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Loss-induced localization in a periodically driven nonlinear system
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We propose a scheme to study loss-induced localization in a nonlinear three-site system with a periodically
driven field acting on the first site and a loss on the last site. We identify a significant feature; that is, system losses
could be introduced to profoundly enhance localization. Our simulation results present two different types of
localization: chaos-related localization and loss-induced localization, depending on their physical mechanisms.
These findings may deepen our understanding about the relations among nonlinear effects, system loss, and
external driving fields and offer a fascinating route towards the potential application for quantum control of
tunneling dynamics.
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I. INTRODUCTION

Quantum tunneling and localization are of fundamental
importance and have been widely investigated [1–3]. Over
the years, many localization schemes have been proposed,
using various methods including atomic coherence, quantum
interference effects [4–6], and external driven fields [7,8]. As
is well known, manipulation of tunneling dynamics by control
of external periodically driven field has become a hot topic
because of its fascinating applications in quantum switching,
motor, and transport [9–12]. Moreover, different types of
localization are realized depending on their physical origins.
For linear driven systems, coherent destruction of tunneling
(CDT) [13–16] and dark-CDT [17] are two representative
phenomena of localization. CDT occurs in a driven two-site
system and its understanding is related to the degeneration of
the quasienergy spectrum. Actually, Grossmann et al. found
that, if the ratio of driving amplitude A to frequency ω

satisfied the zeroth-order Bessel function J0(A/ω) = 0, the
driven site would be decoupled from the undriven site. Dark-
CDT was first reported for a driven three-site system and is
induced by localized dark Floquet states. For nonlinear driven
systems, there always exists localization, such as Anderson
localization [18,19] and chaos-related localization [20,21]. In
one-dimensional waveguide arrays, Martin et al. [19] showed
that Anderson localization could be realized by introducing
off-diagonal disorder, and the strength of localization favored
a higher level of disorder.

However, the above results are discussed in absence of
system loss, which is unavoidable in realistic physical sys-
tems. Recently, lossy quantum systems have attracted in-
creased attention and provide a way to study non-Hermitian
Hamiltonians which obey parity-time symmetry in some spe-
cially designed systems [22]. Counterintuitively, it has been
reported that system loss can lead to dramatic enhancement
of localization [23]. Christodoulides et al. have reported a
phenomenon of loss-induced localization in one-dimensional
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PT-symmetric systems and have identified that the emer-
gence of localized states are entirely due to the presence
of loss [24]. Such interesting results have inspired a lot of
work on lossy systems [25], and we are interested in what
happens to loss-induced localization in a periodically driven
system.

In this paper, we mainly discuss the influence of system
loss on the dynamics of a driven three-site system, in which
the combined effects of driving field, nonlinearity, and system
loss are considered comprehensively. Our simulation results
have shown that system losses can enhance localization signif-
icantly in some parameter regions. When the loss of a bound-
ary site is very small, system dynamics in another boundary
site are very sensitive to initial conditions and exhibit chaotic
motion. The loss, in effect, playing a role of disorder, leads
to chaos-related localization. With the increase of system
loss, chaotic dynamics is destroyed eventually and the system
evolves into the nonchaotic regime in which particles can be
localized at the excitation lattice point only within a certain
period of time. The transient nature of localization will be
studied in detail and analyzed quantitatively. Surprisingly,
when system losses are very large, almost complete loss-
induced localization occurs since the lossy factor does not
actually work, which means that the system is effectively
lossless. Two completely different types of localization are
then possible: chaos-related localization and loss-induced lo-
calization, depending on whether the dynamics are chaotic.
Moreover, our results clearly reveal the relationship between
loss-induced localization and chaos and offer a possibility to
manipulate driving-controlled quantum states.

The structure of this paper is as follows: In Sec. II, two
possible experimental models of a driven three-site quantum
system are proposed. In Sec. III, we present a counterintuitive
phenomenon of loss-induced localization based on discrete
Schrödinger equations and further explore its possible phys-
ical origin. Moreover, two different types of localization,
including chaotic localization and nonchaotic localization, are
demonstrated and the profound influence of system loss on
dynamics is studied. In Sec. IV, the dependence of loss-
induced localization on driving parameters and nonlinearity
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FIG. 1. (a) Schematic diagram for a driven three-site system.
Here the left boundary site-1 is driven periodically with amplitude
A and frequency ω, and the right boundary site-3 has a loss coef-
ficient γ . (b) Three-coupled waveguides with Kerr nonlinearity and
light propagating in the z direction. The refractive index of upper
waveguide-1 is modulated periodically and lower waveguide-3 is
lossy.

is discussed in detail. In the last section, we draw a brief
conclusion.

