )∂E−
ω−ω1

(t )

(cl)

, (110)

τL1(ω1, r) = − ih̄kLN (r)

4ε0E+
L (r)

∂2s+
r (t )

∂E−
ω1

(t )∂E−
ω−ω1

(t )

(cl)

, (111)

τL2(ω1, r) = − ih̄kLN (r)

4ε0E−
L (r)

∂2s+
r (t )

∂E+
ω1

(t )∂E−
ω (t )

(cl)

. (112)

As discussed in Sec. V B, each incoming arrow leads to
a partial derivative with respect to the corresponding field,
together with a prefactor h̄/(2d ). For example, in Fig. 9(a),
there is an incoming positive-frequency photon ω2 and a
negative-frequency photon ω − ω1, which turn into partial
derivatives ∂/∂E+

ω2
and ∂/∂E−

ω−ω1
in Eq. (108). In addition,

there is a prefactor N (r) taking into account the probability
to find an atom at r. The building blocks denoted by τ [see
Figs. 9(c)–9(e) and Eqs. (110)–(112)] obtain an additional
factor −2π i�/k2

L = −ikLd2/(h̄ε0) [see Eq. (11)] originating
from the integral over r evaluated in stationary phase approx-
imation [see Eq. (90)]. In the following transport equations,
the integral over r is then restricted to a straight line defined
by the positions of other building blocks to which the building
blocks τ are attached.

Photons originating from the laser mode are explicitly
indicated in Figs. 9(b), 9(d), and 9(e) by an arrow attached to a
horizontal bar. These photons do not represent partial deriva-
tives, but, instead, lead to a denominator 1/E+

L (r) or 1/E−
L (r)

(for solid and dotted arrows, respectively) in Eqs. (109), (111),

and (112), where E−
L (r) = [E+

L (r)]∗. This turns the quantities
KL, τL1, and τL2 into smoothly varying functions of r. In
the following transport equations, these denominators must
be canceled by corresponding multiplications with E+

L (r) or
E−

L (r), which, in turn, compensate the phases of the cor-
responding counterpropagating photons propagating toward
the detector (if the latter is placed in exact backscattering
direction).

Furthermore, each of the diagrams shown in Fig. 9 exhibits
a complex-conjugate counterpart obtained by exchanging
solid with dotted lines. In case of Fig. 9(a), the complex-
conjugate diagram is identical to the original one with re-
labeled frequencies, i.e., K∗(ω1, ω2) = K (ω − ω2, ω − ω1).
The complex-conjugate counterparts of Figs. 9(b)–9(e), how-
ever, give rise to new building blocks K∗

L (ω1), . . . , τ ∗
L2(ω1)

which must be taken into account separately in the transport
equations derived hereafter.

Finally, we note that the building block τ depicted in
Fig. 9(c) (and, similarly, τL1 and τL2) can be interpreted as an
optical phase conjugation [65], where the two dotted arrows
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FIG. 10. Diagrammatic representation of the crossed building
blocks (a) K and (b) K̃ [see Eqs. (D1) and (D2)] obtained after
splitting the correlation function appearing in K [see Fig. 9(a) and
Eq. (108)] into a term arising from quantum-mechanical fluctuations
(square) plus the product of averages (two dots). The diagrams for
KL and K̃L (not shown) are obtained by adding a horizontal bar at
the bottom, in strict analogy to the changes from Figs. 9(a) to 9(b).

ω1 and ω − ω1 play the role of two counterpropagating pump
beams, which reverse the phase and direction of the incident
photon ω2.

In the following, it will be useful to split the quantum-
mechanical expectation value 〈σ+(τ )σ−(0)〉 appearing in the
expressions of K and KL [see Eqs. (108) and (109)] into the
product 〈σ+(τ )〉〈σ−(0)〉 = s+(τ )s−(0) of expectation values
plus a remaining term 〈σ+(τ )σ−(0)〉 − s+(τ )s−(0) describ-
ing the effect of quantum-mechanical fluctuations. Evaluating
the second derivative of the product s+(τ )s−(0) with respect
to the two probe fields, the product rule yields in total four
different terms. Thereby, K contains in total five different
terms, which we group as follows:

K (ω1, ω2, r) = K(ω1, ω2, r) + K̃(ω1, ω2, r), (113)

where K (the sum of the first three terms) and K̃ (the remain-
ing two terms) are defined as indicated in Fig. 10, see also
Eqs. (D1) and (D2) in Appendix D. Similarly,

KL(ω1, r) = KL(ω1, r) + K̃L(ω1, r) (114)

[see Eqs. (D3) and (D4)]. In Fig. 10, the square represents
the term originating from quantum fluctuations (as explained
above), whereas the small circles with outgoing dotted (or
solid) arrow stand for s+ (or s−), with incoming arrows
indicating probe field derivatives acting either on s+ or on
s−. The building blocks K̃ and K̃L [see Fig. 10(b)] have
the property that the incoming dashed arrow is associated
with s− (outgoing solid arrow) and not with s+ (outgoing
dotted arrow). This will be relevant in the context of forbidden
diagrams to be discussed in the following subsection.

B. Forbidden diagrams

Transport of a counterpropagating pair of amplitudes
through the atomic medium is now described by connecting
the crossed building blocks displayed in Fig. 9 in all possible
ways. In general, the connection between two building
blocks is achieved by identifying an “outgoing” pair of
counterpropagating arrows of one building block with the

FIG. 11. (a) Forbidden combination of the building block τ

shown in Fig. 9(c) with its complex conjugate τ ∗. (b) Combinations
of the type shown in (a) remain forbidden, if other building blocks
[here, e.g., Fig. 9(a)] are inserted in-between. (c) Allowed combina-
tion of the same two building blocks τ and τ ∗ as in (a), but connected
in a different order. (d) Forbidden combination of building block K̃,
here represented by one of the two terms appearing in Fig. 10(b),
with τ .

“incoming” pair of the other building block (where we define
outgoing or incoming by the direction of the solid arrow). In
addition, the building blocks shown in Figs. 9(c)–9(e) exhibit
an incoming ladder pair, which, as described in Sec. V, is
described by the spectrum P (ω1, r) of the dipole correlation
function [see Eq. (79)].

Some combinations of crossed building blocks give rise
to “forbidden diagrams” which yield a vanishing contribu-
tion. These forbidden diagrams are those where the out-
going pair of counterpropagating arrows of the building
blocks τ ∗, τ ∗

L1, τ
∗
L2, K̃, or K̃L is identified with an incoming

pair of τ, τL1, τL2, K̃∗, or K̃∗
L. Two examples are shown in

Figs. 11(a) and 11(d). These combinations are forbidden for
the following reason: first, we note that all of these terms
(τ, τL1, τL2, K̃, K̃L, and their complex conjugates) contain
single-atom building blocks with only one outgoing arrow.
As explained in Sec. IV B, the photon exchange associated
with the outgoing arrow must then occur after the exchanges
associated with the incoming arrows. In case of the diagram
shown in Fig. 11(a), this condition cannot be fulfilled for both
atoms at the same time since the outgoing arrow of one atom
serves as incoming arrow for the other atom, and vice versa. A
similar argument holds if arbitrary additional building blocks
are inserted in-between [see Fig. 9(b)]. In contrast, Fig. 9(c)
shows an example of an “allowed” combination, where no
conflict of orderings appears, and which therefore must be
taken into account in the transport equations which we will
formulate further down.

