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Compensation of polarization-dependent loss using noiseless amplification and attenuation
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Polarization-dependent loss (PDL) is a serious problem that hinders the transfer of polarization qubits through
quantum networks. Recently it has been shown that the detrimental effects of PDL on qubit fidelity can be
compensated for with the introduction of an additional passive PDL element that rebalances the polarization
modes of the transmitted qubit. This procedure works extremely well when the output of the system is
postselected on photon detection. However, in cases where the qubit might be needed for further analysis this
procedure introduces unwanted vacuum terms into the state. Here we present procedures for the compensation of
the effects of PDL using noiseless amplification and attenuation. Each of these techniques introduces a heralding
signal into the correction procedure that significantly reduces the vacuum terms in the final state. When detector
inefficiency and dark counts are included in the analysis noiseless amplification remains superior, in terms of the
fidelity of the final state, to both noiseless attenuation and passive PDL compensation for detector efficiencies
greater than 40%.
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I. INTRODUCTION

The two main decoherence mechanisms affecting polariza-
tion photonic qubits transmitted through fiber optic networks
are polarization mode dispersion (PMD) and polarization-
dependent loss (PDL) [1–3]. PDL, which is the attenuation
of light as a function of polarization, introduces unavoidable
loss and therefore its impact on transmitted qubits cannot
be entirely rectified. While virtually nonexistent in modern
optical fibers, PDL is present in nearly all network elements
such as isolators, circulators, and amplifiers. Significant effort
has been directed at understanding the impact of PDL in clas-
sical communication systems [4–8]. Recently this analysis has
been expanded to entangled quantum systems [9–11]. These
studies have mainly been concerned with understanding how
the entanglement of a state is reduced by the presence of PDL
[9,10], and with developing strategies for mitigating this [11].

In general, PDL reduces the overall probability that a
state is transmitted through a channel, due to attenuation,
as well as alters the states that are transmitted, due to its
polarization dependence. Intuitively, PDL can be converted
into pure loss through the introduction of additional PDL
that is tuned such that the concatenation of the system PDL
and the inserted PDL becomes polarization-independent
pure loss. While this strategy will recover the fidelity of the
initial state upon postselection on photon detection, since
there is no longer any polarization dependence in the system,
postselection is not always desirable. For example, violations
of Bell’s inequality that rely on postselection are open to
the detection loophole [12,13], and therefore cannot be used
for device-independent quantum key distribution (QKD)
[14]. For these reasons, it is beneficial to understand when
impairments due to transmission can be corrected for without
further introducing vacuum modes.

In this paper we propose compensating for the effects of
PDL on polarization encoded qubits by using noiseless ampli-

fication and attenuation and compare these with a previously
proposed technique based on passive optical elements [10,11].
All three methods effectively convert the PDL of the system
into a polarization-independent net loss. The advantage of
noiseless amplification and attenuation over additional passive
PDL is that they, at least partially, herald that the correction
has been successful. This heralding allows for a correction
of the polarization modes of a transmitted qubit with fewer
additional vacuum terms than in the passive case.

Throughout this paper we will model the effects of PDL as
outlined in the first box on the left of Fig. 1. Since loss can
be modeled as a beam splitter coupled to the environment we
treat PDL as two different beam splitters acting separately on
the horizontal and vertical polarization modes of the photon.
These beam splitters would have transmission factors th and
tv for the horizontal and vertical modes respectively. For
simplicity, we let tv = 1; thus we only consider loss in the
horizontal mode.

The consequences of PDL on polarization qubits is most
directly seen by example. Consider the balanced input qubit

|ψ0〉 = 1√
2

(|H〉 + |V 〉), (1)

where |H〉 and |V 〉 represent the horizontal and vertical modes
of the photon, respectively. After PDL, the output state be-
comes

|ψ〉 = 1√
2

(
√

th|H〉 + |V 〉 +
√

1 − th|0〉), (2)

where |0〉 is the vacuum state corresponding to a photon being
lost to the environment and we have neglected the ancillary
beam splitter output mode. We see from Eq. (2) that PDL has
two corrupting effects on transmitted polarization qubits; the
first is that the ratio of the polarization modes has changed,
and the second is the introduction of vacuum terms. Therefore,
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FIG. 1. Our input polarization qubit experiences unavoidable
PDL modeled as shown in the first box labeled PDL. For simplicity,
we consider the case where only the horizontal polarization mode
was initially attenuated by a factor th. Following this PDL, we correct
for it using either one of two possible attenuation schemes or an
amplification scheme. These schemes are further detailed in Fig. 2. In
the case of a correction using attenuation shown in the upper box, we
attenuate the vertical mode to balance it with the horizontal mode.
Similarly, in the case of amplification shown in the lower box, we
amplify the horizontal mode to balance it with the vertical mode.

we need a way to correct for PDL which can mitigate each of
these sources of error.

