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Enhanced photon antibunching via interference effects in a � configuration
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Photon antibunching based on a single two-level atom strongly coupled to a single-mode optical cavity
has been demonstrated in experiments. Here, we put forward an improved version of such an antibunching
by introducing a pump field and a microwave field in the coupled atom-cavity system to form both a three-
level �-type transition and closed-loop coupling. Via calculating the zero-time-delay second-order correlation
function g(2)(0) of the single-mode cavity field, we find that a complete photon blockade, namely, g(2)(0) = 0,
can be well achieved without detuning the driving and cavity resonance. In addition, it is clearly shown that this
strong photon antibunching effect appears in the weak-coupling regime of light-atom interactions. The enhanced
photon antibunching is ascribed to quantum interference between the two transition paths from the three-level �

atom weakly coupled to the three involved fields (cavity, pump, and microwave). Our proposal is useful for the
single-photon generation by photon blockade, which has applications in quantum information processing.
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I. INTRODUCTION

A two-level quantum emitter coupled to a single-mode
optical cavity belonging to cavity quantum electrodynamics
(QED) displays many notable quantum behaviors. As is well
known, in the weak-coupling regime of cavity QED where the
coupling strength between the emitter and the cavity mode
is much less than the dissipative rate, an enhancement of
the spontaneous emission rate, namely, the so-called Purcell
effect, can appear [1] and in experiment has been observed [2].
By contrast, in the strong-coupling regime, the energy eigen-
values and eigenstates of the cavity-QED system are consid-
erably varied, which leads to hybridized polaritons (dressed
state), Rabi oscillation [3], and Rabi splitting [4,5]. Accord-
ingly, the energy-level diagram of the full system is described
by the anharmonic Jaynes-Cummings (JC) ladder [6–10].
Thanks to the anharmonic energy-level spacing, when the
driving field is positioned at one of the two energy eigenstates
corresponding to the vacuum Rabi splitting, the admission of
a single photon into the cavity diminishes the probability for a
second photon to enter the cavity. This phenomenon is called
photon antibunching [11,12]. Whereas when the driving field
is positioned between the two eigenstates, the probability of
capturing subsequent photons is raised, resulting in photon
bunching. In the strong-coupling regime of cavity QED or
circuit QED, photon antibunching has been illustrated in one
trapped atom in a Fabry-Pérot or whispering-gallery cavity
[13–16], an embedded quantum dot in a photonic crystal or
micropillar cavity [17–24], and a superconducting qubit in a
superconducting circuit resonator [25–27], spinning or gain
resonator [28,29].
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However, it is noteworthy to mention that, in the weak-
coupling scenario, the photon antibunching in the above-
mentioned cavity QED is impossible because the energy gap
between the hybridized polaritonic states disappears. Again,
arriving at the strong-coupling regime in the optical domain
is a highly challenging task. As a consequence, it is still of
fundamental and practical interest to seek novel mechanisms
to produce the strong antibunched light in the weak-coupling
regime, which is much easier to achieve.

With this motivation, in 2010 Liew and Savona theo-
retically found that the constraint condition on the strong
coupling can be relaxed by taking into account two coupled
cavities rather than one single cavity [30] for generating
perfect photon antibunching g(2)(0) = 0. This effect is re-
ferred to as an unconventional photon blockade because the
underlying mechanism behind it is based on the destructive
quantum interference between multiple transition pathways in
two directly coupled cavities [31] or is based on the fact that
the cavity state is a displaced squeezed state [32], with respect
to conventional photon blockade from anharmonicity of the
JC ladder of eigenstates [13,17,18]. From then on, all kinds
of theoretical methods based on such a physical mechanism
have been proposed to achieve the antibunched light, for
instance, in a bimodal cavity or two cavities coupling a dipole
quantum emitter [33–39], in two directly coupled single-mode
cavities with second-order or third-order optical nonlinearity
[40–48], in coupled cavity optomechanical systems [49–53],
and in coupled polaritonic systems [54–56], due to its po-
tential applications in quantum communication and quantum
information processing. After considerable efforts, in 2018
the unconventional photon blockade has been experimentally
implemented and demonstrated by two independent groups.
One group used a single quantum dot and a micropillar cavity
with two orthogonally polarized modes, which functions like
two cavities [57]. At the same time, the other group adopted
two coupled superconducting circuit resonators, where one
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resonator contains a superconducting quantum interference
device [58].