All three forbidden diagrams [Figs. 11(a), 11(b), and 11(d)]
correspond to diagrams with conflicting local orderings, the
contribution of which vanishes as discussed in Sec. IV C.
In principle, they would not change the final result even if
they were included in the transport equations. From a numer-
ical perspective, however, this is true only if the integration
over the frequencies of the exchanged photon is performed
with perfect accuracy, yielding exactly zero for a forbidden
combination. To minimize sources for numerical errors, we
therefore explicitly exclude these combinations from our sub-
sequent calculations.
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C. Crossed transport equations

In principle, two different strategies can be pursued to de-
scribe transport of counterpropagating amplitudes through the
atomic medium: the first one consists in following the propa-
gation from one end of the crossed scattering sequence to the
other one. This strategy was employed in [35,36]. The second
considers two crossed propagators C and C∗ starting from
both ends in opposite directions, and joins them at a particular
point within the scattering medium [66]. In this paper, we will
adopt the second approach since it leads to a more compact
and physically transparent form of the transport equations.

To define C, we choose the propagation direction defined
by the solid arrow. The first step consists of a positive-
frequency (solid line) laser photon propagating toward a point
r within the atomic medium, and the corresponding negative-
frequency photon (dotted line) propagating from r toward
the detector. Graphically, this term is represented by the first
diagram on the right-hand side of Fig. 12(a), and contributes
to the quantity CL(r) describing a counterpropagating pair of
amplitudes originating from the laser mode. After that, the
counterpropagating amplitudes may be scattered through an
arbitrary sequence composed of the building blocks KL,K, τ ,

and τL1. This gives rise to the quantity C(ω1, r), describing
a scattered pair of counterpropagating amplitudes (with fre-
quency ω1 for the solid line, and ω − ω1 for the dotted line)
[see Fig. 12(b)]. Concerning CL(r), we also have to take into
account the possible occurrence of building block τL2 [see the
second term on the right-hand side of Fig. 12(a)].

The corresponding equations read as follows:

CL(r) = E+
L (r)(E−

D (r, eD) + Hτ2 (r)), (115)

C(ω1, r) =
∫

V
dr′ Tω1 (r, r′)T ∗

ω−ω1
(r′, r)

×[HK (ω1, r′) + Hτ1(ω1, r′)Q(ω1, r′, r)], (116)

where

E−
D (r, e) = eikLe·r exp

[
−ikL

∫ ∞

0
dz′ (n∗

ω(r + z′e) − 1)

]
(117)

with e = eD or e = −eL representing an outgoing (with re-
spect to the solid arrow) pair of counterpropagating ampli-
tudes, and

Hτ1(ω1, r′) = τL1(ω1, r′)CL(r′) +
∫ ∞

−∞
dω2 τ (ω1, ω2, r′)C(ω2, r′), (118)

Hτ2(r) =
∫ ∞

0
dz′ E−

L (r − z′eL )E−
D (r,−eL )

E−
D (r − z′eL,−eL )

∫ ∞

−∞
dω1 τL2(ω1, r−z′eL )C(ω1, r−z′eL ), (119)

HK (ω1, r′) = KL(ω1, r′)CL(r′) +
∫ ∞

−∞
dω2 K(ω1, ω2, r′)C(ω2, r′), (120)

Q(ω1, r′, r) =
∫ ∞

0
dρ P

(
ω1, r′ + ρ

r′ − r
|r′ − r|

)
exp

[
−
∫ ρ

0
dρ ′/�ω1

(
r′ + ρ ′ r′ − r

|r′ − r|
)]

. (121)

In Eqs. (117), (119), and (121), the integrations over z′ and ρ are again restricted to finite intervals where the corresponding points
r + z′e, r − z′eL, and r′ + ρ(r′ − r)/|r′ − r| lie inside the atomic medium. Moreover, Eqs. (119) and (121) involve a stationary
phase approximation (i.e., the building block τL2 is placed on the line pointing from r in direction −eL, and the building blocks
τ and τL1 on the line connecting r with P).

The coupled set of equations (115) and (116) can now be solved numerically by an iterative procedure. The quantities CL

and C contain all combinations of the building blocks K,KL, τ, τL1, and τL2. The remaining building blocks (i.e., τ ∗, τ ∗
L1, τ

∗
L2,

K̃, K̃L, and K∗
L = K∗

L + K̃∗
L) are then used to connect CL and C to the complex-conjugate quantities C∗

L and C∗. Thereby, all the
forbidden combinations discussed in Sec. VI B (and only those!) are excluded.

The resulting crossed contribution γC to the photodetection signal, graphically depicted in Fig. 13, reads as follows:

γC (ω, eD) = h̄ω0�

IL

∫
V

dr
A C∗

L (r)
∫ ∞

−∞
dω1 K∗

L (ω − ω1, r)C(ω1, r)

+ h̄ω0�

IL

∫
V

dr
A

∫ ∞

−∞
dω1 C∗(ω − ω1, r)

(
K̃L(ω1, r)CL(r) +

∫ ∞

−∞
dω2 K̃(ω1, ω2, r)C(ω2, r)

)

+ h̄ω0�

IL

∫
V

dr
A P (ω, r)(E+

D (r, eD)Hτ2(r) + E−
D (r, eD)H∗

τ2(r) + |Hτ2(r)|2)

+ h̄ω0�

IL

∫
V

dr
A

∫
V

dr′
∫ ∞

−∞
dω1 H∗

τ1(ω − ω1, r)Q(ω − ω1, r, r′)Tω1 (r, r′)T ∗
ω−ω1

(r′, r)

× (HK (ω1, r′) + Hτ1(ω1, r′)Q(ω1, r′, r)), (122)

where E+
D (r, eD) = [E−

D (r, eD)]∗. Again, the crossed contribution can be divided into an elastic and an inelastic component:

γC (ω, eD) = γ
(in)

C (ω, eD) + δ(ω)γ (el)
C (eD). (123)
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FIG. 12. Graphical representation of the transport equations for
the crossed propagators (a) CL and (b) C [see Eqs. (115) and (116)].
The coupled set of equations (a) and (b) describes all possible
combinations of the crossed building blocks K,KL, τ, τL1, and τL2.

Numerically, we first calculate the total contribution γC (ω, eD)
given by Eq. (122) on a discrete grid of frequencies ωi =
i�ω. Then, we determine the inelastic component at i =
0 by an interpolation between neighboring points i = ±1
where the elastic component vanishes, i.e., γ

(in)
C (0, eD) =

[γC (−�ω, eD) + γC (�ω, eD)]/2.

VII. RESULTS

After having exposed our general theory for multiple scat-
tering of laser light by a disordered cloud of two-level atoms,
valid under the assumptions of large distances between the
atoms, we now present numerical solutions of the ladder and
crossed transport equations derived in the previous Secs. V
and VI.