II. MODELS

We propose two schemes in Fig. 1 to realize systems of
dimension 3 with nonlinearity, periodic driving as well as loss.
The models in Figs. 1(a) and 1(b) are defined separately as
model A and model B. Model A consists of three coupled sites
in a linear arrangement with a periodic driving field acting
on the left boundary site (site 1) and loss only at the right
boundary site (site 3), as shown in Fig. 1(a). Model A has been
used theoretically by many researchers to study the coherent
control of tunneling dynamics [26,27]. Through launching
a Bose-Einstein condensate [28,29] in a driven three-linear-
coupled potential well, such a model could be experimentally
implemented by means of equipment which permits a tunnel-
ing contact between adjacent sites. The interatomic interaction
could be adjusted by Feshbach resonances [30] and may lead
to a nonlinear term in the coupled dynamic equations. The
system dynamics in Model A could be evaluated from the
probability amplitudes of the atomic population distribution
at different sites.

Moreover, since the propagation of light in coupled optical
waveguides may resemble the motion of atoms in coupled
quantum potentials, our system could also be realized by
designing three coupled optical waveguides with Kerr non-
linearity [31], as shown in Fig. 1(b), in which waveguide-1 is
driven periodically by modulating the refractive index along
the z direction and waveguide-3 is lossy. By mapping the time
evolution of the atomic dynamics into the spatial propagation
of light, the coupled waveguide system provides an alternative
platform to realize optical analogies of quantum tunneling
dynamics. Experimentally, the technology of fs laser written
waveguide arrays permits our specific setting of the nonlinear
guiding properties of the waveguides [32,33]. Longhi et al.
[34,35] have suggested several methods to fabricate photonic
lattices with a shaken partial lattice while keeping the rest
fixed such as the boundary waveguide can have a different
refractive index profile compared with the remaining waveg-
uides. The system dynamics in Model B could be character-
ized by the evolution of the probability distribution of light
intensity in different waveguides.

III. LOSS-INDUCED LOCALIZATION IN THE
DRIVEN NONLINEAR SYSTEM

A. Chaos-related localization and loss-induced localization

In our analysis, we investigate dynamics according to
Model A; similar behavior may appear in Model B as well.
Here, we assume that a Bose-Einstein condensate with N
identical bosons is launched into lossless site-1 initially and
only occupies three quantum states. In the mean-field approx-
imation and with the interaction between atoms considered,
the nonlinear three-mode system can be described by discrete
Schrödinger equations [36–38],

i
da1(t )

dt
= A cos(ωt )a1(t ) + �a2(t ) + K|a1(t )|2a1(t ),

i
da2(t )

dt
= �(a1(t ) + a3(t )) + K|a2(t )|2a2(t ), (1)

i
da3(t )

dt
= −iγ a3(t ) + �a2(t ) + K|a3(t )|2a3(t ),

where � is the coupling constant of nearest-neighbor sites and
γ is the loss rate in site-3. Here, a cosine driving field acts
on site-1 with driving amplitude A and driving frequency ω

and K is the nonlinearity between atoms. All the parameters
are normalized such that A, ω, �, and K are in units of
a reference frequency ω0 on the order of 102 s−1 [39], and
time t is normalized in units of ω−1

0 . Variables a1(t ), a2(t ),
a3(t ) are proportional to the macroscopic amplitudes of the
atomic density in site-1, site-2, and site-3, respectively, and
|a j (t )|2 ( j = 1, 2, 3) denote the number of atoms in the jth
potential well. When the number N of bosons is very large, it
is appropriate to make the following substitutions:

ã1 = a1(t )/
√

P(0), ã2 = a2(t )/
√

P(0),

ã3 = a3(t )/
√

P(0). (2)

Here P(0) = |a1(0)|2 + |a2(0)|2 + |a3(0)|2 is proportional
to the total initial number N of bosons in the condensate.
However, P(t ) = |a1(t )|2 + |a2(t )|2 + |a3(t )|2, which repre-
sents total atoms at time t , is not a conserved quantity due to
the loss γ . We would like to emphasize that what is essential is
the ratios between these parameters, not their absolute values.
To investigate tunneling dynamics, we introduce probabilities
Pj (t ) as normalized ratios,

Pj (t ) = |a j (t )|2/P(0) = |ã j |2. (3)

Then the tunneling dynamics can be explored by the evo-
lution of Pj (t ) versus time t in different sites. For example,
P1(t ) > 0.5 means that more than 50% of all particles are
situated in the first well and the dynamics in this case could
be called localization. Moreover, the minimum value of P1(t )
[viz., min(P1)] is used in this paper to measure the degree of
localization. When min(P1) equals about zero, the atoms can
tunnel into other sites, while min(P1) > 0.5 means localiza-
tion in site-1. Apparently, a higher value of min(P1) means a
higher degree of localization.