On the other hand, coherently driven three-level atoms or
comparable solid-state emitters instead of two-level atoms
inside an optical cavity are exploited to study a variety of new
quantum optical phenomena because the absorption, disper-
sion, and nonlinearity of the three-level atomic system based
on quantum coherence and interference can be drastically
modified [59–66]. Along this line, in the present work we
investigate the quality of the photon antibunching, namely, the
smallness of the second-order intensity correlation function
at zero time, using a single three-level atom embedded in a
single-mode optical cavity together with a pump field and a
microwave field in free space. In this scenario, the involved
three fields and three-level atom can form the so-called �-type
transition and closed-loop coupling. Based on experimentally
realistic atom-cavity parameters, we numerically calculate
the steady-state second-order intensity correlation functions
g(2)(0) of the cavity field for four geometries: (i) a two-level
configuration, (ii) a three-level � configuration, (iii) a three-
level V configuration, and (iv) a three-level � configuration
for the purpose of a performance comparison. The detailed
results clearly display that the quality of the photon antibunch-
ing in the three-level � configuration can be significantly
improved, as compared to the other three configurations. The
complete photon blockade [i.e., g(2)(0) = 0] can be gener-
ated at the zero driving detuning. The photon antibunching
behavior in this three-level � configuration does not directly
arise from the anharmonicity mechanism as in the previous
studies [13–16] and also is distinct from the cavity-cavity
coupling principle of the unconventional photon blockade in
previously implemented proposals [30,31]. Here the photon
statistics of the cavity field is influenced by the external field
couplings (for example, the pump and microwave fields in
free space in the present scheme) and is determined by the
whole interacting dynamical process of the system which
needs to include the photon-photon correlation induced by the
intermediary JC interactions.

On the other hand, this strong photon antibunching effect
can appear in the weak-coupling regime of light-atom inter-
actions, where the coupling strength between the atom and
the field is much less than the cavity or atom decay rate. This
relaxes the constraint condition on the considered system and
makes our proposal well suited to generate the antibunched
photons, as we show below. We attribute these striking fea-
tures to the formation of the quantum interference between
the two relevant transition paths from the three-level �-type
atom weakly coupled to the cavity, pump, and microwave
fields (see inset of Fig. 1). We also explore the experimental
feasibility of the proposed scheme using current state-of-the-
art atom-cavity architecture. This investigation deepens our
understanding of the photon antibunching mechanism in the
closed-loop coupling and may be useful for the construction
of single-photon sources.

The outline of our paper is organized as follows. Sec-
tion II details the basic framework of our three-level �-
type atom-cavity system under study, which mainly includes
the corresponding Hamiltonian and master equation. Sec-
tion III discusses the experimental feasibility of our scheme.
Section IV presents the in-depth results of the photon statistics

1

2

3
cg

pΩ

mΩ

η

pΩ

mΩ

cg

FIG. 1. Schematic representation of the system to generate anti-
bunched photons. The medium is a single atom trapped at the center
of a two-sided optical high-finesse cavity. The atom is modeled as
a three-level system composed by an excited state |2〉 as well as
two ground states |1〉 and |3〉 which are separated by a microwave
transition shown in the inset. The cavity mode with frequency ωc and
vacuum Rabi frequency gc (orange lines) couples the dipole-allowed
transition |1〉 ↔ |2〉. The cavity mode is driven along the cavity
axis by an external weak laser field with frequency ωL and strength
η. A classical pump laser field (free-space) with frequency ωp and
Rabi frequency �p (blue lines) couples an optical electric-dipole
transition |2〉 ↔ |3〉. Simultaneously, an additional microwave field
with frequency ωm and Larmor frequency �m (red lines) couples a
magnetic dipole transition |1〉 ↔ |3〉. The top inset shows the atomic
level scheme. The cycle transition |1〉 → |2〉 → |3〉 → |1〉 together
with the three fields (cavity, pump, and microwave) forms a so-called
� atomic level configuration. The other parameters are defined in the
text.

for the cavity field. Finally, we summarize our conclusions in
Sec. VI.

II. PHYSICAL SYSTEM AND THEORETICAL
FRAMEWORK

As depicted schematically in Fig. 1, we consider a system
consisting of a three-level atom characterized by an excited
state |2〉 and two ground states |1〉 and |3〉 in a � configura-

tion plus closed-loop coupling (|1〉 gc� |2〉 �p� |3〉 �m� |1〉) and
trapped inside a high-finesse single-mode optical cavity. The
ground state |1〉 and the excited state |2〉 with the atomic tran-
sition frequency ω21 are coupled by the cavity mode with the
resonance frequency ωc and the atom-cavity coupling constant
(vacuum Rabi frequency) gc as described by cavity QED. This
cavity mode is driven coherently by an external weak guided
field with frequency ωL and strength η. To change the optical
properties of the atom, the states |2〉 and |3〉 with the transition
frequency ω23 are coupled by a classical pump laser field in
free space with angular frequency ωp and Rabi frequency �p.
The two ground states |1〉 and |3〉, separated by a microwave
transition with frequency ω31, are coupled by a microwave
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field with angular frequency ωm and Larmor frequency �m.
In the dipole and rotating-wave approximations, the overall
Hamiltonian of the composite system which describes the
atom-field coupling can be written as