FIG. 13. The crossed contribution γC (ω, eD ) to the photodetec-
tion signal results from connecting scattering sequences described
by CL and C (see Fig. 12), with the corresponding complex-conjugate
sequences C∗

L and C∗.

FIG. 14. Scattering geometry used for the numerical solution of
the ladder and crossed transport equations. The atomic scattering
medium is confined to a slab with thickness D in z direction, and
infinite extension in x and y directions. The incoming laser beam is
perpendicular to the surface of the slab.

A. Scattering geometry

We consider a one-dimensional slab as atomic scattering
medium, with thickness D in z direction and infinite extension
in x and y directions (see Fig. 14). We quantify the thickness D
in terms of the optical thickness b = D/�lin, where �lin denotes
the linear scattering mean-free path, i.e., the scattering mean-
free path in the limit of low laser intensity:

�lin = k2
L(1 + 4δ2/�2)

4πN . (124)

It depends on the atom-laser detuning δ, the radiative decay
rate �, the wave number kL of the incoming laser, and the
density of atoms N , which we assume to be constant within
the slab and to be sufficiently small, i.e., N � k3

L/(4π ), such
that the weak disorder condition kL�lin � 1 (see Sec. IV E)
is fulfilled. (This condition then remains valid also for larger
laser intensities, where, as compared to the linear case, the
mean-free path increases due to saturation, see below.) The
intensity of the incoming laser (with Rabi frequency 	) is
measured in terms of the saturation parameter

s = 2|	|2
4δ2 + �2

(125)

of a single atom driven by the laser field.
The advantage of the slab geometry is that all averaged

quantities appearing in the transport equations, which depend
on a single position variable r [e.g., the average spectrum
I (ω, r), the mean-free path �ω(r), the crossed building blocks
K (ω1, ω2, r) and τ (ω1, ω2, r), etc.] are independent of x
and y, due to translational invariance after disorder averag-
ing. Only the terms Tω(r, r′) [see Eq. (91)] and Q(ω, r, r′)
[see Eq. (121)] depend on the transverse distance between r
and r′, over which the integral can be performed analytically,
e.g., in Eqs. (102) and (103):∫ ∞

−∞
dx

∫ ∞

−∞
dy|Tω(r, r′)|2

= −π�2

2k2
L

Ei

[
−|z − z′|

∫ 1

0
ds

1

�ω[sz + (1 − s)z′]

]
, (126)

where Ei(−t ) = − ∫ ∞
t dt ′ exp(−t ′)/t ′ (with t > 0) denotes

the exponential integral function. Equation (126) is valid if
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the average value of the inverse mean-free path 1/�ω between
z and z′ is positive, a point which will be further discussed
below. Thereby, all position integrals can be transformed
into one-dimensional integrations along z, which enormously
reduces the numerical effort.

Nevertheless, the latter is still considerable, especially
for the calculation of the crossed component. The most
time-consuming part is the calculation of the crossed build-
ing blocks K (ω1, ω2, z) and τ (ω1, ω2, z) [see Eqs. (108)
and (110)]. With a frequency grid of size 128, and a position
grid of size 100 (which, as we have checked, is adequate
for achieving well-converged results for a slab with optical
thickness b = 5), we have to calculate, for each desired value
of the detected frequency ω, about 3×106 different complex
numbers (K and τ for all values of ω1, ω2, and z). Each of
these requires the solution of the three-dimensional single-
atom optical Bloch equations from time ti = −40/� to t f =
50/� for approximately 2000 realizations of the stochastic
driving fields. Using parallel computation on a large computer
grid (bwGRiD and bwUniCluster), the solution of the ladder
and crossed transport equations for each set of parameters
(b, s, δ) takes approximately one week.

B. Diffusive transport

Let us start by verifying that our approach reproduces the
well-known results of linear radiation transport in the limit
of small saturation s � 1. For isotropic scattering with mean-
free path �(0), the average intensity inside a slab of thickness
D is obtained as the solution of the following linear transport
equation [7]:

I (0)(z) = ILe−z/�(0) −
∫ D

0
dz′ Ei(−|z − z′|/�(0) )

2�(0)
I (0)(z′).

(127)

In the following, we compare this solution with the solution
of our nonlinear ladder transport equations describing radia-
tion transport in a dilute and cold cloud of two-level atoms.
Here, the total average intensity consists of the incident laser
intensity IL(z) = 2ε0c|E+

L (z)|2, with E+
L (z) given by Eq. (99),

the intensity of elastically scattered light [see Eq. (103)], and
the intensity of inelastically scattered light:

I (tot)(z) = IL(z) + I (el)(z) + I (in)(z), (128)

where the latter results from integrating the inelastic spectrum
I (in)(ω, z) [see Eq. (102)] over the frequency ω:

I (in)(z) =
∫ ∞

−∞
dω I (in)(ω, z). (129)

For very small saturation, e.g., s = 1/1000, the solution of our
ladder transport equations (see Sec. V D) indeed reproduces
the linear solution defined by Eq. (127) with �(0) = �lin, as
expected (see Fig. 15).

The situation changes for larger saturation. For a single
atom driven by a laser with saturation parameter s, the excited
state is populated with probability s/(2 + 2s), and the inten-
sity of scattered light divided by the incident light intensity
is proportional to 1/(1 + s). In other words, for s = 1, the
scattering cross section of a single atom is only half as large

FIG. 15. Average light intensity I (tot)(z) (black solid line) in units
of the incident laser intensity IL as a function of the position z
inside a slab with length D = 5�lin, for detuning δ = 0 and saturation
s = 1/1000. As expected for small saturation, the curve coincides
with the solution I (0)(z) of the linear transport equation (127) with
�(0) = �lin (circles). For large z (but not too close to the boundary
at z = 5�lin), it exhibits an approximately linear decay characteristic
for diffusive transport. For small z, the intensity is up to three
times larger than the incident laser intensity, as a consequence of
multiple scattering. The remaining curves show the three different
components of I (tot)(z) [see Eq. (128)]: incident laser light IL (z) (red
dashed line), elastically scattered light I (el)(z) (black dashed-dotted
line), and inelastically scattered light I (in)(z) (blue dotted line), all in
units of IL .

as for s → 0. In addition, each atom is not only driven by
the incident laser, but also by the light emitted from all other
atoms. Figure 16(a) shows the intensity profile for s = 1
resulting from our ladder transport equations, where all these
effects are taken into account. As most prominent difference
with respect to the case of small saturation, we note that
the intensity is now dominated by inelastically scattered light
(blue dotted line). Moreover, we see that, in accordance with
the above expectation, the amount of multiple scattering is
reduced as compared to the case of small saturation since the
total intensity (black solid line) is smaller, whereas the decay
of the incident laser light (red dashed line) with increasing z
is slower than in Fig. 15.

