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We study the extended Jaynes-Cummings-Hubbard model on triangular cavity lattices and zigzag ladders. By
using density-matrix renormalization-group methods, we observe various types of solids with different density
patterns and find evidence for light supersolids, which exist in extended regions of the phase diagram of the
zigzag ladder. Furthermore, we observe strong pair correlations in the supersolid phase due to the interplay
between the atoms in the cavities and atom-photon interaction. By means of cluster mean-field simulations and
a scaling of the cluster size extending our analysis to two-dimensional triangular lattices, we present evidence
for the emergence of a light supersolid in this case also.
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I. INTRODUCTION

Searching for novel supersolids (SS) and exploring their
nature is an interesting topic in the field of condensed-
matter physics [1–4]. The controllable ultracold-atom system
provides a pristine and convenient platform to realize such
tasks [5,6] with multicomponent systems of ultracold atoms
being possible candidates to host the SS phase [7–10]. In
particular, Bose-Einstein condensates in cavities have allowed
for the successful observation of supersolids in experiments
[11,12]. Recently, supersolid properties have been found also
in systems of dipolar quantum droplets [13,14].

The Jaynes-Cummings-Hubbard (JCH) model, a combina-
tion of the Jaynes-Cummings (JC) model [15,16] of coupled
cavities where each cavity contains a two-level atom, is an
interesting variant of cavity coupled quantum systems. Ex-
perimentally, the JCH model can be realized by a coupled
transmission-line resonator [17] or trapped ions [18]. Ana-
lytically, the mean-field (MF) theory [19,20], the Ginzburg-
Landau theory [21], the strong-coupling random-phase ap-
proximation method [22], and the Green-function method [23]
are all used to study the properties of the JCH model. Further-
more, the correlation and critical exponents of the JCH model
can be obtained by many reliable numerical methods, such as
the density-matrix renormalization-group algorithm (DMRG)
[24,25] and the quantum Monte Carlo (QMC) method [26,27].

Moreover, several interesting topics concerning the JCH
model have been studied, which include fractional quantum
Hall physics [28], quantum transport [29], quantum-state
transmission [30], on-site disorder [20,31], three-body
interactions [32], and the interesting quantum phase transition
between the superfluid (SF) phase and the Mott-insulator (MI)
phase [16]. All of these previous works ignored the interaction
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between atoms. Until recently, the light superradiant solid was
found in the Dicke model of a cavity modeled by quantum
electrodynamics coupled with a one-dimensional Rydberg
lattice [33]. However, since the photon hopping between each
cavity was not considered, it remains unclear whether or not
the photon hopping will induce the supersolid phase, where
the solid order and superfluid order coexist simultaneously
and the solid could also be called density wave (DW). In
Ref. [34] a light supersolid in the extended JCH model on the
square lattices was found by MF methods. It is still necessary
to study the JCH model on other lattices by more reliable
methods.

In the limit of a dominant atom-photon coupling, as will
be discussed below, the extended JCH model may be mapped
on a Bose-Hubbard (BH) model. Since, for the extended BH
model, a broad regime of supersolid phases was found, in
particular, on triangular lattices [35–37], it is interesting to
study the extended JCH model on the triangular cavity lattices
away from this limit and check whether additional SS exists
in the phase diagram. Here the light supersolid phase may be
stabilized by an order-by-disorder mechanism as discussed in
Refs. [35–37].

In this work, we study the extended JCH model on the
triangular zigzag ladders and lattices in the low filling regime
by means of arguments in limiting cases and detailed nu-
merical DMRG and cluster mean-field (CMF) simulations.
For the quasi-one-dimensional zigzag ladder case we present
example phase diagrams, which exhibit gapped DW phases
at densities ρ = 1/3, 1/2, and 2/3, as well as two extended
regions of a pair-supersolid phase between the DW phases.
We analyze properties of these phases and study the phase
transitions to superfluid regions. We argue that the pairing
inside the supersolid phase is a feature of the inherent quasi-
1D geometry of the ladder system. In order to extend our
study to 2D-triangular lattice geometries, we employ cluster
mean-field simulations. We find a qualitatively similar phase
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FIG. 1. Photon denoted by a red symbol is tunneling between
two different cavities which are labeled by i and i + 1, and t is the
hopping strength. In each cavity, the atom has two energy levels
which are labeled by two separated horizontal lines.