To facilitate our discussion, the complex numbers aj (t ) are
replaced by ã j and further rewritten by using real numbers
(viz., ã j = b j + ic j), where b j and c j are real numbers. Then,
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FIG. 2. Probability P1(t ) = |a1|2 at site 1 versus time t under
different cases of (a) γ = 0; (b) γ = 0.01, 0.02; (c) γ = 0.5, 1, 5;
(d) γ = 10, 15, 30; (e) γ = 1000, and (f) γ = 10 000 separately.
Other parameters are A = 16, ω = 10, � = 1, and U = 8.

the coupled equations Eq. (1) can be rewritten as

db1

dt
= A cos (ωt )c1 + �c2 + U |b1|2c1 + U |c1|2c1,

dc1

dt
= −A cos (ωt )b1 − �b2 − U |b1|2b1 − U |c1|2b1,

db2

dt
= �c1 + �c3 + U |b2|2c2 + U |c2|2c2, (4)

dc2

dt
= −�b1 − �b3 − U |b2|2b2 − U |c2|2b2,

db3

dt
= −γ b3 + �c2 + U |b3|2c3 + U |c3|2c3,

dc3

dt
= −γ c3 − �b2 − U |b3|2b3 − U |c3|2b3.

Here the nonlinear coefficient U = KP(0) has been studied
by Anker et al. [28] and its value can be manipulated through
controlling the number of atoms. Unlike Eq. (1), all variables
in Eq. (4) are real and the relative population probability at
site-1 can be described by P1(t ) = |ã1|2 = |b1|2 + |c1|2.

Now, we attempt to thoroughly investigate the profound
influence of system losses on the dynamics. By integrat-
ing the coupled differential equations (4), under the initial
conditions of b1(0) = 1, c1(0) = 0, b2(0) = 0, c2(0) = 0,
b3(0) = 0, c3(0) = 0, the evolution of probability P1(t ) versus
time t with different values of γ and different integration
times is shown in Figs. 2(a)–2(f). Other system parameters
are chosen to be A = 16, ω = 10, � = 1, and U = 8. The
driving amplitude and frequency are carefully chosen away
from the point A/ω = 2.4, which is a root of J0(A/ω) = 0,
to ensure that localization here has no direct relationship to

CDT phenomenon [13]. Our simulation results reveal that, if
γ = 0 [see Fig. 2(a)], the atoms can tunnel back and forth
among the three sites. However, in the case of γ = 0.01, as
shown in Fig. 2(b), the result clearly suggests significantly
improved localization and the degree of localization could be
enhanced further when γ = 0.02. More simulation proves that
localization keeps good stability even though total evolution
time is extended to five orders of magnitude (not listed here).

When γ is more than 0.1, unexpectedly, localization cannot
continue anymore and localization can mostly be maintained
for a while, followed by tunneling dynamics. The duration
of localization exhibits a trend of fall-rise with the increase
of loss γ , and the turning point is about γ = 5. The cases
of γ = 0.5, 1, 5 are listed in Fig. 2(c) from top to bottom
and show that a larger loss γ may lead to a shorter duration
of localization. On the contrary, the duration of localization
increases gradually through comparing the three cases of γ =
10, 15, 30 as shown in Fig. 2(d). It is remarkable that the
loss γ in our proposal can induce localization in a certain
period of time; however, localization in Figs. 2(c) and 2(d), in
fact, is not truly localization because the leakage may occur
after a period of evolution time. The transient nature of the
localization process in Figs. 2(c) and 2(d) is real since all
densities are zero in the limit t → ∞. Further calculation
shows that dP(t )

dt = −2γ |a3|2. Thus the total number of atoms
is a monotonically decreasing function, which is quite natural
since the losses are not compensated by any gain. As a result,
any localization in this lossy system would be only a transient
process and we highlight the importance of integration times
in observing localization.