These findings indicate that the mean-free paths charac-
terizing scattering of light in a saturated atomic medium
are larger than in the linear case (i.e., for small saturation).
This is demonstrated in Fig. 16(b), which shows the mean-
free path �ω=0 for elastically scattered light (black dashed-
dotted line) and �L for the incident laser light (red dashed
line) as a function of the position z inside the atomic slab.
Concerning inelastically scattered light, we define an effective
mean-free path �(in) (blue dotted line) by averaging its inverse
over the spectrum (see also the corresponding discussion in
Appendix C):

I (in)(z)

�(in)(z)
=

∫ ∞

−∞
dω

I (in)(ω, z)

�ω(z)
. (130)

Similarly, we define an effective mean-free path �(tot) for the
total light (black solid line) as follows:

I (tot)(z)

�(tot)(z)
= IL(z)

�L(z)
+ I (el)(z)

�ω=0(z)
+ I (in)(z)

�(in)(z)
. (131)
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FIG. 16. (a) Average total intensity I (tot)(z) (black solid line) and
its three components IL (z) (red dashed line), I (el)(z) (black dashed-
dotted line) and I (in)(z) (blue dotted line) representing incident laser
light, elastically and inelastically scattered light, respectively, as
a function of the position z inside a slab with length D = 5�lin,
all in units of the incident laser intensity IL , for detuning δ=0
and saturation s = 1. As compared to the case s = 1/1000 of weak
saturation (Fig. 15), the overall intensity (black solid line) is re-
duced. The intensity profile is similar to the solution I (0)(z) of
the linear transport equation (127) with increased mean-free path
�(0) = 4.10�lin, corresponding to a reduced optical thickness b =
D/�(0) = 1.22 (circles). (b) Scattering mean-free paths �(tot)(z) for
the total light (black solid line) [see Eq. (131)], �L (z) for coherent
light (red dashed line), �ω=0(z) for elastically scattered light (black
dashed-dotted line), and �(in)(z) for inelastically scattered light (blue
dotted line) [see Eq. (130)], all in units of �lin. Due to saturation,
all mean-free paths are increased as compared to �lin. The mean-
free path �(in)(z) for inelastically scattered light (blue dotted line)
is largest since off-resonant light is scattered less efficiently than
resonant light.

From Fig. 16(b), we see that �(tot) is between three and five
times larger than the mean-free path �lin in the limit of very
small saturation. In Fig. 16(a), we therefore compare the total
light intensity (black solid line) with the solution of the linear
transport equation (127) with inverse mean-free path 1/�(0) =∫ D

0 dz/[D�(tot)(z)] � 1/(4.10 �lin ) and find rough agreement.
The spectrum of inelastically scattered light is plotted in

Fig. 17, for three different positions z = 0, z = D/2, and z =
D inside the atomic slab. For comparison, the thin dotted
line shows the spectrum emitted by a single laser-driven
atom, which is approximately half as broad as the other three
spectra. The broadening of these spectra has the following
two reasons: first, each atom not only sees the incident laser
light, but also the light emitted from all other atoms. This
increases the saturation of each single atom, and thus leads
to a broader spectrum. Second, the spectrum is broadened by
multiple scattering since the frequencies of photons emitted
by one atom may again be shifted due to subsequent scattering
by other atoms.

FIG. 17. Spectra I (in)(ω, z) of inelastically scattered light for
z = 0 (black solid line), z = D/2 (red dashed line), and z = D
(blue dashed-dotted line) and otherwise the same parameters as in
Fig. 16 (D = 5�lin, s = 1, δ = 0). All spectra are normalized such
that

∫
dω I (in)(ω, z) = �. For comparison, the thin black dotted

line shows the spectrum emitted by a single laser-driven atom
(s = 1 and δ = 0).

As already mentioned above, the description of propa-
gation in an infinitely extended medium (in the x and y
directions) requires a positive mean-free path (since, other-
wise, the intensity diverges). For the results presented in this
article, �ω indeed remains positive for all frequencies and all
positions inside the slab. For a strong laser, however, �ω may
also assume negative values for certain frequencies, an effect
known as “Mollow gain” [67]. In this case, the incident strong
laser light is used to amplify a weak probe beam. For a single
atom (with detuning δ = 0), this effect occurs if s � 3. In
the case of an atomic medium with thickness D = 5�lin, we
have verified that, due to spectral broadening discussed above,
frequency windows with �ω < 0 are smeared out, such that �ω

remains positive (for all frequencies and everywhere inside
the slab) up to s � 14.3 [68]. For even larger s, Mollow gain
occurs in the atomic medium, and our assumption that all
scattered fields are weak (and therefore only single photons
are exchanged between each pair of atoms) breaks down. An
extension of our theory taking into account Mollow gain will
therefore be an interesting task for future work.

C. Coherent backscattering

As discussed in Sec. IV E, the effect of coherent
backscattering becomes apparent when measuring the aver-
age backscattered intensity γ (eD) [see Eq. (37)]. This inten-
sity consists of a (weakly angle-dependent) diffusive back-
ground γL [see Eq. (106)] and an interference contribution γC

[see Eq. (122)], which is strongly peaked around eD = −eL.
In the following, we restrict ourselves to the case of exact
backscattering direction (eD = −eL), i.e., we investigate the
height of the coherent backscattering cone and the corre-
sponding coherent backscattering enhancement factor

η = γL + γC

γL
. (132)
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FIG. 18. Inelastic ladder and crossed spectra γ
(in)

L (ω) (filled cir-
cles) and γ

(in)
C (ω) (open squares) of backscattered light for s=0.001,

δ = 0, and D = 0.5�lin. The results agree with the perturbative
predictions of two-photon scattering theory (solid and dotted lines,
respectively). For ω � 0, the height of the coherent backscattering
cone γ

(in)
C (ω) is larger than the diffusive background γ

(in)
L (ω), corre-

sponding to a coherent backscattering enhancement factor η(ω) > 2.

In the limit s → 0, the backscattered intensities γL and γC

converge to the values [7]

γ
(0)

L =
∫ D

0

dz

�(0)
e−z/�(0) I (0)(z)

IL
, (133)

γ
(0)

C =
∫ D

0

dz

�(0)
e−z/�(0)

(
I (0)(z)

IL
− e−z/�(0)

)
(134)

obtained from the solution of the linear transport equation
(127) with �(0) = �lin. Note that γ

(0)
C <γ

(0)
L (and hence η(0)<2)

since single scattering contributes only to γL, but not to γC .
Corrections to γ

(0)
L and γ

(0)
C in first order of s can be

calculated in terms of the two-photon scattering matrix of
the dilute atomic sample [38]. Let us first verify that our
transport equations reproduce the results of this two-photon
scattering approach for small saturation (see Fig. 18). An
intriguing prediction of this approach is the fact that the
coherent backscattering enhancement factor originating from
inelastically scattered photons with frequencies ω � 0 close
to the frequency of the incident light exceeds the value of
two, such that γ

(in)
C (0) > γ

(in)
L (0). In the linear case, this is

not possible since any scattering path of a single photon
exhibits only one reversed counterpart with which it interferes
in the backscattering direction. For two photons, however,
coherent backscattering originates from interference between
three reversed amplitudes [38]. In other words, in the presence
of nonlinear scattering, a ladder diagram may give rise to
more than one crossed diagram. (For example, from the ladder
diagram shown in Fig. 5(a), we may construct an additional
crossed diagram apart from the one shown in Fig. 5(b), where
the scattering sequence 2 → 6 is reversed.)

