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We study the dynamics of a two-dimensional Bose gas after an instantaneous quench of an initially ultracold
thermal atomic gas across the Berezinskii-Kosterlitz-Thouless phase transition, confirming via stochastic
simulations that the system undergoes phase-ordering kinetics and fulfills the dynamical scaling hypothesis
at late-time dynamics. Specifically, we find in that regime the vortex number decaying in time as (N,) oc t~!,
consistent with a dynamical critical exponent z & 2 for both temperature and interaction quenches. Focusing on

finite-size boxlike geometries, we demonstrate that such an observation is within current experimental reach.
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I. INTRODUCTION

A two-dimensional (2D) Bose gas is known to undergo a
Berezinskii-Kosterlitz-Thouless (BKT) phase transition [1,2]
between a superfluid regime and a nonsuperfluid regime, orig-
inating from the binding and unbinding of vortex-antivortex
pairs. Such a transition, first observed in thin helium films [3],
has been experimentally investigated in a broad range of sys-
tems, including ultracold atomic gases in quasi-2D harmonic
potentials [4-9] and, more recently, in near-uniform boxlike
traps [10]. Theoretically, such settings have been studied with
a universal |\IJ|4 model on a lattice [11,12], a semiclassical
field approach [13], Quantum Monte Carlo methods [14,15],
classical fields and the stochastic (projected) Gross-Pitaevskii
equation applied to both harmonically trapped gases [16-20]
and boxlike geometries [21-23], and a renormalization-group
approach [24]. In the weakly interacting regime, such predic-
tions have shown good agreement with experimental findings
for the interference fringes in expansion dynamics [6,25], the
relation between the number of vortices and the emergence
of phase coherence [10], the scale invariance and universality
[19,26], and the propagation of sound near the BKT transition
[27,28].

In cold gases, for a given atomic species, the critical
temperature of the BKT phase transition is set by the chemical
potential and effective interaction strength. These quantities
can be experimentally controlled by fixing the atom number
and varying either the strength of the transverse confinement
or the scattering length by means of a Feshbach resonance,
where available [29]. The BKT transition can be crossed by
lowering the temperature via evaporative cooling the gas. The
dynamics emerging in a temperature quench are sensitive
to the quench protocol, in particular to the quench rate. A
quench across a continuous phase transition spontaneously
generates defects in the order parameter. A relation between
the defect density and the quench rate is provided by the
Kibble-Zurek universal scaling law [30,31]. In the case of
an instantaneous (or sufficiently rapid) quench, the emerging
dynamics reveal a phase-ordering stage in which self-similar
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correlation functions collapse onto each other when scaled in
terms of a characteristic length scale [32,33]. The growth of
this length scale, which is directly connected to the defect
dynamics, is set by the dynamical critical exponent z which
can thus be extracted from the simulations in the appropriate
late-time evolution stage.

The purpose of this work is to theoretically study the
phase-ordering kinetics of a quenched ultracold atomic Bose
gas in a box trap, within existing and envisaged 2D box
geometries, mostly inspired by recent experiments realized
in the Laboratoire Kastler Brossel (LKB) in Paris with 3’Rb
[10,27,34] and currently underway at the Atomic, Mesoscopic
and Optical Physics group (AMOP) in Cambridge with ¥K
[35]. We model the gas by means of the stochastic projected
Gross-Pitaevskii equation [36—41]. Considering the geometry
of the LKB box trap, we first perform a detailed analysis of the
equilibrium configuration as a function of temperature, with
our findings revealing good qualitative agreement with earlier
numerical works. Having identified the relevant regimes, we
then discuss controlled instantaneous quenches across the
BKT phase transition. First, we verify the expected bulk
predictions by considering both temperature and interaction
quenches in the limit of a large “idealized” box—Ilarger than
currently accessible experimentally. Having demonstrated our
methodology and confirmed its predictive power in terms
of both correlation functions and vortex dynamics, we then
specifically address the feasibility of experimental observa-
tion. Correlation functions, which are hard to measure directly
in 2D box geometries, are likely to be prone to finite-size
effects in the currently accessible box sizes, suggesting it
may be favorable for observations to rely instead on vortex
numbers. Considering the specific finite extent of the recent
LKB experimental setup in Paris [27], we show that even
in such finite-size systems, there is a well-defined temporal
window in which one should be able to observe the long-
term ¢t~! evolution in the vortex number, associated with
vortex-antivortex annihilation processes. We show that the
same conclusion is valid also in the different setting inspired
by ongoing experiments of AMOP in Cambridge. Similar
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findings were previously obtained in the long-term evolution
of the closely related problem of decaying two-dimensional
quantum turbulence, connecting ultracold-atom experiments
[42—45] with numerical studies [46], a problem discussed
more generally in the context of dynamical vortex decay via
N-vortex collision processes [22,46—48].