Surprisingly, when γ increases even larger, such as γ =
1000 [see Fig. 2(e)], the probability distribution of P1(t )
remains greater than 0.5 even if the total time t is extended by
four orders of magnitude. Then, when γ = 10 000, as shown
in Fig. 2(f), greatly enhanced localization is observed again.
The quantitative explanation for this phenomenon is quite
clear: when the losses are very large, the number of atoms
in the lossy site is always close to zero. Since the sites are
coupled linearly through coefficient �, atoms from the central
site do not tunnel to the lossy site, so the lossy site is not
excited and actually remains empty for all times, i.e., the lossy
term −iγ a3(t ) in Eq. (1) does not actually work, which means
that the system is effectively lossless. This behavior resembles
the macroscopic Zeno effect for Bose-Einstein condensates,
which consists in a decay of the atomic flux under the increase
of the spatially localized dissipation [40]. However, because
integration time cannot be infinite, localization, in fact, is
hardly to be defined precisely. So we should emphasize that
the concept of localization will be used in this paper if atoms
can be localized during all the evolution. In a nutshell, it is
clear that a slight change of system loss may lead to a large
change of dynamics and a larger loss in such a driven system
will not always mean a larger decay.

To understand its physical origin, we note that the system
dynamics is irregular when γ = 0. Generally, the presence
of the periodically driven field and nonlinearity may lead to
chaos, so the physics of localization may be closely related to
the chaotic behavior. Then, in order to verify our hypothesis
and further study the sensitivity of system dynamics to initial
conditions, a small quantity �ε = (εb1 , εc1 , εb2 , εc2 , εb3 , εc3 ) is
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defined to describe the adjacent trajectories of two nearby
points moving forward in phase space. The effect of small
deviations of initial conditions on system dynamics will pro-
vide us some evidence of chaos. By linearizing Eq. (4), the
evolution equations about �ε are yielded,

dεb1

dt
= A cos (ωt )εc1 + �εc2 + U |b1|2εc1

+ 3U |c1|2εc1 + 2Ub1c1εb1 ,

dεc1

dt
= − A cos (ωt )εb1 − �εb2 − U |c1|2εb1

− 3U |b1|2εb1 − 2Ub1c1εc1 ,

dεb2

dt
= �εc1 + �εc3 + U |b2|2εc2 + 3U |c2|2εc2 + 2Ub2c2εb2 ,

dεc2

dt
= − �εb1 − �εb3 − U |c2|2εb2 (5)

− 3U |b2|2εb2 − 2Ub2c2εc2 ,

dεb3

dt
= − γ εb3 + �εc2 + U |b3|2εc3

+ 3U |c3|2εc3 + 2Ub3c3εb3 ,

dεc3

dt
= − γ εc3 − �εb2 − U |c3|2εb3

− 3U |b3|2εb3 − 2Ub3c3εc3 .

The dynamics of nearby points (P1 + εP1 ) of P1 are ac-
counted to characterize the deviation of population distribu-
tion. The corresponding trajectory curve of ln(εP1 ) versus time
t is usually used to describe chaotic dynamics and a rising
trend in general implies the existence of chaos. Choosing ini-
tial values �ε = (10−20, 10−20, 10−20, 10−20, 10−20, 10−20),
ln(εP1 ) versus time t is plotted in Figs. 3(a)–3(d) with four
different values for γ . When γ = 0, the curve in Fig. 3(a)
keeps rising for 600 time units and no saturation is observed.
When γ = 0.01, as shown in Fig. 3(b), the saturation occurs at
about 150 time units, while it just needs 30 time units to reach
saturation when γ = 0.02 [see Fig. 3(c)]. More simulation
results reveal that, when γ > 0.1, chaos is destroyed and
the trajectory curves are almost flat such as when γ = 0.2
in Fig. 3(d). Comparing with the results in Fig. 2, we can
conclude briefly that, (i) when loss is very small, γ , in effect,
plays the role of disorder, which means that for larger γ the
saturation occurs quicker, while for smaller γ saturation might
occur for high values of t . Thus, localization in Fig. 2(b)
is chaos-related localization. (ii) With the increase of γ ,
the chaotic dynamics will quickly be destroyed, leading to
localization in a certain evolution time, and the population
properties will decline to zero after a period of time, which
may due to impedance matching between lattice points. (iii)
When γ becomes very large, the lossy site is not excited and
almost complete localization will be observed again.