The reversed amplitudes, however, are able to interfere
fully constructively only if the detected frequency ω is close
to the laser frequency ωL = 0 (in the rotating frame). If this
is not the case, the crossed component is suppressed due to
dephasing induced by the different frequencies of the counter-

FIG. 19. Spectra γ
(in)

L (ω) (solid lines) and γ
(in)

C (ω) (dashed lines)
of the ladder and crossed component of inelastically backscattered
light for detuning δ = 0 and (a) (s, D) = (0.1, 0.5�lin ), (b) (s, D) =
(1, 0.5�lin ), (c) (s, D) = (0.1, 5�lin ), and (d) (s, D) = (1, 5�lin ). In
contrast to the limit of very small saturation (see Fig. 18), larger
values of s lead to an increasing suppression of the crossed spectrum,
especially for the slab with smaller thickness (b).

propagating photons. Consequently, we can see in Fig. 18 that
γ

(in)
C (ω) < γ

(in)
L (ω) for larger frequencies.

An interesting question, which we can now answer using
the ladder and crossed transport equations derived in this
article, concerns the behavior for larger values of the satu-
ration parameter beyond the validity of two-photon scattering
theory: Is it possible to achieve an even stronger amplification
of the inelastic coherent backscattering enhancement factor?
In Fig. 19, we see that this is not the case. Here, we show the
ladder and crossed spectra (solid and dotted lines) for s = 0.1
[Figs. 19(a) and 19(c)] and s = 1 [Figs. 19(b) and 19(d)] for
two different thicknesses D = 0.5�lin [Figs. 19(a) and 19(b)]
and D = 5�lin [Figs. 19(c) and 19(d)]. In all cases, the crossed
component is smaller than the ladder component for all fre-
quencies. The crossed component is increasingly suppressed
with stronger saturation, especially for the slab with smaller
thickness [see Fig. 19(b)]. This has two different reasons:
first, the dephasing due to the change of frequencies induced
by inelastic scattering becomes stronger for larger s. For
example, in the case of two inelastic scattering events, the
frequency of the intermediate photon (between the first and
the second inelastic event) may differ from ωL even if the
frequency ω of the detected photon is close to ωL. Second,
contributions to the backscattered spectrum of higher order
in s may also carry a negative weight. For example, for the
well-known case of a single atom driven by a monochromatic
laser, the ratio of inelastically scattered intensity divided by
the incident intensity is proportional to s/(1 + s)2. Expanding
this result in powers of s, we get

s

(1 + s)2
= s − 2s2 + · · · , (135)

i.e., the second order in s (resulting from scattering of
three photons) carries a negative sign. In this case, the
above-mentioned effect of interference between more than
two reversed-path amplitudes suppresses the corresponding
crossed component more strongly than the ladder component.
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FIG. 20. Elastic and inelastic ladder and crossed components
γ

(el)
L (open squares and dashed line), γ

(el)
C (open diamonds and

dashed-dotted line), γ
(in)

L (filled squares and solid line), and γ
(in)

C

(filled diamonds and dotted line) of the backscattered intensity, as a
function of the saturation parameter s, for zero detuning (δ = 0) and
thickness (a) D = 0.5�lin and (b) D = 5�lin. The symbols result from
the numerical solution of the ladder and crossed transport equations
derived in this article, whereas the lines denote the correspond-
ing perturbative predictions of two-photon scattering theory. In the
atomic cloud with smaller (larger) thickness D = 0.5�lin (D = 5�lin),
the perturbative theory is valid for s < 10−2 (s < 10−3).

In summary, the height γC of the coherent backscattering
cone results from an interplay between two effects: (i) de-
phasing due to random changes of the frequency induced by
inelastic scattering events (which always reduce γC as com-
pared to γL) and (ii) interference between many reversed-path
amplitudes (which may increase or decrease γC , depending on
the sign of the respective contributions).

In Fig. 20, we show the total inelastic ladder and crossed
contributions γ

(in)
L and γ

(in)
C [obtained from integrating the

inelastic spectra (see Fig. 19) over the frequency ω of the
detected photon] together with the corresponding elastic
contributions γ

(el)
L and γ

(el)
C . The upper plot, Fig. 20(a), refers

to a slab with thickness D = 0.5�lin, whereas D = 5�lin in the
lower one, Fig. 20(b). The saturation parameter is varied on a
logarithmic scale from s = 10−4 to 2. The lines correspond to
the prediction of two-photon scattering theory. We see that the
regime of validity of the latter depends on the thickness of the
medium. This is not surprising since the number of scattering
events is larger in a thicker medium.

In both cases, Figs. 20(a) and 20(b), we first observe that
the elastic ladder contribution (open squares) decreases as a
function of s. This has two reasons: first, with increasing satu-
ration, the ratio of elastic vs inelastic scattering decreases and,
second, also the total amount of scattering (elastic plus in-
elastic) decreases, as already discussed in Sec. VII B. For the

FIG. 21. Coherent backscattering enhancement factor η = 1 +
[γ (el)

C + γ
(in)

C ]/[γ (el)
L + γ

(in)
L ] as a function of saturation s for the same

parameters as in Fig. 20, i.e., for vanishing detuning (δ = 0) and two
different values of the thickness D = 0.5�lin (open circles: numerical
data, dashed line: perturbative theory) and D = 5�lin (filled circles
and solid line). For comparison, we also show a few data points cor-
responding to nonvanishing detuning: (D, δ) = (0.5�lin, 0.5�) (open
triangles: numerical data for s = 0.1, 0.5 and 1, dashed-dotted line:
perturbative prediction for small s) and (D, δ) = (5�lin, �) (filled
triangles: numerical data for s = 0.1 and 1, dotted line: perturbative
prediction). In all cases, the coherent backscattering enhancement
factor η decreases with increasing saturation. For D = 0.5�lin, a
detuning of δ = 0.5� has almost no effect on η (open triangles
for δ = 0.5� vs open circles for δ = 0), whereas, for D = 5�lin,
the coherent backscattering enhancement factor for δ = � (filled
triangles) is considerably smaller than for δ = 0 (filled circles), if
the saturation is not too small (s = 0.1 and 1).

same reasons, the inelastic ladder component (filled squares),
which starts at zero for s = 0, first increases, then assumes a
maximum and decreases again for large s. The elastic crossed
component (open diamonds) also decreases as a function of
s, and it does so faster than the ladder component. This is
a consequence of interference between many reversed-path
amplitudes, which, in this case, give predominantly negative
contributions [due to the fact that γ

(el)
L (s) < γ

(el)
L (0) for s > 0].

For b = 0.5�lin and s � 1, the elastic crossed contribution
even assumes values below zero (γ (el)

C � −0.003 for s = 1
and −0.002 for s = 2), corresponding to destructive instead of
constructive coherent backscattering interference. This effect
has already been observed for classical nonlinear coherent
backscattering [66,69,70]. In the present case, it is less pro-
nounced, due to the strong suppression of elastically backscat-
tered photons at large s. The inelastic crossed component
(filled diamonds) is smaller than the ladder component (filled
squares) for all values of the saturation parameter, and also
exhibits a maximum as a function of s.