diagram with two gapped DW phases at ρ = 1/3 and 2/3,
as well as extended supersolid phases in between. In relation
to previous results in a related bosonic model [35–37], for
which we present an effective mapping in a limiting case, the
emergence of these supersolid phases may be explained by an
order-to-disorder–like mechanism. We present the qualitative
general 2D phase diagram by MF simulations and show
evidence at the stability of its main features, in particular
of the SS and gapped phases by comparison to a simulation
with various cluster sizes up to 12 sites. The experimental
signatures of the SS phase are also shown by the momentum
distribution and correlation.

The outline of this work is as follows. Section II shows
the JCH model and the equivalence between the JCH model
and the Bose-Hubbard model in the limit of dominant atom-
photon coupling. Section III shows the results of the JCH
model on the triangular zigzag ladder by the DMRG method.
The phase diagram in the limit of vanishing intercavity hop-
ping t/U → 0 and the phase diagram containing the emergent
paired-supersolid at finite t/U � 0 are shown in Secs. III A
and III B. In Sec. III C, the pairing is verified by the quantities
such as two-particle excitation binding energy, single and
pairing particle correlation at various sizes of the systems,
and explained in the Bose-Hubbard limit. In Sec. III D, the
structure factor, the momentum distribution, and the fidelity
susceptibility are shown to illustrate the supersolid phase and
the Ising character of the transition between the P-SS phase
to the SF phase. In Sec. IV, the impact of the transverse size of
the SS phase is discussed via the three-leg triangular ladders.
In Sec. V, for the JCH model on triangular lattices, the cluster
MF method, the global phase diagram, and stability analysis
of the supersolid are presented. Concluding comments are
made in Sec. VI.

II. MODELS AND LIMIT OF ATOM-PHOTON COUPLING

Following Ref. [34], we consider a triangular lattice of
coupled cavities as sketched in Fig. 1. On each cavity site i,
the two-level atom with a ground state |g〉 and excited state
|e〉 is contained. The on-site coupling between the photons
and the atom on each site i can be described by the JC
Hamiltonian H JC

i

H JC
i =ωna

i + εnσ
i + U (a†

i σi + aiσ
†
i ), (1)

where ω is the frequency of the mode of the photon creation
and annihilation operators at lattice site i, ε is the transition
frequency between two energy levels, and na

i = a†
i ai and nσ

i =

FIG. 2. Sketch of the extended JCH model on a triangular cavity
ladder geometry.

σ
†
i σi are the photon number and the number of excitations of

the atomic levels, respectively. a†
i and ai are respectively the

photon creation and annihilation operators at lattice site i. The
Pauli matrices σ

†
i (σi) represent the raising (lowering) opera-

tor. U is the atom-photon coupling strength. Note that the total
particle number N = Na + Nσ is conserved [U(1) symmetry]
within this approach. As shown in Fig. 1, aiσ

†
i means that a

photon is absorbed and an atom excitation forms simultane-
ously, and may hence be understood as a raising operator in
a pseudo-spin-1/2 space formed by the two states |g, 1〉x and
|e, 0〉x. For convenience, we focus on the case ε = ω = 0.

In this study, we focus our analysis on a sector of low
density of excitations ρ � 1, where at most one photon is
present in each cavity. As we will show, this regime can be
modeled by a hard-core particle description with at most one
photon per cavity.

The extended JCH model includes a dipole interaction term
and photon tunneling term between cavities. The Hamiltonian
is defined as

H =
∑

i

(
H JC

i − μni
) − t

∑
〈i, j〉

(a†
i a j + H.c.)