Ĥ = h̄ωcâ†
c âc + h̄ω21σ̂22 + h̄ω31σ̂33

+ h̄(gcâcσ̂21 + g∗
câ†

c σ̂12)

+ h̄(�pe−iωpt σ̂23 + �∗
peiωpt σ̂32)

+ h̄(�me−iωmt σ̂31 + �∗
meiωmt σ̂13)

+ h̄(ηe−iωLt â†
c + η∗eiωLt âc). (1)

Here, h̄ is the reduced Planck constant and σ̂i j = |i〉〈 j| (i, j =
1, 2, 3) are the atomic energy-level population operators (i =
j) and the atomic raising and lowering operators (i �= j); â†

c
and âc are the creation and annihilation operators for pho-
tons inside the cavity obeying the bosonic commutation rule
[âc, â†

c] = 1, [âc, âc] = 0, and [â†
c, â†

c] = 0, respectively. The
corresponding Rabi and Larmor frequencies are defined as
gc = μ21

√
ωc/2h̄ε0V , �p = μ23Ep/2h̄, and �m = μ31Em/2h̄

with ε0 being the permittivity of vacuum, V the mode volume
of the cavity, μi j the dipole moment of the corresponding
transition, and Ep and Em the field amplitudes. Notice that
our definition of �p (�m) corresponds to half of the standard
definition of Rabi (Larmor) frequency.

We utilize a rotating coordinate frame described by the
unitary operator Û = e−iĤ0t/h̄, where

Ĥ0 = h̄ωLâ†
c âc + h̄ωLσ̂22 + h̄(ωL − ωd )σ̂33. (2)

Then, making good use of the formula Ĥrot = Û †ĤÛ −
iÛ †∂Û/∂t , Hamiltonian (1) can be transformed into a time-
independent form

Ĥrot = h̄δâ†
c âc + h̄(δ + �c)σ̂22 + h̄(δ + �c − �p)σ̂33

+ h̄(gcâcσ̂21 + g∗
câ†

c σ̂12) + h̄(�pσ̂23 + �∗
pσ̂32)

+ h̄(�mσ̂31 + �∗
mσ̂13) + h̄(ηâ†

c + η∗âc), (3)

where we have introduced the notations of frequency de-
tunings δ = ωc − ωL, �c = ω21 − ωc, �p = ω23 − ωp, and
�m = ω31 − ωm for the corresponding fields, respectively. All
three fields are detuned from the respective resonances in the
three-level atom, but they are in the three-photon resonance,
ωm + ωp = ωL, which leads to the relationship �m + �p =
�c + δ.

To capture the dynamics of our physical system, we nu-
merically solved the Markovian master equation of the driven
system for the density matrix ρ̂ in the Lindblad form [67]:

∂ρ̂

∂t
= − i

h̄
[Ĥrot, ρ̂] + κc(n̄th + 1)L(âc) + κcn̄thL(â†

c )

+ γ21L(σ̂12) + γ23L(σ̂32), (4)

where Ĥrot is Hamiltonian (3) of the atom-cavity system
and κc is the decay rate of the cavity field. γ21 and γ23 are
the spontaneous decay rates of the atomic dipole from the
common excited state |2〉 to the two ground states |1〉 and
|3〉, respectively. n̄th is the mean photon number of thermal
excitations at the cavity frequency ωc, i.e., n̄th = (eh̄ωc/kBT −
1)−1 with T being the bath temperature and kB the Boltzmann
constant. Here we assume a zero-temperature bath for the

optical cavity, i.e., T = 0 K, thus giving rise to n̄th = 0. On
the right-hand side of Eq. (4), the first term represents the
coherent evolution of the system, while the other incoherent
terms describe the damping phenomena, namely, the cavity
field damping and the atomic spontaneous emission processes.
These damping effects are expressed by the Liouville super-
operator L, which acts on a given operator Ô with the form
L(Ô) = Ôρ̂Ô† − Ô†Ôρ̂/2 − ρ̂Ô†Ô/2.

III. POSSIBLE EXPERIMENTAL REALIZATION
IN THIS MODEL

Before proceeding, we briefly address the experimental
feasibility of our scheme by means of a two-sided Fabry-Pérot
cavity, a single alkali-metal atom, two separate external cavity
diode lasers (ECDLs), and an appropriate microwave source.
More specifically, we employ, for example, a single 87Rb
atom (nuclear spin I = 3/2, D1 line, and wavelength 795 nm)
on the 5S-5P transition as a possible candidate [68,69] for
achieving the � configuration under study. The designated
states and the decay rates in the inset of Fig. 1 can be chosen as
follows: |1〉 = |5S1/2, F = 1, mF = −1〉, |2〉 = |5P1/2, F =
1, mF = −1〉, |3〉 = |5S1/2, F = 2, mF = −2〉, and γ21 =
γ23 	 2π × 3 MHz [70,71], respectively, where F represents
the hyperfine state and mF the Zeeman substate. It should
be pointed out that the relaxation rate γ31 of coherence be-
tween states |3〉 and |1〉 is negligible (γ31 	 2π × 0.003 MHz)
because this transition is electric-dipole forbidden in our
considered model.