These results reveal that loss can be generally introduced
to induce localization in a certain evolution time; however,
highly enhanced localization can be observed just when γ is
very small or very large. In addition, two types of localization:
chaos-related localization and loss-induced localization are
observed depending on whether localization is chaotic.
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FIG. 3. Trajectory curves of ln(εP1 ) versus time t with 600 time
units in the cases of (a) γ = 0; (b) γ = 0.01; (c) γ = 0.02; and
(d) γ = 0.2 separately. Other parameters are A = 16, ω = 10, � =
1, and U = 8.

B. Loss-induced localization and its physical origin

To make a more intensive study of the influence of γ

on localization, the minimum value of P1(t ) in a period of
evolution time with the increase of γ is plotted in Fig. 4(a).
To make a comparison between different evolution time, the
results with 100 and 1000 time units are both studied. Other
parameters are A = 16, ω = 10, U = 8 and all atoms have
been assumed to be launched into the first well initially.
When γ varies from 0 to 0.1 and the total evolution time
is 100 time units, multiple transitions between tunneling and
localization are observed. Localization in the parameter region
of 0 < γ < 0.1 is not stable and a slight change of system loss
may induce the disappearance of localization. On the other
hand, when γ is more than 0.1, localization seems insensitive
to parameter loss and atoms may always be localized at site-1
at all evolution times. Then, when the total evolution time is
extended to 1000 time units, the simulation result [see dashed
line in Fig. 4(a)] shows an obvious decline when γ is more
than 0.15 and indicates a decrease of the degree of localization
with an extended time.

The evolution properties are further studied within a wider
parameter range of loss γ in Fig. 4(b). The upper black line
corresponds to a shorter evolution time (100 time units), while
the lower red dashed line corresponds to a longer evolution
time (1000 time units). When γ varies from 0 to 100, both
curves in Fig. 4(b) show a trend of fall-rise and the result
may provide a way to enhance the degree of localization in
site-1 through enhancing the losses in site-3. In particular,
as the loss becomes even larger, the two curves get closer
and the influence of evolution time becomes weaker. This
counterintuitive phenomenon agrees well with the result in
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panel (b) labels the positions of α = 0. (d) lnS(ν ) versus frequency
ν when γ = 100. Other parameters are A = 16, ω = 10, � = 1, and
U = 8.

Ref. [23], and we further prove that localization could also
be realized in a lossy nonlinear periodically driven system.

To find out physical origins, relationship between dynam-
ics and chaos is studied. As shown in Fig. 4(c), the curve
of the Lyapunov exponent (LE), which is the logarithmic
slope of the curve ln(εP1 ) versus time t , shows that the LE α

continues to decrease until α � 0 with the increase of losses.
The horizontal dashed line in Fig. 5(c) labels the position of
α = 0. Specifically, when γ is much smaller than 0.1, the
Lyapunov exponent is larger than zero and the dynamic is
chaotic. Eventually, when γ is more than 0.15, the exponent
may decrease less than zero and chaos disappears completely.
So, it is the chaos that determines the type of localization,
and such results are consistent with those in Figs. 2 and
3. Besides, to further verify whether there is an existence
of chaotic phenomenon when γ = 100, the spectrum S(ν)
attained by using fast Fourier transform of P1 = |b1|2 + |c1|2
is studied to analyze the spectrum information in the function
of P1(t ). Here, to avoid confusion with the driving frequency
ω, the frequency information is denoted by ν and usually the
spectrum of chaos is successive. lnS(ν) versus frequency ν is
shown in Fig. 4(d), and the discrete spectrum demonstrates
that loss-induced localization when γ = 100 is not chaotic.

Briefly, system loss γ has a profound influence on the
system dynamics. When γ is smaller than 0.1, the dynamics
are chaotic and exhibit multiple transitions between chaos-
related localization and tunneling. However, larger system
loss may destroy the chaotic dynamics and finally lead to
loss-induced localization.
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FIG. 5. A comparison of atomic dynamics between γ = 0 and
γ = 0.2. (a) The minimum value of P1(t ) as a function of A/ω

with two different integration times: 100 time units (black dashed
line and red solid line) and 1000 time units (blue dash-dotted line).
(b) Spectrum S(ν ) of P1(t ) versus frequency ν. (c) The corresponding
trajectory curve of ln(εP1 ) versus time t . (d) Lyapunov exponent (LE )
as a function of A/ω. Other parameters are A = 16, ω = 10, � = 1,
and U = 8.