+
∑
〈i, j〉

V nσ
i nσ

j , (2)

where the total number of excitations is ρ ≡ ∑
i ni =∑

i(n
σ
i + na

i ), μ is the chemical potential, t is the hopping
amplitude of photons between a pair of neighboring lattice
sites i and j, and V is the nearest-neighbor interaction between
the atoms. The main ingredients of model (2) are sketched in
Fig. 2 for a zigzag-ladder geometry.

In the limit of a dominant atom-photon coupling U �
V and t when fillings ρ < 1, one may project model (2)
to its low-energy subspace composed of sites with on-site
singlets (|g, 1〉x − |e, 0〉x )/

√
2 and empty sites |g, 0〉x, after

identification of the states |1〉b
x and |0〉b

x in a (hardcore) BH
model. Hence a first-order approximation map model (2) is
given by the following Hamiltonian:

HBH =
∑

i

(−U − μ)nb
i − t

2

∑
〈i, j〉

(b†
i b j + H.c.)

+ V

4

∑
〈i, j〉

nb
i nb

j, (3)

with bosonic annihilation (creation) operators bi (b†
i ) and

nb
i = b†

i bi. The properties of model (3) have been stud-
ied extensively in various lattice geometries, for example,
Refs. [35–39]. In the following, we focus on the properties
of the model (2) in the regime t < V � U .

033614-2



SUPERSOLID AND PAIR CORRELATIONS OF THE … PHYSICAL REVIEW A 100, 033614 (2019)

(a)

(b)

(c)

FIG. 3. Sketch of the typical density configurations (blue bullets)
for the ladder for the (a) DW1/3 phase (t/U = 0.01, μ/U = −0.88),
(b) DW1/2 phase (t/U = 0.01, μ/U = −0.82), and (c) DW2/3 phase
(t/U = 0.01, μ/U = −0.74). The black lines indicate the strength
of the nearest-neighbor density correlations 〈nb

i 〉〈nb
j〉 (one-site MF

simulation; see below).

III. EXTENDED JCH MODEL ON TRIANGULAR
ZIGZAG LADDERS

In the following, we study the JCH model on quasi-1D
zigzag ladders. As sketched in Fig. 2 this model resembles a
two-leg ladder stripe of the 2D triangular lattice. It can be also
seen as a 1D chain with nearest- and next-nearest-neighbor
couplings.

A. Limit of vanishing intercavity hopping t/U → 0

The limit of a vanishing tunneling t → 0 in the ground
states of the (extended) BH model such as Eq. (3) are given
by classical particle configurations. At a fixed filling, the
ground-state manifold is yet typically highly degenerate as
excitations are localized at some lattice site. For certain filling
fractions, e.g., on zigzag ladder ρ = 1/3, ρ = 1/2, and ρ =
2/3, the degeneracy is lifted, where a DW pattern minimizes
the interaction energy V . Therefore, only those filling frac-
tions remain stable in a grand-canonical ensemble. The lattice
configurations of the extended JCH model in the t → 0 limit
resemble the ones of the extended BH model physics with
stable plateaus at fillings ρ = 1/3, ρ = 1/2, and ρ = 2/3,
and a macroscopic degeneracy for the remaining fillings. We
sketch the configurations in Fig. 3. If we consider the zigzag
ladder as a 1D chain with nearest- and next-nearest-neighbor
couplings, the DW pattern can be described by the following
periodic classical Fock state of excitations |1〉 and empty sites
|0〉: the DW1/3 phase at ρ = 1/3 is given by | . . . , 1, 0, 0, . . .〉,
the DW1/2 phase at ρ = 1/2 by | . . . , 1, 1, 0, 0, . . .〉, and the
DW2/3 phase at ρ = 2/3 by | . . . , 1, 1, 0, . . .〉. An important
difference between the quasi-1D ladder geometry and the
2D lattices is that, in the triangular two-leg ladder, the solid
density wave phase at half-filling can be found in addition to
the solid phases at fillings 1/3 and 2/3. The emergence and
properties of these solid phases for the BH limit have been
studied in various works, e.g., Refs. [38,39].