II. STOCHASTIC GROSS-PITAEVSKII EQUATION

We consider a weakly interacting ultracold Bose gas con-
fined in a transverse tight potential sufficiently strong that
it creates a uniform 2D system which occupies the lowest-
energy state in the transverse direction. The stochastic (pro-
jected) Gross-Pitaevskii equation (SPGPE) describes its dy-
namics via the noisy complex field ¥ (x, y, ), subject to the
equation [36—41]

v (x, y, . 2 v2
mw _ P{(l - iy)[— +g2D|w(x,y,r>|2—u}
t 2m,,
X w(x,y,t)Jrn(x,y,t)}, (1)

where V2 is the Laplacian in two dimensions, gp is the
2D coupling constant associated with the s-wave scattering
length a,, and m,, is the mass of the particles. If the transverse
confinement is harmonic, V (z) = m,,a)z2 /2, one can define the
harmonic length £, = ,/li/m,w, and the dimensionless cou-
pling constant g = m,gp/ h? = \/8may/, . The projector P
constrains the dynamics of the system within a finite number
of macroscopically occupied modes, the coherent region, up
to an ultraviolet energy cutoff fixed here as

€, T) = kgT In(2) + p, 2)

for which the mean occupation of the last included mode
is of order ~1, assuming a Bose-Einstein distribution in
the occupation number spectrum. A Gaussian stochastic
noise 7(x, y, t) with correlation in space and time (n*(x, y, t)
n&',y', 1)y = 2hykgTS(x — x')8(y —y')8(t —¢’) is added
and projected in the coherent region. The cutoff is imple-
mented in Fourier space. The numerical grid for the simu-
lations is determined from €., by the antialiasing condition
Ax < 7w /+/8megy [40]. In comparing numerical results with
experiments, one must include the density of atoms in the
coherent region 1, fejqg = f dxdy |y (x,y)|* as well as in the
incoherent region ny, so that the total density is n = n.eq +
ny. Here np is determined by the density of states G(¢) of the
system as nj = 1/(LxLy)/:i de G(e)/(ec=W/ksT _ 1) where
the gas in the incoherent region is assumed to be ideal. Finally,
the dissipative term y, parametrizing the interaction between
the high-lying and the low-lying modes of the system, has
the practical role of setting the rate at which the system
reaches the equilibrium determined by the external parameter
temperature 7 and chemical potential u. In our simulations
we use values of y within a decade centered in the value
of y = 0.01, of the same order as the values used in [49],
where y was fixed to reproduce the time growth of the number
of atoms occupying the lowest-momentum mode in a three-
dimensional (3D) condensate subject to a temperature quench
across the Bose-Einstein-condensate transition [50].

III. EQUILIBRIUM: THE
BEREZINSKII-KOSTERLITZ-THOULESS PHASE
TRANSITION

A. Background theory

The Mermin-Wagner-Hohenberg theorem [51,52] states
that, for a system of two or fewer dimensions and short-range
interactions, it is not possible to have the spontaneous break-
ing of a continuous symmetry at any nonzero temperature.
As a notable consequence, there is no Bose-Einstein conden-
sation in these geometries since the thermal fluctuations at
any temperature are strong enough to destroy the long-range
coherence in the system. Repulsive interactions, however, may
result in the establishment of quasi-long-range coherence at
sufficiently low temperatures, affecting the behavior of the
first-order correlation function, defined in an isotropic system
as