This paper is structured as follows. In Sec. II we discuss
several different correction schemes and present the output
state fidelity as compared to the input state and probability of
success for each method. This will be done in the idealized
case of perfect detectors. In Sec. III we present a model
for an imperfect detector and compute the fidelity of the
output state as compared to the input state as a function of
detector efficiency for each correction scheme. A Summary
and Conclusions are presented in Sec. IV.

II. CORRECTING FOR PDL

Broadly speaking we will consider two different cate-
gories of methods for converting PDL into a polarization-
independent loss. The first is to insert additional attenuation
into the system which is oriented orthogonal to the original
such that the polarization dependence cancels. In our scenario
pictured in Fig. 1, where the horizontal mode is initially
attenuated, this means further attenuating the vertical mode
by an equivalent amount. We will consider both passive and
noiseless attenuation. The second method of correction we
will consider is to amplify the horizontal mode back to the
point that the polarization dependence once again disappears.
This is pictured as the scenario in Fig. 1 labeled “Amplifica-
tion.”

The use of passive attenuation as a method for correcting
for the detrimental effects of PDL was recently explored,
and even experimentally demonstrated, in several papers
[10,11,15]. An example of a passive corrective element is
pictured in the upper left box in Fig. 2. To see how this works
in our scenario consider the state in Eq. (2) which has already
been transmitted through a PDL element. By adding a passive
attenuator that only acts on the vertical polarization mode with
transmission T , the polarization modes of the state become

|ψ ′〉 = 1√
2

(
√

th|H〉 +
√

T |V 〉), (3)

where we have neglected normalization. By tuning T , such
that T = th, we have

|ψ ′〉 =
√

th
2

(|H〉 + |V 〉), (4)

which is the desired polarization qubit of Eq. (1).
While passive attenuation successfully recovers the polar-

ization qubit it requires either postselection on detection or
involves the addition of vacuum terms into the state, which we
have neglected in Eqs. (3) and (4). This is problematic when
subsequent quantum operations are technologically expensive
and it is essential to maximize the probability of success of
each gate. In fact, as we will see, this correction scheme will
actually lower the fidelity of the output state, when vacuum
states are considered, more so than if we had not corrected
at all.

The unwanted vacuum terms in the passive attenuation case
are our motivation for considering both noiseless attenuation
and amplification. Though these two techniques require addi-
tional elements, such as beam splitters, detectors, or ancilla
sources, they also allow for some amount of heralding on
success and hence are able to reduce the vacuum term in the
final state without postselection on a final detection.

In the case of noiseless attenuation, we again pass the
vertical mode through a beam splitter with transmission T ;
however, we now postselect on having no photons in the
ancillary output mode. This form of attenuation was first
introduced in Ref. [16] and, as we will see, will give a better
fidelity than that of the passive attenuation. The process of
noiseless attenuation is shown in the lower-left box of Fig. 2.

Finally, the process of noiseless amplification is outlined
in the right box of Fig. 2. This device is a component piece
of the larger noiseless amplifier first introduced by Ralph and
Lund [17], and subsequently realized in several experiments
[18–20]. When included in the polarization interferometer
pictured in the Amplification box of Fig. 1 it is analogous to
the polarization-qubit amplifier of Ref. [21] with the exception
that it only amplifies the horizontal mode and not the vertical
mode. Noiseless amplification works using unbalanced tele-
portation and successfully amplifies the mode labeled “in” in
the “Noiseless amplification” box of Fig. 2 with the amplified
state exiting the mode labeled “out.” The entangled state of
the teleportation process is created by passing a single ancilla
photon labeled as |1〉 into the lower beam splitter in the
Noiseless amplification box of Fig. 1 which has transmission
T . One of the outputs of this beam splitter is then combined
with the input state to be amplified at the 50-50 beam splitter
pictured at the top of the Noiseless amplification box in Fig. 2.
Finally, the process is successfully heralded when the states
|0〉 and |1〉 are detected in the output modes of the 50-50 beam
splitter.