From the elastic and inelastic ladder and crossed com-
ponents shown in Fig. 20, we finally calculate the coher-
ent backscattering enhancement factor η=1+[γ (el)

C +γ
(in)

C ]/
[γ (el)

L + γ
(in)

L ] (see Fig. 21). In the limit s → 0, the coherent
backscattering enhancement factor converges to the value
η(0) = 1 + γ

(0)
C /γ

(0)
L predicted by Eqs. (133) and (134). As

already mentioned above, η(0) < 2 due to single scattering.
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With increasing saturation, the coherent backscattering en-
hancement factor η decreases. In case of the slab with larger
thickness (D = 5�lin, filled symbols), a significant decrease
of η (from 1.83 to 1.74) can be observed already for s =
10−3, in agreement with the perturbative prediction (solid
line). This can be traced back mainly to the decrease of the
elastic crossed component, as discussed above. For s = 2, the
coherent backscattering enhancement factor has dropped to
η = 1.20 for the medium with larger thickness (D = 5�lin),
and to η = 1.07 for the one with smaller thickness (D =
0.5�lin). In this case, the remaining coherent backscattering
enhancement originates mainly from inelastically backscat-
tered photons. For comparison, we also included in Fig. 20
a few data points for the case of nonvanishing detuning. For
D = 0.5�lin, a detuning of δ = 0.5� has almost no effect on
η (open triangles for δ = 0.5� vs open circles for δ = 0),
whereas, for D = 5�lin, the coherent backscattering enhance-
ment factor for δ = � (filled triangles) is considerably smaller
than for δ = 0 (filled circles), if the saturation is not too small
(s = 0.1 and 1).

Remember that, in this article, we concentrate on the scalar
field model. For a comparison with experimental data [32,33],
it will be necessary to take into account the vectorial character
of the light field: The latter makes it possible to filter out single
scattering such that η → 2 can be observed for s → 0 in the
case of atoms with nondegenerate ground state [27]. Also,
nonlinear crossed scattering processes are influenced by the
vectorial character. For example, the initial decrease of η for
small s predicted by two-photon scattering theory is less steep
than in the scalar case [38].

VIII. CONCLUSION

This work was dedicated to the solution of a problem that,
due to its exponential complexity, was deemed intractable: the
propagation of intense laser light across a dilute, disordered
ensemble of cold atoms.

Our solution is based, on the one hand, on quantum optical
methods which provide an accurate account of the individual
atomic responses to a saturating laser field. On the other
hand, it relies on diagrammatic methods whereby multiple
scattering signals can be expressed in terms of single-atom re-
sponses. We developed a combination of these methods under
the approximation that the intensities emitted from different
atoms are uncorrelated with each other. This approximation is
valid for a dilute atomic medium (where the distances between
atoms are larger than the wavelength of the scattered light) and
makes it possible to represent the photons exchanged between
the atoms by a classical field. For a small number of atoms
(N = 2 and 3), the latter property has already been proven and
applied in previous work [56,71], whereas this article provides
the generalization to an arbitrary number of atoms.

To achieve this goal, we started from a microscopic quan-
tum optical master equation for N laser-driven atoms ex-
changing photons via the far-field dipole-dipole interaction.
Thereafter, we obtained a formal solution of the master equa-
tion in the form of a diagrammatic series, and performed the
complete summation of diagrams surviving the disorder aver-
age, the so-called ladder and crossed diagrams. We thereby
derived transport equations for the diffusive and coherent

backscattering intensities which we solved numerically for
the case of an atomic medium confined to a slab. In this
way, we were able to determine the local spectral irradiance
of light propagating inside the slab and to demonstrate how
increasing the incident laser intensity leads to a broadening of
the spectrum of backscattered light and to a reduction of the
height of the coherent backscattering interference peak.

To reduce the technical overload, the present theory was
developed for two-level atoms and scalar electromagnetic
fields. However, the ideas lying at the basis of our method
are equally valid for atoms with degenerate dipole transitions
and for vector fields [58,72]. The generalization to this more
realistic scenario is possible and necessary for achieving a
satisfactory agreement with the experimental results on coher-
ent backscattering of strong laser light by cold atoms [32,33].
In principle, we expect that our theory can be generalized to
dilute media composed out of quantum-mechanical scatterers
with an arbitrary level structure for which the interaction
of the incident field with a single scatterer can be treated
by Bloch equations, e.g., atoms with three or four levels
as a microscopic model for random lasing [73] (see also
the discussion at the end of Sec. VII B), or with a �-type
level structure suitable for electromagnetically induced trans-
parency [23]. In these and similar cases, our quantum-optical
multiple scattering approach provides the possibility to access
new regimes which cannot be treated by presently available
theories, in particular to account for nonlinear effects occur-
ring at high-field strengths (such as saturation or inelastic
scattering induced by quantum fluctuations) in combination
with multiple scattering.
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APPENDIX A: UNIQUENESS OF THE STATIONARY STATE

To prove that the N-atom master equation (8) has a unique
stationary state, we first show that all eigenvalues of the
coupling matrix W [see Eq. (10)] are positive, provided that
the distances between all pairs of atoms are larger than zero.
For this purpose, we note that

Wjk =
∫

d	

4π
eik	·r j e−ik	·rk , (A1)

where 	 denotes the angular variables of k	, and |k	| =
kL. All eigenvalues of W are positive if and only if
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∑
jk c jc∗

kWjk>0 for all coefficients (c1, . . . , cN ) �= (0, . . . , 0).
Due to Eq. (A1), however, we have

∑
jk

c jWjkc∗
k =

∫
d	

4π

∣∣∣∣∣∣
∑

j

c je
ik	·r j

∣∣∣∣∣∣
2

� 0. (A2)

Equation (A2) is equal to zero if and only if∑
j

c je
ik	·r j = 0 (A3)

for all 	. This, in turn, is possible only if there are at least
two atoms j �= k with identical positions r j = rk . A solution
of Eq. (A3) with nonzero coefficients would then be given
by c j = −ck (and ci = 0 for i �= j, k). The corresponding
eigenvalue 0 of the coupling matrix W then gives rise to a
“dark state,” i.e., a subradiant state with infinite lifetime. If all
positions ri differ from each other, however, the only solution
of Eq. (A3) with the same set of coefficients c j for all 	 is
given by c j = 0 for all j. This implies that, in the absence of
the driving laser, all atoms finally decay to the ground state
with a finite (i.e., nonzero) rate.

We can now bring the master equation (8) into the diagonal
form

ρ̇ = − i

h̄
[H̃A, ρ] +

N∑
j=1

γ j (2a jρa†
j − ρa†

j a j − a†
j a jρ), (A4)

where the rates γ j > 0 are the eigenvalues of W times �/2,
and the operators a j are linear combinations of σ−

1 , . . . , σ−
N

(determined by the corresponding eigenstates of W ). As
shown in [74,75], the solution of this equation relaxes toward
a unique stationary state if there exists no operator different
from a multiple of the identity operator that commutes with
all operators a j and a†

j . Since each σ−
j can be expressed as a

linear combination of a1, . . . , aN (due to the orthogonality and
completeness of eigenstates of W ), this, in turn, is the case if
only multiples of the identity operator commute with all oper-
ators σ−

j and σ+
j . Finally, the latter condition is fulfilled since,

for each single atom j, multiples of the identity operator (in
the subspace of atom j) are the only operators that commute
with both σ−

j and σ+
j .