Before being trapped at the center of a high-finesse
optical cavity, the 87Rb atoms need to be cooled by
the magneto-optical trap positioned above the cavity and
transferred into the cavity. In recent years, optical con-
trol has been successfully realized in current state-of-the-
art single-atom cavity-QED experiments, described in de-
tail in Refs. [72–79]. The atom in states |1〉 = |5S1/2, F =
1, mF = −1〉 and |2〉 = |5P1/2, F = 1, mF = −1〉 can be cou-
pled to the linearly polarized fundamental mode of the cav-
ity. An external driving laser field coming from an ECDL
and pumping the linearly polarized cavity mode is scanned
across the resonance of the |1〉 = |5S1/2, F = 1, mF =
−1〉 ↔ |2〉 = |5P1/2, F = 1, mF = −1〉 transition. A right-
circularly polarized pump laser field �p in free space,
whose wavelength is 795 nm and which is applied to the
electric-dipole transition |3〉 = |5S1/2, F = 2, mF = −2〉 ↔
|2〉 = |5P1/2, F = 1, mF = −1〉, can be obtained from the
ECDL. A microwave field, which comes from a home-
made antenna [80], drives the magnetic dipole transition be-
tween |1〉 = |5S1/2, F = 1, mF = −1〉 and |3〉 = |5S1/2, F =
2, mF = −2〉 with the hyperfine splitting frequency ω31 	
6.84 GHz. Such a microwave-field coupling has experimen-
tally arrived at values of hundreds of kilohertz [80]. The
frequency difference between the cavity mode and the pump
laser is also locked to the frequency difference of 6.84 GHz.

For the calculation the cavity parameters are set as the
atom-cavity coupling rate gc = 2π × 4 MHz and the cavity
field decay rate κc = 2π × 8 MHz. For the cavity length L =
486μm, its finesse is F = πc/(2κcL) 	 2 × 104 with c being
the light speed in free space. These cavity parameter values are
fairly representative of the generic experimental single-atom
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cavity-QED conditions [72–79]. For our selected parameters
above, the atom-cavity system operates in the weak-coupling
regime owing to gc < (κc, �2), where �2 = γ21 + γ23. Cor-
respondingly, we have the cooperativity parameter of the
system, C = g2

c/(2κc�2) 	 0.17 
 1, for one coupling atom.
The correlation function of the cavity output can be measured
in the same method as it is done experimentally, i.e., using one
beam splitter and two avalanche photodiodes [13,16,69].

We notice that another alternative solid-state system to
realize our �-configuration scheme can also be taken into
account in the context of superconducting quantum circuits
[81,82]. Such devices consist of a flux or transmon qutrit
coupled to a coplanar waveguide resonator via the induced
magnetic field, and have been implemented experimentally;
see Ref. [82] for details.

IV. CALCULATION OF SECOND-ORDER PHOTON
CORRELATION g(2)(0)

In order to numerically solve the density matrix ρ̂, we
expand the state of the coupled atom-cavity system in the basis
| j, n〉 = | j〉 ⊗ |n〉, where | j〉 ( j = 1, 2, 3) is the state of the
three-level atom and |n〉 is the Fock basis for the cavity mode
with the photon number n (n = 0, 1, 2, . . .), as described
before. The joint density operator ρ̂ is a tensor product of
the density matrix of the two subsystems and evolves in the
time according to master equation (4). At the steady state,
we set ∂ρ̂/∂t = 0 and truncate the Fock basis of the cavity
mode. Once we achieve the density matrix ρ̂, we can compute
the mean value of any operator using 〈Ô〉 = Tr(Ôρ̂ ), where
Tr denotes the trace. Here, we are particularly interested in
the statistical properties of the cavity field, such as photon
bunching and antibunching. The statistical properties of the
transmitted photons can be measured by the normalized zero-
time-delay second-order correlation function [83]

g(2)(0) =
〈
â†2

c â2
c

〉

〈â†
c âc〉2

= Tr
(
â†2

c â2
c ρ̂

)

[Tr(â†
c âcρ̂ )]2

, (5)

where, more concretely, the value of g(2)(0) < 1 represents
the photon antibunching (corresponding to sub-Poissonian
photon statistics). It is a nonclassical effect of light and
also is an important witness for the two-photon blockade
effect which is used to characterize the quality of single-
photon sources in applications. On the contrary, the value
of g(2)(0) > 1 denotes the photon bunching (super-Poissonian
photon statistics), which is a classical effect. In particular, the
value of g(2)(0) = 1 is referred to as the coherent-state pho-
ton (Poissonian photon statistics), which is a quasiclassical
effect.