We will now calculate the output state of each of these three
scenarios analytically. We do this for the general input qubit
|ψ0〉 given as

|ψ0〉 = c1|H〉 + c2|V 〉, (5)

where c1 and c2 are, in general, complex numbers satisfying

|c1|2 + |c2|2 = 1. (6)
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FIG. 2. A more detailed description of the three possible cor-
rection schemes. In passive attenuation the input state experiences
loss where the ancillary mode is lost to the environment. In noiseless
attenuation [16] the same situation occurs except we instead postse-
lect on vacuum in the ancillary mode. In noiseless amplification [17]
an input state undergoes unbalanced teleportation by postselecting
on the states specified at the detectors. As we will see, noiseless
amplification provides for the best fidelity at the expense of the
transmission rate.

This state corresponds to the input density operator ρ0 as

ρ0 = |ψ〉〈ψ | = |c1|2|H〉〈H | + c∗
2c1|H〉〈V |

+ c∗
1c2|V 〉〈H | + |c2|2|V 〉〈V |. (7)

We treat the evolution in Figs. 1 and 2 using the unitary
evolution operator for the beam splitter given as

U = exp[i arccos(
√

T )(a†b + ab†)], (8)

where T is the transmission of the beam splitter and a is
the annihilation operator for one mode of the beam splitter,
while b is the annihilation operator for the other [22]. When
postselecting, we apply an appropriate projection operator and
any mode which is sent into the environment is traced out.

To begin, we calculate the state ρ after undergoing an
initial PDL, pictured in the leftmost box of Fig. 1, which only
attenuates the horizontal mode,

ρ = |c1|2(1 − th)|0〉〈0| + |c1|2th|H〉〈H |
+ c∗

2c1
√

th|H〉〈V | + c∗
1c2

√
th|V 〉〈H |

+ |c2|2|V 〉〈V |. (9)

Inspection of Eq. (9) reveals that there is now a vacuum term
and even if we postselect on having a photon we still do not
have the desired polarization state of Eq. (7).

We now consider the output state after correcting with
additional PDL which has a transmission factor of T . The
full density operator after tracing over the ancillary mode
of the initial PDL and the unbalanced passive attenuation ρ1

given as

ρ1 = [(1 − th)|0〉〈0| + th(|c1|2|H〉〈H |
+ c∗

2c1|H〉〈V | + c∗
1c2|V 〉〈H |

+ |c2|2|H〉〈V |)], (10)

where we have again let T = th as was done in Eq. (4). Note
that if we postselect this state on detection [10,11] this would
reduce to Eq. (7) as expected.

The full output state for noiseless attenuation ρ2, after
postselecting on no photons at the detector shown in Fig. 2,
is given as

ρ2 = [|c1|2(1 − th)|0〉〈0|
+ (|c1|2th|H〉〈H | + c∗

2c1
√

thT |H〉〈V |
+ c∗

1c2
√

thT |V 〉〈H | + |c2|2T |V 〉〈V |)]. (11)

If we let T = th as we did before, the state of Eq. (11) becomes

ρ2 = [|c1|2(1 − th)|0〉〈0|
+ th(|c1|2|H〉〈H | + c∗

2c1|H〉〈V |
+ c∗

1c2|V 〉〈H | + |c2|2|V 〉〈V |)]. (12)

Equation (12) is not normalized because noiseless attenuation
is a heralded process. The trace of Eq. (12) gives the probabil-
ity of success P2 of the noiseless attenuation as

P2 = th + |c1|2(1 − th). (13)

Using P2 to normalize Eq. (12) gives the output state condi-
tioned on successful heralding as