To show that the stationary state is given by Eq. (31), we
first note that the condition L
S = 0 is equivalent to


S =
(

1

ε − L
V + 1

)

S0 + ε

ε − L
(
S − 
S0) (A5)

as can be seen by applying (ε − L) to both sides of the
equation, and using L
S0 = (A + V )
S0 = V 
S0 [see Eq. (28)].
The first term on the right-hand side of Eq. (A5) is the
same one which occurs in Eq. (31). It remains to be shown
that the second term vanishes in the limit ε → 0. For this
purpose, we first observe that, due to the normalization con-
ditions for 
S and 
S0, the vector 
S − 
S0 is orthogonal to the
left eigenvector of L associated with the eigenvalue 0, i.e.,
(1, 0, . . . , 0)(
S − 
S0) = 1 − 1 = 0. Therefore, the eigenvalue
0 of L does not contribute in the second term on the right-hand
side of Eq. (A5). In other words, in the limit ε → 0, the
norm of the vector (ε − L)−1(
S − 
S0) is bounded from above,

i.e., |(ε − L)−1(
S − 
S0)| � |ε − λ2|−1|
S − 
S0|, where λ2 is
the second smallest singular value of L. The latter is strictly
larger than zero since the eigenvalue 0 of L is nondegenerate
due to the uniqueness of the stationary state shown above.
Therefore,

lim
ε→0

∣∣∣∣ ε

ε − L
(
S − 
S0)

∣∣∣∣ = 0 (A6)

and Eq. (31) follows from Eq. (A5).

APPENDIX B: STOCHASTIC OPTICAL
BLOCH EQUATIONS

To determine the refractive index nω(r) [see Eq. (92)]
and the crossed building blocks τ (ω1, ω2, r), τL1(ω1, r), and
τL2(ω1, r) [see Eqs. (110)–(112)], we need to calculate partial
derivatives of s±

r (t ) with respect to small probe fields. For this
purpose, let us consider a single realization of the classical
stochastic field E±(t ) (representing the radiation emitted from
other atoms) [see Eqs. (87) and (88)] and define

A(r, t ) = A(r) + C+ 2d

h̄
E−(t ) + C− 2d

h̄
E+(t ), (B1)

where A(r),C+, and C− are the same 4×4 matrices as those in
Eqs. (23) and (25), but without subscripts j, and 	 j replaced
by the Rabi frequency 	(r) = 2dE+

L (r)/h̄ of the attenuated
laser amplitude E+

L (r) [see Eq. (99)]. Then, the single-atom
Bloch vector in the presence of this stochastic field fulfills the
optical Bloch equation

d

dt

sr(t ) = A(r, t )
sr(t ) (B2)

[see also Eq. (72)]. Using a numerical integration routine,
we first solve this equation with an arbitrary initial condi-
tion at time t0 � −1/�, such that a quasistationary state
(see Sec. IV D) is reached at time t = 0. Averaging the com-
ponent s−

r (0) over many realizations of the stochastic classical

field yields the (time-independent) value s−
r

(cl)
, which defines

the refractive index nL(r) [see Eq. (100)]. In a second step,
we then determine the derivative with respect to an additional
probe field (with frequency ω) by solving the following equa-
tion:

d

dt

∂
sr(t )

∂E±
ω (t )

= [A(r, t ) ± iω]
∂
sr(t )

∂E±
ω (t )

+ C∓ 2d

h̄

sr(t ) (B3)

with initial condition ∂
sr(t0)/∂E±
ω (t0) = 0. Note that, in the

absence of the stochastic field, i.e., if E±(t ) = 0, the solu-
tion of Eq. (B3) reproduces the single-atom building blocks
s+

r (ω)(∓) and s−
r (ω)(∓) [see Eqs. (61) and (74)]. For E±(t ) �=

0, however, it is necessary to solve Eq. (B3) again by nu-
merical integration. Finally, in order to perform the ensemble
average (denoted by the overbar (cl)), these steps must be
repeated for many different realizations of the stochastic field.
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Higher derivatives are obtained recursively as follows:

d

dt

∂n
sr(t )

∂Eα1
ω1 (t ) . . . ∂Eαn

ωn (t )

=
[

A(r, t ) + i
n∑

m=1

αmωm

]
∂n
sr(t )

∂Eα1
ω1 (t ) . . . ∂Eαn

ωn (t )

+
n∑

m=1

C−αm
2d

h̄

∂n−1
sr(t )

∂Eα1
ω1 (t ) . . . ∂Eαm−1

ωm−1 (t )∂Eαm+1
ωm+1 (t ) . . . ∂Eαn

ωn (t )

(B4)

with initial condition ∂n
sr(t0)/∂Eα1
ω1

(t0) . . . ∂Eαn
ωn

(t0) = 0. For
the crossed building blocks K (ω1, ω2, r) and KL(ω1, r) [see
Eqs. (108) and (109)], we also need the derivatives of the
correlation functions 〈σ+(τ )σ−(0)〉 and 〈σ+(0)σ−(τ )〉. Ac-
cording to the quantum regression theorem [55], these fulfill
the same optical Bloch equation, i.e.,

d

dτ
〈
σ (τ )σ−(0)〉r = A(r, τ )〈
σ (τ )σ−(0)〉r, (B5)

d

dτ
〈σ+(0)
σ (τ )〉r = A(r, τ )〈σ+(0)
σ (τ )〉r (B6)

but with a different initial condition at time τ = 0:

〈
σ (0)σ−(0)〉r = B−
sr(0), (B7)

〈σ+(0)
σ (0)〉r = B+
sr(0). (B8)

From these correlation functions, the single-atom spectrum

Pr(ω)
(cl)

is obtained by Fourier transformation [see Eq. (84)],
and averaging over many realizations. As explained in
Sec. V D, its elastic and inelastic component can be extracted
by first evaluating the limit τ → ∞ [see Eq. (105)]. Deriva-
tives with respect to probe fields are calculated in the same
way as above [see Eqs. (B3) and (B4)], where 
sr(t ) is replaced
by 〈
σ (t )σ−(0)〉r or 〈σ+(0)
σ (τ )〉r, respectively. According to
Eqs. (B7) and (B8), the initial condition at time τ = 0 is then
given by the corresponding derivative of 
sr(0).

APPENDIX C: FLUX CONSERVATION

Within the ladder approximation valid for the case of large
distances between the atoms, recurrent scattering is neglected
(see Sec. IV E), such that different scattering events can be
regarded independently of each other. Flux conservation in
multiple scattering then follows from the conservation of
flux at each single scattering event. For linear scatterers, the
latter condition is guaranteed by the optical theorem, which,
in turn, leads to the relation Nσtot = 1/� between the total
scattering cross section σtot of a single scatterer, the density
N of scatterers, and the mean-free path � [76]. Let us now
generalize this expression to our case of nonlinear quantum
scatterers:

(i) The cross section σtot is defined by the total light
intensity radiated by a single atom (integrated over all angles)
divided by the intensity of the incident light. The intensity
radiated by a single atom, in turn, is proportional to the

dipole spectrum Pr(ω)
(cl)

[see Eq. (86)], integrated over all
frequencies ω.