V. NUMERICAL RESULTS AND DISCUSSIONS
ABOUT CORRELATION g(2)(0)

The second-order correlation function g(2)(0) is shown in
Figs. 2(a)–2(d) as a function of the driving detuning δ/2π

for four different atomic level configurations for the sake of
an in-depth comparison. Specifically, this first simple con-
figuration is to employ a standard two-level atom coupled
to only a single-mode cavity field, which we refer to as a
two-level configuration below. For the two-level configuration
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FIG. 2. Second-order correlation function g(2)(0) as a function
of the driving detuning δ/2π for four different atomic configura-
tions. (a) Standard two-level configuration, i.e., gc/2π = 4 MHz,
�p/2π = 0 MHz, and �m/2π = 0 MHz. The remaining param-
eters are chosen as κc/2π = 8 MHz, γ21/2π = 3 MHz, η/2π =
0.01 MHz, and �c/2π = 0 MHz. Here, the inset is a zoomed-
in view of both sides of the g(2)(0) spectrum around δ/2π =
0 MHz. (b) Three-level � configuration: gc/2π = 4 MHz, �p/2π =
2 MHz, and �m/2π = 0 MHz. The remaining parameters are chosen
as κc/2π = 8 MHz, γ21/2π = 3 MHz, γ23/2π = 3 MHz, γ31/2π =
0.003 MHz, η/2π = 0.01 MHz, �c/2π = 0 MHz, and �p/2π =
0 MHz. (c) Three-level V configuration: gc/2π = 4 MHz, �p/2π =
0 MHz, and �m/2π = 0.1 MHz. The remaining parameters are
chosen as κc/2π = 8 MHz, γ21/2π = 3 MHz, γ23/2π = 3 MHz,
γ31/2π = 0.003 MHz, η/2π = 0.01 MHz, �c/2π = 0 MHz, and
�m/2π = 0 MHz. (d) Three-level � configuration: gc/2π = 4 MHz,
�p/2π = 2 MHz, and �m/2π = 0.1 MHz. The other parameters
are chosen as κc/2π = 8 MHz, γ21/2π = 3 MHz, γ23/2π = 3 MHz,
γ31/2π = 0.003 MHz, η/2π = 0.01 MHz, �c/2π = 0 MHz, and
�p/2π = 0 MHz. In (a)–(d), the blue dotted lines stand for
g(2)(0) = 1.

in Fig. 2(a), one can see that the form of g(2)(0) is symmetric
with the strong photon bunching generating a maximum of
g(2)(0) 	 4.9 in the center δ/2π = 0 MHz, and the weak
photon antibunching generating a minimum dip of g(2)(0) 	
0.98 at the driving detuning of δ/2π 	 ±8 MHz; see the inset
of Fig. 2(a) for clarity. This weak photon antibunching in
the two-level configuration can be explained according to the
anharmonic nature of the ladder [6–10].

The second � configuration is used to introduce a three-
level atom coupled to a pump field and a single-mode cavity
field. For the three-level � configuration in Fig. 2(b), the
profile of the second-order correlation function g(2)(0) takes
on a peak-dip-peak structure due to the coupling of the pump
field, where no antibunching can be seen for the whole range
of driving detunings. The left- and right-side bunching peaks
reach the same value of g(2)(0) 	 2.8 at the driving detunings
of δ 	 ±�p = ±2π × 2 MHz. The other central bunching
dip corresponds to the value of g(2)(0) 	 1.9 at the driving
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detuning of δ/2π = 0 MHz. Evidently, the distance between
two side bunching peaks is proportional to the pump-field
Rabi frequency. The physical mechanism behind this photon
statistics behavior can be grasped by using the dressed-state
picture, which can be obtained by solving the Hamiltonian of
the three-level � configuration [6,7].

Effectively, a microwave field and a cavity field form a V
configuration with a three-level atom. For the three-level V
configuration in Fig. 2(c), a single peak in the g(2)(0) line
shape distinctively appears at the resonance point δ/2π =
0 MHz. For any detuning, there is no photon antibunching.
This is due to the microwave-field coupling strength being
less than the decay rates of the cavity field and the three-level
atom. Note as well that the photon bunching is considerable
for the certain detuning range δ/2π ∈ (−9.8, 9.8) MHz. At
large detuning the photon statistics are those of a coherent
state, with g(2)(0) equal to unity.