ρ2 = 1

th + |c1|2(1 − th)
[|c1|2(1 − th)|0〉〈0|

+ th(|c1|2|H〉〈H | + c∗
2c1|H〉〈V |

+ c∗
1c2|V 〉〈H | + |c2|2|V 〉〈V |)], (14)

which we see has a smaller vacuum state term than Eq. (10).
Finally, for the noiseless amplifier the output state ρ3

becomes

ρ3 = 1
2 [|c1|2(1 − th)(1 − T )|0〉〈0|
+ (|c1|2T th|H〉〈H | + c∗

2c1

√
thT (1 − T )|H〉〈V |

+ c∗
1c2

√
thT (1 − T )|V 〉〈H |

+ |c2|2(1 − T )|V 〉〈V |)]. (15)

Since we are free to choose the parameter T , if we let

T = 1

1 + th
, (16)

then Eq. (15) becomes

ρ3 = th
2(1 + th)

[|c1|2(1 − th)|0〉〈0|

+ (|c1|2|H〉〈H | + c∗
2c1|H〉〈V |

+ c∗
1c2|V 〉〈H | + |c2|2|V 〉〈V |)]. (17)

From Eq. (17), we see this choice of T balances the qubit.
Again, since noiseless amplification is a heralded process with
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FIG. 3. Plot of the acceptance rate or probability of success
of each of the possible correction schemes as a function of the
PDL defined in Eq. (20) in decibels. Since passive attenuation is
deterministic we will always accept the output state. From this figure
we see that noiseless amplification will have a smaller acceptance
rate than the other compensation schemes. In the noiseless am-
plification considered here we only accept one possible Bell state
outcome. It might be possible to improve the acceptance rate for
noiseless amplification by accepting other Bell state outcomes and
other techniques.

probability of success P3 given as

P3 = th
2(1 + th)

[1 + |c1|2(1 − th)], (18)

the output state, given a success event, would be

ρ3 = 1

1 + |c1|2(1 − th)
[|c1|2(1 − th)|0〉〈0|

+ |c1|2|H〉〈H | + c∗
2c1|H〉〈V |

+ c∗
1c2|V 〉〈H | + |c2|2|V 〉〈V |]. (19)

We can define the acceptance rate of any of the three PDL
correction methods as the fraction of input states which are
considered to be successfully prepared. For noiseless attenua-
tion and amplification the acceptance rate is equivalent to the
heralding probability. For passive attenuation the acceptance
rate is unity since no information is given by the correction
process about whether or not it was successful and hence
there is no way to discriminate the output states. In Fig. 3
we plot the acceptance rate of each process as a function
of the magnitude of the initial PDL for an initial qubit with
c1 = c2 = 1/

√
2. The PDL is expressed in decibels as [1]

PDL[dB] ≡ 10 log10

(
tmax

tmin

)
, (20)

where, for the example considered here, tmax =1 and tmin = th.
From Fig. 3 we see noiseless amplification always has the
lowest acceptance rate. As we will see this is the trade-off
needed to reduce the vacuum terms in the final state.

We now compare the acceptance rate to how close the
output state is to the desired state. With the appropriate
output states of Eqs. (10), (14), and (19), we quantify the
performance of each correction scheme by computing the
fidelity given as [23]

F = [
Tr

(√√
ρρ0

√
ρ
)]2

, (21)

FIG. 4. Plot of the fidelity as a function of the PDL defined in
Eq. (21) in decibels. As we can see, the fidelity will always be better
in the case of noiseless amplification than for noiseless or passive
attenuation. As mentioned in the text, this is due to the reduction
in the probability amplitude of the vacuum term. This plot was
generated for the ideal case of no detector noise.

where ρ is the relevant output density matrix and ρ0 is the
density matrix of the desired state given in Eq. (7). Since the
form of the polarization terms can be recovered by all three of
the correction schemes considered here, the fidelity essentially
indicates the magnitude of the introduced vacuum modes. The
fidelities of the output states of each compensation scheme are
plotted in Fig. 4, for the case when c1 = c2 = 1/

√
2. Also in

Fig. 4 we plot the fidelity of the state after the initial PDL but
before being corrected, given by Eq. (9), for comparison.

Surprisingly, Fig. 4 reveals that not correcting the state at
all results in a better final state fidelity than either attenuation
technique. This means that the vacuum terms added by the
additional attenuation degrade the state fidelity more than it is
improved by rebalancing the polarization modes. On the other
hand, we see that noiseless amplification will always be the
superior correction technique when output fidelity is the only
concern. Comparing Figs. 3 and 4 we see that there exists a
trade-off for noiseless amplification in that we can achieve a
higher fidelity state after correction but at the expense of a low
acceptance rate.