IV. DISCUSSION

A. Dependence of localization on driving parameters

In the later sections, we just consider the cases with weak
loss and short evolution time. The initial conditions are the
same as in Fig. 2. First, we discuss the dependence of lo-
calization on driving parameters. The evolution of min(P1)
as a function of A/ω with 100 time units is plotted in
Fig. 5(a) with a nonlinearity U = 8. In the case of γ = 0
(black dashed line), min(P1) decreases to zero, followed by
a variation of between 0 and 0.8, which denotes multiple tran-
sitions between tunneling and localization and ends up with
a plateau representing a stable localization. It is clear from
the upper line (red solid line) in Fig. 5(a) that, for the case
of γ = 0.2, min(P1) is always more than 0.5. Consequently,
transition from localization to delocalization disappears and
tunneling is greatly suppressed. In particular, we emphasize
that loss-induced localization when γ = 0.2 (the red solid
line) also corresponds to some intermediate stage of the
transient process, which is clear from Figs. 2(c) and 2(d), and
changing the integration time from 100 time units to another
value can affect the obtained pictures. The blue dash-dotted
line in Fig. 5(a) shows the result with 1000 time units and
obviously the degree of localization decreases similar as in
Fig. 4(a). Briefly, we find out that system losses can dramati-
cally enhance the localization within a wide range of driving
parameter windows when A/ω ranges from 1 to 2. Our results
clearly demonstrate that loss could be introduced to induce
localization in a nonlinear periodically driven system within a
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certain parameter range, which is known as the phenomenon
of loss-induced localization.

To understand the underlying physics of localization, fixing
the driving amplitude A = 16, frequency ω = 10, and nonlin-
earity U = 8, the spectrum information S(ν) for the cases of
γ = 0 and 0.2 is shown in Fig. 5(b). Clearly, when γ = 0, the
successive spectrum suggests chaotic dynamics. After adding
system loss, the discrete spectrum when γ = 0.2 generally
represents nonchaotic motion. The results indicate that loss-
induced localization in our proposal may be nonchaotic.

To get more evidence of chaos, we plot the corresponding
trajectory curve of ln(εP1 ) versus time t in Fig. 5(c) under the
conditions of γ = 0 and 0.2 separately. The rising curve when
γ = 0 may imply that, with increasing time, an incredibly
tiny variation of initial conditions may lead to an exponential
increase of the deviation. The flat trend when γ = 0.2 tells us
that the time behavior of the dynamics is not sensitive to initial
conditions. Thus, the case when γ = 0 denotes the chaotic
dynamics, whereas the case when γ = 0.2 means no chaos.

The Lyapunov exponent (LE) is further discussed here.
Figure 5(d) shows the results for the Lyapunov exponent as a
function of A/ω. Without system loss, the Lyapunov exponent
is greater than zero, which implies that the dynamics is indeed
chaotic. However, the almost flat curve when γ = 0.2 reveals
that the Lyapunov exponent is roughly equal to zero and such
condition has no chaos.

According to the above discussion, we can conclude that
localization can be significantly improved for weak loss and
short evolution time. Within the parameter range of 1 <

A/ω < 2 and in the case of γ = 0, chaos can be observed and,
with the assistance of chaos, atoms can tunnel into other sites.
However, when γ = 0.2, the chaotic dynamics is destroyed
and localization is enhanced. Thus, loss-induced localization
in our proposal may originate from the destruction of chaotic
dynamics due to system losses.

B. Dependence of localization on nonlinearity

In the above discussion, nonlinearity is always fixed at
U = 8 and the dependence of system dynamics on nonlin-
earity is not clear. Here, we further discuss the influence of
nonlinearity on loss-induced localization, and the results are
plotted in Fig. 6. Since we mainly focus on the trend of change
and considering the fragility of quantum states, the total
integrating time is still chosen as 100 time units. In the case of
A = 16, ω = 10, � = 1, Figs. 6(a) and 6(b) demonstrate the
evolution of min(P1) with the increase of nonlinearity with
two different system losses. When γ = 0, min(P1) features
a rich variety of effects related to the multiple transitions
between tunneling and localization. However, in the case
of γ = 0.2, there exists an nonlinear parameter window to
observe localization within 4 < U < 10. It is evident that the
loss can be introduced to induce localization in an appropriate
parameter range of nonlinearity.