Finally, all the involved three fields (cavity, pump, and mi-
crowave) are switched on to simultaneously excite the three-
level atom, which constitutes a �-type or cycle transition and
closed-loop coupling. For brevity, we call it a three-level �

configuration. With the help of this three-level � configura-
tion in Fig. 2(d), we find that an obvious minimum and valley
appear around the zero detuning, e.g., the minimum value of
g(2)(0) reaches g(2)(0) = 0 at δ/2π = 0 MHz, in contrast to
the cases of Figs. 2(a)–2(c). From Fig. 2(d), one can also
observe that for the value of gc falling in the weak-coupling
regime, i.e., gc < (κc, �2), strong antibunching [g(2)(0) = 0]
can be realized. Like the previous schemes [30,31,33], this
just falls into the regime of an unconventional single-photon
blockade. Alternatively, the photon bunching is observed on
both sides around δ/2π 	 ±24.8 MHz, where the values of
g(2)(0) arrive at g(2)(0) 	 1.2. The feature of the second-order
correlation function g(2)(0) as shown in Fig. 2(d) for our
�-configuration scheme is analogous to the case of a bimodal
cavity with both of its modes coupled to a quantum dot [33].

Physically, for the three-level � configuration, this pro-
nounced antibunching is because the quantum interference
can happen between the two different two-photon exci-
tation pathways as shown in Fig. 3(d): (i) directly in-
putting two photons in the cavity mode by the external
driving, which we refer to as the direct pathway, i.e., |1, 0〉 η→
|1, 1〉

√
2η→ |1, 2〉, and (ii) the indirect pathway, i.e., |1, 0〉 �m→

|3, 0〉 η→ |3, 1〉 �p→ |2, 1〉
√

2gc→ |1, 2〉, assisted by the pump and
microwave fields. The photons coming from both pathways
(i) and (ii) cannot occupy the two-photon state |1, 2〉 owing
to the interference of these two excitation pathways instead
of the cavity-coupling cavity-induced quantum interference
presented in previous works [30,31]. On the contrary, for
the two-photon excitation pathways in a three-level � con-
figuration, evidently the indirect excitation pathway (ii) in

the transition part |1, 0〉 �m→ |3, 0〉 is cut off due to �m = 0
as shown in Fig. 3(b) and therefore no interference occurs.
Similarly, for a three-level V configuration [see Fig. 3(c)], the

transition part |3, 1〉 �p→ |2, 1〉 is switched off due to �p = 0.
Overall, the transition pathways of four configurations shown
in Fig. 3 are significantly different, leading to the rich line
shapes of g(2)(0) in Fig. 2.
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FIG. 3. Energy-level diagram showing the zero-, one-, and two-
photon states (horizontal grey lines without arrows) and the tran-
sition pathways (color lines with arrows) for four different atomic
configurations: (a) a standard two-level configuration, (b) a three-
level � configuration, (c) a three-level V configuration, and (d) a
three-level � configuration. States are labeled by | j, n〉 with the first
number being the state of the three-level atom and the second number
representing the Fock state for the cavity mode with the photon
number n.

Alternatively, it is worthwhile to emphasize that, in gen-
eral, when the pathway starting position is not the state |1, 0〉
but the terminal position still is the state |1, 2〉 in Fig. 3 for our
considered single-cavity situation, the quantum interference
of these excitation pathways does not play a role in the
intensity correlation (i.e., the second-order correlation) and
only plays a role in the amplitude correlation (the first-order
correlation) [45]. Here, owing to the direct introduction of
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the microwave driving field in the � system of Fig. 3(d)
compared with the � system of Fig. 3(b), a new excitation
pathway for the two-photon state obviously appears and thus
forms a closed-loop transition structure; i.e., the interference
starting point is the state |1, 0〉 in Fig. 3 and the terminal
point is the state |1, 2〉 for the quantum interference of the
excitation pathways leading to the two-photon state. This is
just the principle difference between the � configuration of
Fig. 3(b) and the � configuration of Fig. 3(d). In this scenario
of the closed-loop pathway [see Fig. 3(d)], the well-behaved
quantum interference can be efficiently achieved to generate
the pronounced photon antibunching [see Fig. 2(d)].

We also can seek the time-dependent Schrödinger equation
as an alternative way to provide the analytical description of
the properties of the photon statistics like Refs. [41,45] in the
scenario of a weak driving (η 
 gc, κc), where a perturbative
treatment is possible. According to Fig. 3(d), only the lower
energy levels of the cavity mode are occupied and the solution
of Eq. (4) can be approximated by ρ̂ = |ψ (t )〉〈ψ (t )| with the
truncated state

|ψ (t )〉 	 C10|1, 0〉 + C11|1, 1〉 + C12|1, 2〉 + C20|2, 0〉
+C21|2, 1〉 + C30|3, 0〉 + C31|3, 1〉, (6)

where the state | j, n〉 is the same as the previous definition
(cf. Sec. IV) and the coefficient Cjn represents the prob-
ability amplitude of the corresponding state | j, n〉. Based
on the time-dependent Schrödinger equation ih̄∂|ψ (t )〉/∂t =
Ĥ ′|ψ (t )〉, where Ĥ ′ = Ĥrot − iκcâ†