Due to the interplay between U and V , the JCH model,
however, obviously exhibits a nontrivial physics in the pseu-
dospin sector even for strict t = 0 limit. The V term leads

μ 
/ U

V / U

-1

-0.5

 0  0.5  1  1.5  2

vacuum

DW1/3

DW 1/2
DW 2/3

MI

FIG. 4. Phase diagram of the extended JCH model on a quasi-1D
zigzag ladder (DMRG simulations) in the limit of vanishing cavity
coupling t = 0, as discussed in the text, as a function of the chemical
potential μ and the nearest-neighbor interaction V .

to Ising-like interactions of excitation on neighboring sites.
Expressing the states |g, 1〉 j as a spin |↓〉 j and |e, 0〉 j as |↑〉 j ,
we may express the Hamiltonian of the pseudospin degree of
freedom as an Ising model with a transverse and longitudinal
field

H1/2 = V
∑
〈 j, j′〉

(
Sz

j − 1

2

)(
Sz

j′ − 1

2

)
+ U

∑
j

Sx
j , (4)

where the sum 〈 j, j′〉 runs over neighboring occupied sites.
The DW1/3 and DW1/2 phases form pseudospin singlets of
single occupied or neighboring site occupations, while inter-
estingly the DW2/3 phase exactly maps to the 1D Ising model.
As model (4) is nonintegrable for U �= 0, we calculate the
ground-state energies by means of DMRG [40,41] simulations
and obtain the generic phase diagram Fig. 4 of the JC model
on the zigzag ladder.

B. Phase diagram at finite t/U � 0

In the following, we study the JCH model on quasi-1D
zigzag ladders at finite t � 0 and intermediate strength in-
teractions V � U . We employ DMRG simulations with open
boundary conditions keeping up to m = 1000 matrix states in
the sector of a fixed number of excitations ρ. We calculate
several observables and correlation functions to characterize
the various ground-state phases.

In Fig. 5, we present the phase diagram of the extended
JCH model on the zigzag ladder anticipating the discussion of
the following section in the μ − t plane for V = 0.4U and for
small fillings ρ < 1. A finite hopping t/U > 0 will generally
destabilize the gapped phases and induces a transition of a
gapless phase, which is an ordinary single component (su-
perfluid) Luttinger-liquid–like phase of photons tunneling be-
tween the cavities (SF). Interestingly, we also find an extended
region around the DW1/2 lobe, which we call a pair-supersolid
phase (P-SS), which will be discussed below in more detail.

Figure 6 shows the equation of state ρ = ρ(μ) for several
cuts through the phase diagram of Fig. 5. The dashed horizon-
tal lines depict the commensurate fillings ρ = 1/3, 1/2, and
2/3 for which we observe the gapped density wave phases,
characterized by a plateau in the μ − ρ curve and a vanishing
compressibility. Note that, due to finite-size effects and the
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μ 
/ U

t / U

-1

-0.8

 0  0.01  0.02  0.03

P-SS

SF

DW1/2

DW1/3

DW2/3

FIG. 5. Phase diagram of the extended JCH model on a quasi-1D
zigzag ladder (DMRG simulations, V/U = 0.4). We observe several
gapped DW phases at fillings 1/3, 1/2, and 2/3, as well as a MI
region at unit filling (not shown). The green shaded regions mark the
pair-supersolid (P-SS) surrounding the DW1/2 phase (see text).

conservation of the total particle number N = Na + Nσ , the
μ − ρ curve is not smooth but consists of small steps �N and
we observe a splitting of the plateaus into two levels at filling
of N particles on L sites as well as N + 1 or N + 2.

While for the previous results we studied the hard-core
JCH model, experimentally, of course, the presence of more
than one photon per cavity cannot be excluded. However, as
can be seen in Fig. 7, this effect plays a minor role in the low
density regime studied in this work. Relaxing the hard-core
constraint only leads to a minor shift in the ρ − μ curves of
Fig. 7.