(W Fo)v (Fo + P)sy o
VUG o ¥ Fo + PPy on

where the average (- - )z ¢ 1S performed over the spatial
position 7y, the angular part 6 of 7, and over a large number
N of stochastic realizations. In a 2D system, as shown in [2],
the topological properties of the system are determined by the
behavior of quantized vortex pairs with respect to a critical
temperature Tkt for the infinite order Berezinskii-Kosterlitz-
Thouless phase transition. Specifically, (i) for T > Tpgr free
vortices can exist in the system, there is no superfluid, and
the first-order correlation function decays as g (r) ~ e™"/¢,
where & is a correlation length; (ii) for T < Tk vortices can
exist only in bound pairs, allowing the presence of a super-
fluid, and the correlation shows an algebraic decay gV (r) ~
r~® in terms of an exponent «. Note that the algebraic decay
of the correlation function in the degenerate case could lead
to very strong requirements in terms of the sample size
for behavior consistent with the Mermin-Wagner-Hohenberg
theorem to manifest itself. At the transition (7' = Tgkr), the
correlation function should decay according to [2,53]

M _(r\"
g (’”)|c—()LT> , 4

where Ay =,/ 27 I /mpkgT is the thermal de Broglie wave-

length and o, = 0.25 [54]. At the thermodynamic limit, when
the volume and total number of particles of the system tend
to infinity while the density is fixed, the value for the critical
temperature is determined by

g Cc
~ S (—) 5)

BKT T 8
where the constant C was estimated by Monte Carlo analysis

in [12] to be C ~ 13.2. Thus, by inverting Eq. (5), the temper-
ature at the critical point is estimated as

g = 3)

m

ksT

Wrn

T = 6
BET ™ kg In (C/8) ©)

where n denotes the system density.
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FIG. 1. Left: equilibrium profiles for the first-order correlation function gV(r) for different temperatures, in logarithmic scale (the colors
are the same ones as in the inset and correspond to the same values of T /Tg from low, blue top line, to high, brown bottom line). The fitted
algebraic (dotted lines) and exponential (dashed lines) functions are defined as in Eq. (9). The numerical box has size L, x L, = (50 x 50) um,
with periodic boundary conditions and contains 20 000 3’Rb atoms. The averages are performed over A = 100 stochastic realizations for each
temperature data set, and we used y = 0.05. Right: x? of the exponential and the algebraic fits (top) and their ratio (bottom) as a function of
T /Tgkr- The colored points correspond to the colored lines in the left panel; the critical region is reported as a shaded area.

B. Numerical results

We now characterize the equilibrium state of a finite-size
uniform 2D Bose gas, focusing on the experimental geometry
at LKB. We consider approximately 2 x 10*8’Rb atoms with
mass m, = 1.4431 x 10~2 kg in a uniform two-dimensional
box of size L, x L, = (50 x 50) um, whose transverse con-
finement is @, = 2w (1500) Hz. The chemical potential is
fixed at u/kg = 4.8nK, and g = 9.5 x 102, For our choice
of parameters, the system is numerically equilibrated for
a time foq =3 x 10w, w; ~30s at a temperature spanning
an interval T /TR = [0.13, 1.96], where T5g = 33.25nK.
Our simulations were performed by means of the XMDS2
software package described in [55] on the High-Performance-
Computing cluster at Newcastle University.

To obtain a smooth first-order correlation function g(')(),
we average over both x and y directions in our discretized grid
(of N, x N, points, respectively) using the expression

1
gV =3[ + 8], ()
where
N N
- W Vi Iv
(1)(,,) J
;2:: |1//l]| % <|‘/fi+r,j|2)./\/
N N . 3
g(yl)(r) Z Z %0,» jl/fi,j+r>./\/

VAV PN P

where v; ; = ¥ (x;, y;) and the average (- - - ), is performed
over the number N of stochastic realizations. Once this func-
tion is computed, we fit it (as in [56,57]) with the functions

(1) (r) « e-’/f’

exp ‘. ©)

1 _
3511;(”) xXr

According to the BKT theory, the former should apply above
Tsxr, and the latter should apply below. As a measure of the

quality of the fit we use the quantity

gD @r) — gt (1)
2= Z [ W)

PRI
where the index i accounts again for the spatial discretization.

The results are given in Fig. 1. The equilibrium correla-
tion functions and the corresponding fits are shown in the
left panel for the selected temperature range, while the x>
functions are shown on the right. As expected, the algebraic
fit is better than the exponential fit (i.e., has a lower x?2)
at low temperatures, while the exponential fit is better at
high temperatures. The crossover between the two behaviors
occurs in a narrow region close to Tggy, with the two values
Xexp and g, being equal slightly above Tiey. The shaded area
in the range 0.95 < T /Tggt < 1.15 represents qualitatively
the region where the BKT transition occurs.