III. CORRECTION WITH IMPERFECT DETECTORS

So far, we have only considered the case of ideal detectors.
Since noiseless attenuation and noiseless amplification are
heralded processes their performance may strongly depend
on the efficiency of the detectors used. For this reason, we
now examine how our calculations from Sec. II change when
detectors that are both inefficient and subject to dark counts
are considered.

We model imperfect detectors as outlined in Fig. 5 [24].
In this case the input state that we are attempting to detect
is mixed with a thermal state ρT at a beam splitter with
transmission corresponding exactly to the detector efficiency
η. We can define the thermal state ρT as [25]

ρT = 1

1 + ν

∞∑
n=0

(
ν

ν + 1

)n

|n〉〈n|, (22)
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FIG. 5. Model used to simulate imperfect detectors with dark
counts. An input state is mixed with a thermal state ρT using an
unbalanced beam splitter with transmission equal to the detector
efficiency η. The temperature of the thermal state is chosen to be
function of η to guarantee a constant probability of finding a dark-
count photon per time step.

where ν is the average number of photons in the thermal state.
Using Eq. (22) and vacuum input, ν can be related to the
probability of measuring a dark-count photon per time step
Pd as [26]

ν = Pd

(1 − Pd )(1 − η)
. (23)

We now compute the modified output states of all three
corrective processes analytically. In the case of imperfect
detectors, the output states are much more complicated and
since inspection of the expressions themselves offers little
physical insight we have moved them to the Appendix. The
results of a calculation of the fidelity are plotted in Fig. 6
as a function of the detector efficiency η for a constant PDL

FIG. 6. Plot of the fidelity in the case of imperfect detectors as
a function of detector efficiency η. We are modeling an imperfect
detector according to the diagram in Fig. 5. This plot was generated
with an initial 3 dB of PDL and a dark-count rate of 4×10−5 photons
per time step. We see that in this case, noiseless amplification still
does better for larger detector efficiencies. The vertical lines corre-
spond to values for realistic detector efficiencies. The line at 20%
represents indium gallium arsenide (InGaAs) single-photon detectors
[27] and the line at 85% represents superconducting nanowire single-
photon detectors (SNSPDs) [28].

of 3 dB and Pd = 4×10−5 photons per time step to coincide
with the dark-count rate of the detectors of Ref. [27]. For
reference, we have also included vertical lines in Fig. 6 which
indicate the efficiencies of real detectors. From Fig. 6 we
see that noiseless amplification remains superior for detector
efficiencies greater than 40%.

In the limit as detector efficiency goes to unity the curves
in Fig. 6 approach the values reported in Fig. 4 at 3 dB. This
makes sense as Fig. 4 represents the case of ideal detectors.
In the limit as detector efficiency goes to zero, however, we
see that the fidelity due to the noiseless attenuation scheme
approaches that of the passive attenuation scheme. This is
because noiseless attenuation would be identical to passive
attenuation in the absence of a detector. Finally, in the same
limit the noiseless amplification scheme approaches a result-
ing fidelity of zero due to how heavily noiseless amplification
is dependent on heralding.

IV. SUMMARY AND CONCLUSIONS

We have considered the effects of polarization-dependent
loss under conditions where the removal of vacuum modes via
postselection is undesirable, as might be the case in a device-
independent quantum key distribution (QKD) protocol, for
example. Polarization-dependent loss and its passive compen-
sation can reduce the overall fidelity under those conditions,
since it introduces some probability amplitude for the vacuum
state. Our results show that noiseless amplification gives a
higher fidelity than either passive or noiseless attenuation
under those conditions. Of course, there are situations in
which the output is only accepted if the signal contains a
photon, in which case passive attenuation [10,11] gives a
higher acceptance rate than noiseless amplification.

We have seen in previous work that information lost to the
environment can create a significant amount of decoherence
in macroscopic quantum optical systems [29]. This is due to
the introduction of which-path information. In the situation
considered here, we see a similar phenomenon where losing
information to the environment in the form of PDL can reduce
the fidelity of single-photonic systems when the output must
always be accepted. The fidelity can be improved using a
noiseless amplifier, which does not leave any which-path
information in the environment [30].