c âc − i�2σ̂22 is the non-
Hermitian Hamiltonian containing the optical cavity decay
and three-level atomic damping terms in addition to the orig-
inal Hamiltonian (3), the dynamics of the above coefficients
Cjn are described by a set of coupled equations as follows:

i
∂C10

∂t
= �∗

mC30 + η∗C11, (7)

i
∂C11

∂t
= (δ − iκc)C11 + g∗

cC20 + �∗
mC31 + ηC10 +

√
2η∗C12,

(8)

i
∂C12

∂t
= 2(δ − iκc)C12 +

√
2g∗

cC21 +
√

2ηC11, (9)

i
∂C20

∂t
= (δ + �c − i�2)C20 + gcC11 + �pC30 + η∗C21,

(10)

i
∂C21

∂t
= (2δ + �c − iκc − i�2)C21 +

√
2gcC12 + �pC31

+ηC20, (11)

i
∂C30

∂t
= (δ + �c − �p)C30 + �∗

pC20 + �mC10 + η∗C31,

(12)

i
∂C31

∂t
= (2δ + �c − �p − iκc)C31 + �∗

pC21 + �mC11 + ηC30.

(13)

In the steady state (i.e., ∂Cjn/∂t = 0), we can obtain the
following set of linear equations:

�∗
mC30 + η∗C11 = 0, (14)

(δ − iκc)C11 + g∗
cC20 + �∗

mC31 + ηC10 +
√

2η∗C12 = 0,

(15)

2(δ − iκc)C12 +
√

2g∗
cC21 +

√
2ηC11 = 0, (16)

(δ + �c − i�2)C20 + gcC11 + �pC30 + η∗C21 = 0, (17)

(2δ + �c − iκc − i�2)C21 +
√

2gcC12 + �pC31 + ηC20 = 0,

(18)

(δ + �c − �p)C30 + �∗
pC20 + �mC10 + η∗C31 = 0, (19)

(2δ + �c − �p − iκc)C31 + �∗
pC21 + �mC11 + ηC30 = 0.

(20)

In the limit of weak driving, we have the relationship
C10 � C11,C20,C30 � C12,C21,C31. In this circumstance, the
normalized zero-time-delay second-order correlation function
(5) can be reexpressed in terms of the coefficients Cjn as

g(2)(0) =
∑

j,n n(n − 1)|Cjn|2
( ∑

j,n n|Cjn|2
)2 	 2|C12|2

|C11|4 , (21)

where the sum indices are j = 1, 2, 3 and n = 0, 1, 2, . . ..
The coefficients C12 and C11 can be determined by directly
solving the set of coupled algebraic equations (14)–(20). The
calculated results are in agreement with those in Fig. 2.
Nevertheless, the analytical expressions of the second-order
correlation function g(2)(0) or the conditions for g(2)(0) → 0
or C12 	 0 (strong photon antibunching) are too long and
bulky to be included here. From the derivations mentioned
above, we can see that g(2)(0) is closely related to both the
pump and microwave fields (�p and �m), playing an impor-
tant role in generating strong antibunching for a three-level �

configuration. In the following, we focus on the situation with
such a well-behaved three-level � configuration.

In Fig. 4, we show the transmission through the cavity
corresponding to the three-level � configuration used in
Fig. 2(d). As can be seen in this figure, the transmission
reaches the maximum value in the center, δ/2π = 0 MHz,
where the second-order correlation function g(2)(0) = 0. This
high transmission and low g(2)(0) are useful for the correlation
measurement [84] and are also interesting for designing a
practical experiment.

In order to give a better insight into the effect of the pump
and microwave fields (�p and �m) on the photon statistics of
the single-mode cavity field in the three-level � configuration,
the second-order correlation function g(2)(0) is displayed in
Figs. 5(a) and 5(b). Figure 5(a) presents the color-scale two-
dimensional (2D) map of g(2)(0) as a function of the driving
detuning δ/2π and the pump-field Rabi frequency �p/2π .
The color bar on the right-hand side represents the magnitude
of g(2)(0). In looking at the results in Fig. 5(a), we find that
the line shape of the second-order correlation function g(2)(0)
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FIG. 4. The transmission through the cavity corresponding to the
three-level � configuration used in Fig. 2(d). The system parameters
are the same as in Fig. 2(d).