In Fig. 2(a) we show the parameter o extracted from the
algebraic fit. The shaded area is the same as in Fig. 1. At the
left border of this area we find o ~ 0.25, which corresponds
to the prediction of BKT theory at the transition in the ther-
modynamic limit [53,54] and in agreement with [58]. At the
right border we instead find o =~ 0.5. This value agrees with
the one obtained in [21] just above Tgkt in numerical simula-
tions within a classical field approach in the microcanonical
ensemble, reproducing the interference patterns experimen-
tally observed in [6]. A broad critical region, as identified
here, is also consistent with the existence of an “intermediate
regime” characterized by o > 0.25 and a rapidly vanishing
zero-momentum current-current correlation, as pointed out in
[23], again within a classical field calculation but in the grand-
canonical ensemble. Such a region is predicted to shrink when
approaching the thermodynamic limit [21,23].

Although no true condensation can occur in two dimen-
sions in the presence of interactions, the quasi-long-range co-
herence leads to the formation of a so-called quasicondensate,
which can be thought of as a condensate with a fluctuating

; (10)
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FIG. 2. (a) Exponent « of the algebraic fit as in Eq. (9), calcu-
lated for samples at thermal equilibrium at different values of 7'/ T52 ¢
as in Fig. 1. The critical value o, = 0.25 predicted by BKT theory in
the thermodynamic limit is shown as a horizontal dashed green line.
(b) Equilibrium quasicondensate fraction ng. (green solid line and
colored big dots), superfluid fraction ny (red small dots and solid
line), and condensate fraction n, (blue small dots and dashed line) as
a function of temperature. (c) Equilibrium Binder ratio U as defined
in Eq. (13) for the same samples. (d) Equilibrium vortex density
computed by performing a short time average of the final values of
(Ny). (e) Equilibrium order parameter m as defined in Eq. (14), in
comparison with the equilibrium value of /g, () computed at the
edges of the system.

phase [59]. Its density can be computed via [12]

2P — (@)
Nge = n ’ (11)

where the average of the moduli (- - - )7 » is performed over
the entire spatial grid and all noise realizations. As shown
by the green line in Fig. 2(b) and consistent with earlier
works [21], the quasicondensate density has a significant
nonzero value even above the critical temperature, with

nge(Tger) ~ 0.7. In the framework of the BKT theory, the
quasicondensate facilitates the existence of vortices above the
critical temperature, where a superfluid is absent. In Fig. 2(b)
we also report the normalized superfluid density ng (red line),
defined as

1

—_, 12
7 (12)

nst =
as suggested by Nelson and Kosterlitz [54], which is mean-
ingful only at low T where the algebraic fit to g1’ is reliable.
We also plot the condensate fraction ny (blue dashed line),
defined as the normalized density of particles which populate
the zero-momentum (k = 0) mode. Atlow T, the lowest mode
tends to saturate at the same value as ny, while above Tggr it
is just a small fraction, as expected for a strongly fluctuating
quasicondensate. We note in passing that in our simulations
the c-field fraction lies in the range 0.84 < n. gea/n < 0.99
depending on the temperature. Here the c-field density is
calculated as n._fielg = (Zi’ ; [Vi |2) - At the critical point we
have nc_ﬁeld/n(TBoﬁT) = 0.92.

A related quantity characterizing the location of the phase
transition is the Binder ratio (or Binder cumulant) [60,61],
defined as

4
U= (|Zl,] wlv]h)é\/’ (13)
<| Zi,j ‘pi,ji >/\/

and plotted in Fig. 2(c). This quantity is predicted to be a step
function from 1 (fully coherent system) to 2 (pure thermal
state) in the limit of infinitely large boxes. In finite volumes, it
is instead particularly sensitive to finite-size effects, resulting
in a smooth function with a slope progressively smaller with
smaller boxes.