(ii) The mean-free path � is identified with the effective
mean-free path �(tot) defined by Eqs. (130) and (131). This
is justified since the incident laser light and the different
frequency components of the scattered light do not interfere
with each other. Therefore, the total incident light intensity is
obtained by summing the intensities of each component [see
Eqs. (128) and (129)] and, due to scattering, each component
is attenuated by a factor proportional to 1/�L (for the laser
light) or 1/�ω (for scattered light with frequency ω) [see
Eqs. (130) and (131)].

In total, the condition expressing the conservation of flux
at each single scattering event reads as

h̄ω0�

∫ ∞

−∞
dωP (ω, r) = I (tot)(r)

�(tot)(r)
. (C1)

We first show that Eq. (C1) is indeed fulfilled by our ladder
transport equations. Due to σ+σ− = (1 + σ z )/2, we get∫ ∞

−∞
dωP (ω, r) = N (r)

1 + sz
r(t )

(cl)

2
. (C2)

On the other hand, the expressions (92), (93), and (100) for
the mean-free paths �ω and �L yield

I (tot)(r)

�(tot)(r)
= 2dωLN (r)Im

{
s−

r (t )
(cl)

E−
L (r)

+ 1

2ε0c

∫ ∞

−∞
dω

∂s−
r (t )

(cl)

∂E+
ω (t )

I (ω, r)

}
. (C3)

In the quasistationary regime (see Sec. IV D), averages over
the stochastic classical field (see Sec. V A) are time indepen-

dent, in particular, ṡz
r(t )

(cl) = 0. From the single-atom Bloch
equation [see Eq. (72)], we therefore deduce

�
sz

r(t )
(cl) + 1

2
= 2d

h̄
Im

{
s−

r (t )(E−
L (r) + E−(t ))

(cl)}
. (C4)

The laser amplitude E−
L (r) is a nonfluctuating quantity and

therefore can be taken out of the classical field average. To
average the product s−

r (t )E−(t ), we represent the field E−(t )
as a sum over many components E−

jk (t ) with random phases
[see Eqs. (81) and (82)]. Since the phase of E−

jk (t ) can be
compensated only by E+

jk (t ), we obtain for a small field E+
jk (t )

s−
r (t )E−

jk (t )
(cl) = ∂s−

r (t )

∂E+
jk (t )

(cl)

|Ejk|2. (C5)

Taking into account Eqs. (81) and (82), Eq. (C1) follows
from Eqs. (C2)–(C5). Finally, from the definition of γL(ω, eD)
[see Eq. (106)], and the bistatic coefficient γL(eD) =∫

dω γL(ω, eD), together with the ladder transport equations
(102) and (103), it is possible to derive the following equation:∫

deD

4π
γL(eD) +

∫
A

dx dy

A
IL(x, y, L)

IL
= 1 (C6)

expressing flux conservation of multiply scattered light. The
two terms on the left-hand side represent the flux of scattered
light (with integral over the two angles characterizing the
outgoing direction eD) and the flux of coherently transmitted
light [where eL is parallel to the z axis, and L is chosen such
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that z � L for all points (x, y, z) ∈ V inside the scattering volume V ], respectively. Their sum equals the normalized flux of the
incident laser through the transverse area A (defined by the projection of V onto the xy plane).

APPENDIX D: EXPRESSIONS FOR THE CROSSED BUILDING BLOCKS K AND K̃

The diagrammatic representation shown in Fig. 10 leads to the following expressions for the crossed building blocks K
and K̃:

K(ω1, ω2, r) = h̄2N (r)

4d2

∫ ∞

0

dτ

2π

⎡
⎣e−iω1τ

∂2(〈σ+(τ )σ−(0)〉r − s+
r (τ )s−

r (0))

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

(cl)

+ ei(ω−ω2 )τ ∂2(〈σ+(0)σ−(τ )〉r − s+
r (0)s−

r (τ ))

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

(cl)

+ e−iω1τ

(
∂2s+

r (τ )

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

)
s−

r (0)

(cl)

+ eiω1τ

(
∂2s+

r (0)

∂E+
ω2

(0)∂E−
ω−ω1

(0)

)
s−

r (τ )

(cl)

+ ei(ω2−ω1 )τ

(
∂s+

r (τ )

∂E−
ω−ω1

(τ )

)(
∂s−

r (0)

∂E+
ω2

(0)

)(cl)

+ ei(ω1−ω2 )τ

(
∂s+

r (0)

∂E−
ω−ω1

(0)

)(
∂s−

r (τ )

∂E+
ω2

(τ )

) (cl)⎤
⎦, (D1)

K̃(ω1, ω2, r) = h̄2N (r)

4d2

∫ ∞

0

dτ

2π

⎡
⎣e−iωτ

(
∂s+

r (τ )

∂E+
ω2

(τ )

)(
∂s−

r (0)

∂E−
ω−ω1

(0)

)(cl)

+ eiωτ

(
∂s+

r (0)

∂E+
ω2

(0)

)(
∂s−

r (τ )

∂E−
ω−ω1

(τ )

) (cl)

+ ei(ω2−ω)τ s+
r (τ )

(
∂2s−

r (0)

∂E+
ω2

(0)∂E−
ω−ω1

(0)

)(cl)

+ ei(ω−ω2 )τ s+
r (0)

(
∂2s−

r (τ )

∂E+
ω2

(τ )∂E−
ω−ω1

(τ )

) (cl)⎤
⎦, (D2)

KL(ω1, r) = h̄N (r)

2dE+
L (r)

∫ ∞

0

dτ

2π

⎡
⎣e−iω1τ

∂ (〈σ+(τ )σ−(0)〉r − s+
r (τ )s−

r (0))
(cl)

∂E−
ω−ω1

(τ )
+ eiωτ ∂ (〈σ+(0)σ−(τ )〉r − s+

r (0)s−
r (τ ))

(cl)

∂E−
ω−ω1

(τ )

+ e−iω1τ

(
∂s+

r (τ )

∂E−
ω−ω1

(τ )

)
s−

r (0)

(cl)

+ eiω1τ

(
∂s+

r (0)

∂E−
ω−ω1

(0)

)
s−

r (τ )

(cl)
⎤
⎦, (D3)

K̃L(ω1, r) = h̄N
2dE+

L (r)

∫ ∞

0

dτ

2π

⎡
⎣e−iωτ s+

r (τ )

(
∂s−

r (0)

∂E−
ω−ω1

(0)

)(cl)

+ eiωτ s+
r (0)

(
∂s−

r (τ )

∂E−
ω−ω1

(τ )

) (cl)
⎤
⎦. (D4)

To obtain the correct frequencies in the exponential factors, we must take into account that E+
ω2

(τ ) = e−iω2τ E+
ω2

(0) and
E−

ω−ω1
(τ ) = ei(ω−ω1 )τ E−

ω−ω1
(0), which implies a shift of frequency if a derivative with respect to a probe field is evaluated at

time 0 instead of time τ .
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