Although polarization-dependent loss tends to be small in
optical fibers, it can have a major effect in optical components
such as isolators, circulators, and amplifiers. As a result, the
techniques discussed here should be of practical importance
in quantum communications systems.
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APPENDIX

In this Appendix we express the output density operators
in the case of nonideal detectors. We do this for the noiseless
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attenuation and noiseless amplification schemes only, as they are the only cases dependent on detector efficiency. For the case of
noiseless attenuation, the unnormalized output density operator would be given as

ρ2 = (2 − T − th)(1 + ν − ην) − η(1 − T )

(1 + ν − ην)2 |c1|2|0〉〈0| + th
1 + ν − ην

|c1|2|H〉〈H |

+ T

1 + ν − ην
|c2|2|V 〉〈V | +

√
thT

1 + ν − ην
(c∗

2c1|H〉〈V | + c∗
1c2|V 〉〈H |), (A1)

where η is the efficiency of the detector and ν is the average number of photons in the thermal state used to model dark counts
given by Eq. (22) of the main text. The parameter ν can be related to the probability of detecting a dark-count photon using
Eq. (23). From Eq. (A1) we see a choice of T = th will rebalance the state. Note that this is the same choice for T as the ideal
case of noiseless attenuation. Using this choice of T gives the output state as

ρ2 = (1 − th)(2 + 2ν − 2νη − η)

(1 + ν − ην)2 |c1|2|0〉〈0| + th
1 + ν − ην

(|c1|2|H〉〈H | + c∗
2c1|H〉〈V | + c∗

1c2|V 〉〈H | + |c2|2|V 〉〈V |). (A2)

Normalizing Eq. (A2) and inserting it into Eq. (21) of the main text gives the resulting state fidelity after the noiseless attenuation
scheme with nonideal detectors. This fidelity is plotted as the green dotted curve in Fig. 6 for the case of 3 dB of initial PDL.

In the case of noiseless amplification, the output state using two identical detectors with efficiency η and average number ν

would be

ρ3 = 1 − T

4η(1 + ν − ην)2

{
2(1 − th)

[
η2 + ην(1 − √

η)2(1 − η)(1 + ν)

(1 + ν − ην)3 +
√

ην(1 − η)(1 + ν + ην)

(1 + ν − ην)2

]

+ th(1 − η)(1 + ν)

[
η

(1 − √
η)2 + (1 − η)

1 + ν − ην
+ 2

ην(1 − √
η)2(1 − η)(1 + ν)

(1 + ν − ην)4 +
√

ην(1 − η)(1 + ν + ην)

(1 + ν − ην)3

]}
|c1|2|0〉〈0|

+ T [ν(2 − th)(1 − η) + th]

2(1 + ν − ην)3 |c1|2|H〉〈H | + T ν(1 − η)2(1 + ν)

2(1 + ν − ην)4 |c1|2|2〉〈2|

+ 1 − T

2η(1 + ν − ην)2

[
η2 + ην(1 − √

η)2(1 − η)(1 + ν)

(1 + ν − ην)3 +
√

ην(1 − η)(1 + ν + ην)

(1 + ν − ην)2

]
|c2|2|V 〉〈V |

+
√

(1 − T )T th

{
[
√

η + 1 + (2 + i)
√

η − 2η − (2 + i)η3/2 + η2]ν + [1 + (1 + i)
√

η](1 − η2)ν2

2(1 + ν − ην)4 c∗
2c1|H〉〈V |

+ [
√

η + 1 + (2 − i)
√

η − 2η − (2 − i)η3/2 + η2]ν + [1 + (1 − i)
√

η](1 − η2)ν2

2(1 + ν − ην)4 c∗
1c2|V 〉〈H |

}
, (A3)

where the state |2〉 corresponds to the amplifier having erroneously added an extra horizontally polarized photon giving a state
with one horizontal and one vertical photon. While not as obvious as the case of noiseless attenuation, we can still set the |H〉〈V |
and |V 〉〈H | terms equal to one other to find the optimal value for T . Using this optimal value for T in Eq. (A3) and normalizing
we could then insert this state into Eq. (21) of the main text to get the state fidelity. This state fidelity is plotted as the blue dashed
line in Fig. 6.
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