Another way to characterize the physical regime of the
system is by counting the average number of vortices at equi-
librium as a function of temperature; this is done by means of
a numerical routine that calculates the phase winding around
each grid point to identify the vortices and their circulation.
The results are given in Fig. 2(d). Note that, for the parameters
of our simulations, all vortices annihilate for temperatures
lower than ~0.75T 2.

Finally, a measure of the degree of degeneracy of the
system was introduced in Ref. [61] in the form of an order
parameter m, which, in our discretized space, is defined as

SR S PO Z¥1I (14)

\/NXN)' (Zi,j |wi,.i|2)/\f

This quantity accounts for the off-diagonal terms of the sys-
tem’s density matrix. Its value at equilibrium mq is plotted in
Fig. 2(e) together with the value of /g;(r) calculated at the
edges of the system. These quantities should coincide in the
limit of large boxes [61]. The behavior of m.q is qualitatively
similar to the one observed in [61] for a planar 2D XY model,
showing a rapid decrease above the critical temperature.

All quantities plotted in Fig. 2 demonstrate the occurrence
of the BKT transition within a critical range of 7. Due to
finite-size effects the transition is not sharp. Depending on
the way one conventionally defines a precise value of the
transition temperature Tpgr, such a value can be slightly
shifted downward, as in [23], or upward, as in [21], with
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respect to the ideal value Ty, but the different definitions are
expected to converge in the thermodynamic limit. Our results
demonstrate clear consistency with such earlier findings, as
well as with the results of similar analysis in exciton-polariton
2D gases [57,62].

IV. QUENCH AND PHASE-ORDERING DYNAMICS

An important part of our analysis is devoted to the study of
the relaxation dynamics of coherence and topological defects
of the 2D Bose gas across the critical temperature. This study
can reveal universal properties through the characterization
of critical exponents, which address the universality class of
the system considered [32]. Such a process has been largely
studied in conservative [22,63] and open systems [57,64]. The
2D Bose gas is known to belong to the same universality class
as the planar 2D XY model, whose dynamics has been studied
theoretically [65] and experimentally [66,67].

In Eq. (1), the parameters controlling the physical state
of a given atomic species are 7, u, and g,p. In theoretical
studies assuming a fixed value for the interaction strength g>p,
quenching through the critical point of the transition has been
implemented by manipulating the temperature parameter 7'
while keeping the chemical potential unaltered [65,68], by
quenching u while maintaining a fixed temperature [69], and
by performing a simultaneous quench of the two quantities
[49,70].

A. Background theory

We start by briefly reviewing the theory of the phase-
ordering process. The quantities which characterize the
nonequilibrium dynamics of a 2D Bose gas are the correlation
length L(t), the average length within which coherence is
established, and the average number of topological defects
detected when crossing the phase transition. In our case, the
defects are quantized vortices, and their average number at a
time ¢ relates to L as

(Ny) e L, (15)

and the corresponding density is (n,) = <NV>L‘§ox’ where from
now on (---) corresponds to an average over the stochastic
realizations. After a sudden quench from a temperature above
Tskr, at sufficiently long times, the system is expected to
enter a temporal region where the system exhibits universal
dynamical scaling [32,71], in the sense that the (nonequilib-
rium) correlation function (3) evolves in time according to the
dynamical scaling form [32]

é%nﬂ~g90ﬁ(l¥) (16)
! L(t)

where gé{])(r) is the static (equilibrium) correlation function
for the final parameters u, T, and g, decaying algebraically
at long distances as gii)(r) oc r~*. From this scaling law one
can extract the correlation length L(7), which is predicted
to exhibit a power law dependence on the inverse of time,
whose exponent is referred to as the dynamical exponent z.
Accordingly, the average number of vortices is expected to
behave as

(Ny(t))oc tP, (17)

where f = —2/z. The dynamical exponent for the diffusive
dynamics of the 2D XY model is predicted to be z ~ 2
[65]. Note that due to the presence of steady-state vor-
tices, logarithmic corrections to this law are also expected,
such that (N,(t)) o [t/In(t /ty)]?, where t is a nonuniversal
temperature-dependent timescale (we refer to Refs. [57,65]
for details). As logarithmic corrections manifest themselves
only in very large systems and are unlikely to be directly
detected in ultracold atomic experiments, we do not focus on
such corrections here, simply noting that the numerical results
presented here are, in principle, consistent with the presence
of weak logarithmic corrections.