under the change of the pump-field Rabi frequency �p/2π

is always symmetric with respect to the driving detuning
δ/2π = 0 MHz, which exhibits the single deep antibunching
dip and the double bunching peaks. On the one hand, for
the central antibunching dip at the driving frequency δ/2π =
0 MHz, the value of g(2)(0) can reach and maintain g(2)(0) = 0
when varying �p/2π . On the other hand, for the two bunching
peaks located on both sides, the degree of the photon bunching
is gradually enhanced with the increasing of �p/2π and the
separation of the two bunching peaks is gradually enlarged
along the abscissa axis. Figure 5(b) show the color-scale 2D
map of g(2)(0) versus the driving detuning δ/2π and the
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FIG. 5. Contour plots of second-order correlation function
g(2)(0) versus (a) the driving detuning δ/2π and the pump-field Rabi
frequency �p/2π as well as (b) the driving detuning δ/2π and
the microwave-field Larmor frequency �m/2π for the three-level
� configuration. In (a), we take �m/2π = 0.1 MHz, whereas in
(b), �p/2π = 2 MHz. In both (a) and (b), the black dotted lines
correspond to �p/2π = 2 MHz and �m/2π = 0.1 MHz. The com-
mon parameters are chosen as gc/2π = 4 MHz, κc/2π = 8 MHz,
γ21/2π = 3 MHz, γ23/2π = 3 MHz, γ31/2π = 0.003 MHz, η/2π =
0.01 MHz, �c/2π = 0 MHz, and �p/2π = 0 MHz.
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FIG. 6. Second-order correlation function g(2)(0) as a func-
tion of the driving detuning δ/2π for five different values of
the atom-cavity coupling constant gc in the three-level � con-
figuration. The inset shows an enlarged view of g(2)(0) near
δ/2π = 0 MHz. The other parameters are chosen as gc/2π =
4 MHz, �p/2π = 2 MHz, �m/2π = 0.1 MHz, κc/2π = 8 MHz,
γ21/2π = 3 MHz, γ23/2π = 3 MHz, γ31/2π = 0.003 MHz, η/2π =
0.01 MHz, �c/2π = 0 MHz, and �p/2π = 0 MHz.

microwave-field Larmor frequency �m/2π . As can be seen
in Fig. 5(b), the evolution of g(2)(0) with increasing �m/2π is
analogous to that of Fig. 5(a). Based on the above analysis,
we can conclude that there is no strict requirement for the
strengths of the pump and microwave fields in generating the
strong photon antibunching [g(2)(0) = 0] in the three-level �

configuration.
We now investigate how the statistical property of the

single-mode cavity field is modified by the atom-cavity cou-
pling constant gc/2π by plotting the second-order correlation
function g(2)(0) in Fig. 6. From these plots, one can see that (i)
there exists a minimum value of g(2)(0) at the driving detuning
δ/2π = 0 MHz; (ii) the minimum value of g(2)(0) rapidly
decreases with increasing the atom-cavity coupling constant
gc/2π gradually and the degree of the photon antibunching
quickly increases; and (iii) the minimum value of g(2)(0)
reaches zero and tends to saturate when gc/2π � 2 MHz. This
result clearly illustrates that a strong photon antibunching
[g(2)(0) = 0] with sub-Poissonian quantum statistics for the
cavity field output can be well achieved in the weak-coupling
regime, for example, with the values of considered parame-
ters being gc/2π = 2 MHz, κc/2π = 8 MHz, and �2/2π =
6 MHz. The weak-coupling condition is beneficial because
it allows the use of low-finesse cavities which are readily
available in many cavity-QED systems.

VI. CONCLUSIONS

In summary, we have demonstrated a feasible experimental
scheme for realizing strong photon antibunching by utilizing
a three-level atom weakly coupled to a single-mode opti-
cal cavity, a pump field in free space, and a microwave
field. Both the involved three fields (cavity, pump, and
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microwave) and the driven three-level atom thus constitute
the �-type transition and closed-loop coupling, i.e., the so-
called three-level � configuration. When switching off either
of the pump and microwave fields, we recover a three-level
� or V configuration. When switching off both the pump
and microwave fields, we obtain a two-level configuration.
Based on experimentally realistic atom-cavity parameters,
for four configurations we evaluate the steady-state second-
order correlation functions g(2)(0) of the quantized cavity
field and further identify these four different configurations
with the quality of the photon antibunching. It is found that
the quality of the photon antibunching in the three-level �

configuration can be significantly improved, as compared to
the other three configurations. The complete photon blockade
corresponding to the value of g(2)(0) = 0 can be generated
without detuning the driving and cavity resonance in such
a three-level � configuration. Moreover, this strong photon
antibunching effect can appear in the weak-coupling regime
of light-atom interactions. Therefore, the constraint condition
on the strong coupling in the coupled atom-field system is
unnecessary. We attribute these features to the formation of
the quantum interference between the two transition paths
from the three-level �-type atom weakly coupled to the
cavity, pump, and microwave fields. We also discuss the
experimental feasibility of the proposed scheme using current
state-of-the-art atom-cavity architecture. The obtained results

offer us more detailed insights into the underlying mech-
anism behind photon antibunching in the closed-loop cou-
pling and may have potential application in the single-photon
generation.
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