Figures 6(c) and 6(d) correspond to the evolution of the
Lyapunov exponent versus nonlinearity U , which further
manifests the relationship between loss-induced localization
and the disappearance of chaos. When γ = 0, the Lyapunov
exponent in Fig. 6(c) is more than zero with the increase
of nonlinearity, which implies that the dynamics are chaotic.
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FIG. 6. (a), (b) The minimum value of P1 as a function of
nonlinearity U for the two different conditions of γ = 0 and γ = 0.2.
(c), (d) Lyapunov exponent versus nonlinearity U when γ = 0 and
γ = 0.2. The horizontal dashed lines in panels (c) and (d) label the
positions of α = 0. Other parameters are A = 16, ω = 10, � = 1.

However, the Lyapunov exponent is less than or about equal to
zero in Fig. 6(d) within 4 < U < 10. Thus, it is the disappear-
ance of chaos that induces the counterintuitive phenomenon
of loss-induced localization.

V. CONCLUSION

In conclusion, we present a comprehensive analysis of
loss-induced localization in a nonlinear periodically driven
three-site system. We have obtained a fascinating result of
loss-induced localization which originates from the destruc-
tion of chaotic dynamics. When the loss γ is much smaller,
the system dynamics exhibits chaotic motion and multiple
transitions between chaos-related localization and tunneling
are observed. Then the increased system losses could destroy
the chaotic dynamics, resulting in loss-induced localization.
However, the duration of localization is limited for a medial
γ , and the leakage, possibly because of impedance matching
between lattice points, occurs after a period of evolution time,
which means no localization actually. The transient nature
of localization can be understood analytically in the mean-
field approximation. If a larger value of γ is extended, it
is possible to find that localization is enhanced obviously.
Even though we have not observed localization in an infinite
evolution time, our results are meaningful in the control of
quantum states. Thus, in our scheme, there are two types
of localization, which originate from different physics, rely-
ing on whether chaotic behavior exists. Our proposal allows
for the manipulation of quantum dynamics, such as going
from tunneling to localization or from chaotic to nonchaotic
regimes by adjusting the driving amplitude and frequency,
system loss, or nonlinearity. Moreover, there exists a wide
parameter window to observe loss-induced localization both
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in the range of driving parameters and nonlinear parameters,
which permits the experimental possibility with currently
available technologies. Besides, our approach will expand the
understanding of chaos-related localization and loss-induced
localization and deepen the potential application of driven
systems in quantum motors and quantum measurements.
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(2012).

[26] X. Luo, J. Huang, and C. Lee, Phys. Rev. A 84, 053847
(2011).

[27] G. Lu, W. Hai, and Q. Xie, Phys. Rev. A 83, 013407
(2011).

[28] Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A.
Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 020403
(2005).

[29] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997).

[30] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151
(1998).

[31] Y. Wang, J. Gao, X.-L. Pang, Z.-Q. Jiao, H. Tang, Y. Chen, L.-F.
Qiao, Z.-W. Gao, J.-P. Dou, A.-L. Yang, and X.-M. Jin, Phys.
Rev. Lett. 122, 013903 (2019).

[32] A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S.
Nolte, A. Tünnermann, and F. Lederer, Opt. Express 13, 10552
(2005).

[33] A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann,
and F. Lederer, Opt. Express 14, 6055 (2006).

[34] I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S.
Kivshar, Phys. Rep. 518, 1 (2012).

[35] S. Longhi, Laser Photonics Rev. 3, 243 (2009).
[36] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature

(London) 424, 817 (2003).
[37] R. El-Ganainy, D. N. Christodoulides, C. E. Rueter, and D. Kip,

Opt. Lett. 36, 1464 (2011).
[38] N. K. Efremidis, P. Zhang, Z. Chen, D. N. Christodoulides, C. E.

Rüter, and D. Kip, Phys. Rev. A 81, 053817 (2010).
[39] M. Holthaus, Phys. Rev. A 64, 011601(R) (2001).
[40] D. A. Zezyulin, V. V. Konotop, G. Barontini, and H. Ott, Phys.

Rev. Lett. 109, 020405 (2012).