B. Results for a large box

In this section we discuss the rather idealized case of
a large 2D box trap to reveal the key physics expected in
the homogeneous thermodynamic limit. Specifically, we sim-
ulate here a (200 x 200) um? box with periodic boundary
conditions, following an instantaneous quench from above
to below the BKT phase transition, as a grand-canonical
evolution.

First, we simulate an infinitely rapid temperature quench
across the critical point of a 8Rb gas by evolving Eq. (1)
from an equilibrium initial configuration above the critical
point to a quasiordered state. Like in earlier works [49,70], we
induce a simultaneous jump in the system chemical potential
from p <0 to symmetrically located (about zero) p > 0
values. Specifically, we prepare our system in an equilibrated
disordered state with temperature 7;, = 200 nK > Tgxr and
Win = —2.4kg nK < 0 and induce at r = 0 a sudden quench
by setting values for a chosen final state with 75, = 5 nK <«
Texr and wg, = 2.4kg nK > 0. The chosen values of © and
T also set the cutoff for each stage of the system evolution.
Interaction strength § = 95 x 1073 is fixed by the transverse
confinement adopted, namely, w, = 27 (1500) Hz.

Typical snapshots of the classical field phase distribution
in a single temperature quench are shown in Figs. 3(a)-3(c);
the three images are taken before (green circle), close to (red
circle), and far after (orange circle) the critical point, showing
the process of creation and annihilation of vortex-antivortex
pairs during the BKT transition. From such distributions,
calculated at different times and in many realizations, we
extract the correlation function ¢!’ and the average number
of vortices. The results are shown in Figs. 3(d) and 3(e). The
green, red, and orange circles in Fig. 3(e) correspond to the
three snapshots in Figs. 3(a)- 3(c).

Inspired by [57,65], we investigate whether the system
exhibits universal dynamics in terms of a correlation length
L. To this aim, we first plot the ratio g'"’/gl;) as a function
of r at different times as in the inset of Fig. 3(d). Following
Refs. [61,64], we then extract the length L(f) by imposing
(8" /84 (L(1), 1) = 0.2, and finally, we plot g'"/gl;) again,
but as a function of the rescaled distance r/L(t). As a re-
sult, all curves nicely collapse onto a single one, except at
large distances where boundary effects become relevant. This
confirms the universal dynamical scaling. We have also
checked that the dependence on the value of g'"/gl}) chosen
for the determination of L(¢) is weak and can be neglected.
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FIG. 3. Phase distribution (a) before, (b) close to, and (c) far after the critical point in a single realization of an instantaneous temperature
quench across the BKT transition in a (200 x 200 m*) box with periodic boundary conditions. (d) Normalized correlation function gV /gty
as a function of r at different times (inset). The value of r where this quantity is equal to 0.2 (black dots) is used to define the correlation length
L(z), which is then used to plot g /gl as a function of the rescaled distance r/L(t). (¢) Temporal evolution of the number of vortices (blue,
decreasing) and correlation length L(¢) (green, increasing) averaged over N' = 400 stochastic realizations of the same temperature quench.
(f) and (g) Same as in the (d) and (e), but for an instantaneous quench of the interaction parameter g at fixed temperature. For both quench
protocols we obtain a scaling exponent 8 ~ —1 within the gray-shaded regions. In all simulations we have used y = 0.01; for this choice of
y, the shaded region in (e) [(g)] corresponds to 1.9 <t < 4.8s (1.0 <t < 2.15).
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with L, = L, = 40 um (blue squares and solid line) and 100 um (green dots and solid line), with hard wall boundary conditions, averaged
over N = 400 stochastic realizations. Results with the parameters of the LKB-Paris and AMOP-Cambridge experimental setups are shown on
the left and on the right, respectively. The scaling law (N,) ~ ¢t~! is shown as a dashed line. Insets: plot in linear scale of the time evolution
of the average number of vortices (N,) (blue solid line) and c-field density nc_gq (red dot-dashed line) in um~2. The key is the same for both

insets. In all simulations y = 0.01.

The curve of L(¢) is shown in Fig. 3(e), together with the
average number of vortices, as a function of the dimensionless
time yt. A key result is that both quantities are found to
be related by Eq. (15) within the appropriate region where
universal scaling is satisfied [gray-shaded area in Fig. 3(e)].
Such a window is chosen at late enough times to allow the
system to enter the universal regime [72] but before size
effects start to play a role in the growth of L [57,65]. By fitting
correlation length and average number of vortices with

L oct ™2 (N o< 2, (18)

respectively, we are able to extract the growth exponents for
both quantities, and we find § & —1. This is consistent with
a value of the dynamical exponent z = —2/8 =2, as for
the case of the planar XY model (with nonconserved order
parameter) dynamics, which belongs to the same dynamical
universality class. It is also in agreement with the results
obtained within a microcanonical evolution of the system,
solved with classical field methods, from a many-vortices
configuration [22]. The largest uncertainty in our result for 8
comes from the choice of the parameter y of the SPGPE. We
have performed simulations for different values of y within
a decade centered on the value of y = 0.01 (which is the
range that we think is reasonable for describing our system)
and observed S to be compatible with z =2 within a 10%
accuracy. The variations of y also reflect on the time values
reported in Figs. 3 and 4. We have also explicitly verified—by
changing the size and shape of our vortex counting region
within the box—that our numerical extraction of z =2 re-
mains unaffected by loss of vortices on the box boundaries.
In order to make more direct contact with controllable
experiments, we also implement a quench in the interaction
(i.e., in the coupling constant g). Experimentally, varying the
value of g is possible by changing the transverse confinement
w;, (as in the LKB setup) or by tuning the value of the scatter-
ing length a, thanks to the Feshbach resonances [73-75]. By
keeping the control parameters of the reservoir Ties and [ires
fixed, we tune the parameter g such that the system is suddenly
quenChed from gin to gﬁnv with gﬁn < gcrit < gin, with gcrit

defined by Eq. (5). Note that fixing Tis, ires and reducing g
cause the critical temperature to increase according to Eq. (6)
(distinct from what would happen if one were to instead
keep the density constant during the quench). The chemical
potential s = 16.5kg nK and the temperature Ti.s = 70 nK
of the reservoir (incoherent region) are chosen in order to have
anumber of atoms in the box on the order of tens of thousands,
consistent with the experimental setup. Following Eq. (5), the
critical value then reads g = 0.18.

The interaction quench protocol we adopt consists of two
stages: first, we prepare our initial equilibrium, disordered
state Yin = ¥ (Zin, Tres, Ures) DY €volving Eq. (1) starting from
random noise. Then we suddenly quench to the quasiordered
state Yan = ¥ (Zfin, Tres, Mres)- For the initial and final param-
eter sets (2, Tres, and [ires), We choose values which lie suffi-
ciently above (g;,) and below (g5, ) the critical region in order
to avoid any potential weak dependencies associated with the
precise location of the critical region on the implemented
energy cutoff. Specifically, here we use the values

Zin A 0.21 ~ 11980t — Zn ~ 0.12 ~ 0.688eit,  (19)

which, for the parameters of the LKB experiment, would
correspond to relaxing the transverse harmonic confine-
ment w, from an initial value w, — w,/3, where w, =
27 (7500) Hz.

Results are shown in Figs. 3(f) and 3(g). As already done
for temperature quenches, we can extract the correlation
length L(t) such that the curves of g")/g{}) collapse onto a
universal function of r/L(¢). Again, we find a time window
where the length L and the average number of vortices scale
as t /2 and P, respectively, with B ~ —1 as before.

C. Results for experimentally relevant boxes

In this section we focus on an interaction quench. Con-
trary to quenching 7 and p, the interaction quench is
experimentally easier to implement as it requires only a single
parameter to be used to drive the system across the phase
transition. Interaction quenches are generally performed in
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the laboratory by rapidly changing either the scattering
length a; on timescales ~100 us or the vertical oscilla-
tor length ¢, (namely, changing the transverse confinement
potential w.). This protocol is well known and has already
been adopted for harmonic trap potentials [76] and uniform
systems [27].

Realistic systems also have finite-size geometries. For this
reason in this section we use a box of size (40 x 40) um?,
consistent with system sizes of the experiment described in
Ref. [27], also displaying results for (100 x 100) um? to
highlight the role of finite-size effects in the smaller systems.
Given the difficulties in measuring g’ experimentally, we
choose to focus the following analysis on the evolution of
vortex number, which is also more tractable in numerics,
particularly for small system sizes.