033808-7

https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1103/PhysRevA.65.053603
https://doi.org/10.1103/PhysRevA.65.053603
https://doi.org/10.1103/PhysRevA.65.053603
https://doi.org/10.1103/PhysRevA.65.053603
https://doi.org/10.1103/PhysRevA.83.063834
https://doi.org/10.1103/PhysRevA.83.063834
https://doi.org/10.1103/PhysRevA.83.063834
https://doi.org/10.1103/PhysRevA.83.063834
https://doi.org/10.1103/PhysRevA.84.043840
https://doi.org/10.1103/PhysRevA.84.043840
https://doi.org/10.1103/PhysRevA.84.043840
https://doi.org/10.1103/PhysRevA.84.043840
https://doi.org/10.1103/PhysRevA.91.063804
https://doi.org/10.1103/PhysRevA.91.063804
https://doi.org/10.1103/PhysRevA.91.063804
https://doi.org/10.1103/PhysRevA.91.063804
https://doi.org/10.1103/PhysRevA.83.053424
https://doi.org/10.1103/PhysRevA.83.053424
https://doi.org/10.1103/PhysRevA.83.053424
https://doi.org/10.1103/PhysRevA.83.053424
https://doi.org/10.1016/j.physrep.2003.10.001
https://doi.org/10.1016/j.physrep.2003.10.001
https://doi.org/10.1016/j.physrep.2003.10.001
https://doi.org/10.1016/j.physrep.2003.10.001
https://doi.org/10.1209/0295-5075/107/50003
https://doi.org/10.1209/0295-5075/107/50003
https://doi.org/10.1209/0295-5075/107/50003
https://doi.org/10.1209/0295-5075/107/50003
https://doi.org/10.1103/PhysRevA.75.033602
https://doi.org/10.1103/PhysRevA.75.033602
https://doi.org/10.1103/PhysRevA.75.033602
https://doi.org/10.1103/PhysRevA.75.033602
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1126/science.1179546
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1007/BF01313554
https://doi.org/10.1007/BF01313554
https://doi.org/10.1007/BF01313554
https://doi.org/10.1007/BF01313554
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1364/OE.19.013636
https://doi.org/10.1364/OE.19.013636
https://doi.org/10.1364/OE.19.013636
https://doi.org/10.1364/OE.19.013636
https://doi.org/10.1002/andp.201700218
https://doi.org/10.1002/andp.201700218
https://doi.org/10.1002/andp.201700218
https://doi.org/10.1002/andp.201700218
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1103/PhysRevA.83.041805
https://doi.org/10.1103/PhysRevA.83.041805
https://doi.org/10.1103/PhysRevA.83.041805
https://doi.org/10.1103/PhysRevA.83.041805
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevA.89.013832
https://doi.org/10.1103/PhysRevA.89.013832
https://doi.org/10.1103/PhysRevA.89.013832
https://doi.org/10.1103/PhysRevA.89.013832
https://doi.org/10.1364/OL.37.004455
https://doi.org/10.1364/OL.37.004455
https://doi.org/10.1364/OL.37.004455
https://doi.org/10.1364/OL.37.004455
https://doi.org/10.1103/PhysRevA.84.053847
https://doi.org/10.1103/PhysRevA.84.053847
https://doi.org/10.1103/PhysRevA.84.053847
https://doi.org/10.1103/PhysRevA.84.053847
https://doi.org/10.1103/PhysRevA.83.013407
https://doi.org/10.1103/PhysRevA.83.013407
https://doi.org/10.1103/PhysRevA.83.013407
https://doi.org/10.1103/PhysRevA.83.013407
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1103/PhysRevLett.122.013903
https://doi.org/10.1103/PhysRevLett.122.013903
https://doi.org/10.1103/PhysRevLett.122.013903
https://doi.org/10.1103/PhysRevLett.122.013903
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1364/OE.14.006055
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1002/lpor.200810055
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1364/OL.36.001464
https://doi.org/10.1364/OL.36.001464
https://doi.org/10.1364/OL.36.001464
https://doi.org/10.1364/OL.36.001464
https://doi.org/10.1103/PhysRevA.81.053817
https://doi.org/10.1103/PhysRevA.81.053817
https://doi.org/10.1103/PhysRevA.81.053817
https://doi.org/10.1103/PhysRevA.81.053817
https://doi.org/10.1103/PhysRevA.64.011601
https://doi.org/10.1103/PhysRevA.64.011601
https://doi.org/10.1103/PhysRevA.64.011601
https://doi.org/10.1103/PhysRevA.64.011601
https://doi.org/10.1103/PhysRevLett.109.020405
https://doi.org/10.1103/PhysRevLett.109.020405
https://doi.org/10.1103/PhysRevLett.109.020405
https://doi.org/10.1103/PhysRevLett.109.020405