First, we repeat the same sudden interaction quench sim-
ulation discussed in Figs. 3(f) and 3(g), but for a smaller
system where a more realistic hard-bound potential box is
implemented. As in the ideal case, we tune the reservoir
temperature to 7., = 70 nK and use a modest experimentally
accessible change in transverse confinement while keeping
fixed the value of s = 16.5kgnK. Thus, the range of the
interaction values is as in Eq. (19). Once the system density
has reached saturation, we note that the coherent atom fraction
reads 7 feq/n ~ 0.81, with N =~ 1.2 x 10*. The numerical
cutoff along the whole evolution is fixed by final values of
temperature 7. and chemical potential fiye.

In addition to the set of parameters of the LKB exper-
iments, we also consider here a rather distinct set of pa-
rameters inspired by the AMOP experimental setup [76,77]
at Cambridge. In this experiment, the choice of K bosons
additionally facilitates, at least in principle, the control of the
interaction strength through a Feshbach resonance. Similar to
the previous case, the temperature and chemical potential of
the reservoir set the critical value of the interaction strength
Zerit- We choose T = 50nK and p = 1.9k nK, correspond-
ing to values of temperature and chemical potential at the
end of the evaporation stage of an AMOP experiment [35].
Correspondingly, the critical interaction strength becomes
Zerit(, T) = 1.83 x 1072, so that the quench protocol reads

Bin = 0.1 &~ 5.46 Zeric — Zn = 1.83 x 107 ~ 0.1 Zorir.
(20)
At the end of the simulation the total number of atoms reads
N 229 x 10*, where n¢.ea/n 2 0.98.

In Fig. 4 we show the temporal evolution of the average
number of vortices obtained with both sets of parameters.
The dashed lines correspond to the universal scaling behavior
(Ny) oc t~!. In order to start observing such a scaling law one
has to wait at least a time ¢ ~ 0.002y ! after the sudden
quench for the LKB parameters and ¢ ~ 0.02y~! for the
AMOP parameters, corresponding to ~0.2 and ~2 s, respec-
tively, based on the value of y = 0.01 used in our simulations.
This difference in the timescale for phase ordering to set in
can be explained in terms of the different growth rates of
coherence that we predict in the two systems with such a value
of y. In the inset of Fig. 4 we show the time evolution of the
classical field density (red line) and the average number of
vortices (blue line) in linear scale. The classical field density

is found to grow faster with the LKB parameters; a factor
of approximately 10 difference in the growth rate is found
by fitting the classical field density with an S-shaped growth
curve, as done in Ref. [49]. This explains the temporal shift
of the window where universal scaling is observed in our
simulations. This regime occurs roughly at the point when
the classical field density appears to approach saturation to its
final value, at which, however, the system has not yet reached
its full coherence for the corresponding reservoir parameters.
A precise determination of this window in the experiments,
however, should require an independent experimental estimate
of the coherence growth rate. Nevertheless, timescales in be-
tween fractions of 1 to 10 s, as found here, are well within the
typical observation time in current experiments. Also, these
results appear to be rather independent of the system size.

V. CONCLUSIONS

We have performed a detailed analysis of the dynamics
following instantaneous temperature and interaction quenches
from an incoherent thermal state to a superfluid state be-
low the Berezinskii-Kosterlitz-Thouless phase transition in
2D Bose gases of ultracold atoms. Considering large boxes
with periodic boundary conditions we have demonstrated the
self-similarity of correlation functions in the phase-ordering
regime and characterized the evolution of the correlation
length and vortex number as a function of time. Both were
found to be consistent with a dynamical critical exponent
z =72, as expected for diffusive dynamics of a system in
the 2D XY universality class. Using smaller boxes, we have
also shown that realistic geometries, experimentally acces-
sible interactions, and small instantaneous quenches across
criticality are likely to facilitate the observation of a regime
where (Ny) oct~! (i.e., z &~ 2), thus providing direct mea-
surement of the dynamics and critical exponent z defining
the system universality class. Our approach is also relevant
for investigating the 2D/3D crossover in vortex dynam-
ics, related to recent experiments on vortex clustering and
turbulence [44,78,79].

Additional metadata are available by following the link in
Ref. [80]
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