C. Pairing

The paired phase can be identified in the μ − ρ curve
of Fig. 6 by the presence of steps of �N = 2, compared to
the ordinary SF phase with steps �N = 1. This feature is
typical for phases of paired particles, where the two-particle
excitation energy �E2 becomes lower than the �E1 which is

ρ

μ / U

 0

 0.5

 1

-1 -0.8 -0.6

FIG. 6. μ − ρ curve for the extended JCH model on a quasi-1D
zigzag ladder (DMRG simulations, V/U = 0.4, L = 96 sites) for
different values of t/U = 0.002, t/U = 0.008, and t/U = 0.015
(from left to right). The curves have been shifted by 0.1 among each
other for clarity. The paired phase can be seen in this diagram by the
presence of steps of �N = 2. The arrow marks the transition to the
SF phase with �N = 1 for the t/U = 0.015 curve.

ρ

μ / U

hard core
soft core

 0

 0.5

 1

-1 -0.8 -0.6

 0.5

 1

-0.85 -0.8 -0.75

FIG. 7. μ − ρ curve for the extended JCH model on a quasi-1D
zigzag ladder (DMRG simulations, V/U = 0.4, L = 96 sites, t/U =
0.008) for the hard-core and the soft-core JCH model (allowing
for the occupation of two photons per cavity). Within the given
parameters both curves coincide almost perfectly.

due to a gain in binding energy. Here we may define

�Eν = E (N − ν) − 2E (N ) + E (N + ν)

ν
, (5)

with the ground-state energy E (N ) of a system of N excita-
tions on L sites. In Fig. 8 we show the gaps �E1 and �E2 for a
cut through the phase diagram of Fig. 5 at fixed density. In the
P-SS phase �E1 remains finite in the thermodynamic limit,
while �E2 vanishes, showing the gapless paired character of
the phase. In order to further characterize the P-SS and SF
phases, we calculate correlation functions. In both previous
Luttinger-liquid phases, the atom excitation correlation Cσ

n (r)
and the photon density correlation Ca

n (r) decay with an inverse
power law [42–44], where Cσ

n (r) and Ca
n (r) are defined by

Cσ
n (r) = 〈

nσ
i nσ

i+r

〉 − 〈
nσ

i

〉〈
nσ

i+r

〉
,

Ca
n (r) = 〈

na
i na

i+r

〉 − 〈
na

i

〉〈
na

i+r

〉
. (6)

 0

 0.05

 0  0.01  0.02  0.03

Δ 1
,2

 / 
U

t / U

Δ1
Δ2

(a)

 0

 0.04

 0  0.01  0.02  0.03

n(
k m

ax
) /

 L

t / U

L = 48
L = 96

L = 144
L = 192
L → ∞

(b)

FIG. 8. Cuts through the phase diagram of Fig. 5 for a fixed
density ρ = 5/12. (a) Single- and two-particle excitation gap �E1

and �E2 for (top to bottom and light to dark colors) L = 48, 96, and
144 sites as well as the extrapolation to the thermodynamic limit.
(b) (Single-particle) momentum distribution for different system
sizes L = 48, 96, 144, and 192. The lower black line is the extrap-
olation to the thermodynamic limit using a higher-order polynomial.

033614-4



SUPERSOLID AND PAIR CORRELATIONS OF THE … PHYSICAL REVIEW A 100, 033614 (2019)

10-17

10-10

10-3

 1  10  100

co
rr

el
at

io
ns

r

Ca

Cn
σ

Ca
a

(a)

10-10

10-3

 1  10  100

co
rr

el
at

io
ns

r

(b)

10-5

100

 1  10  100

co
rr

el
at

io
ns

r

(c)

FIG. 9. DMRG method detailed description of the extended JCH
model on the triangular zigzag ladder with V/U = 0.4, ρ = 0.416
(L = 192 sites) for (a) t/U = 0.004 (P-SS phase), (b) t/U = 0.012
(P-SS), and (c) t/U = 0.026 (SF). While Cσ

a (r), Cσ
n (r) show always

a clear algebraic decay, the single-particle correlation Ca(r) is only
algebraic in the SF phase, while exponentially in the P-SS phases.

At incommensurate fillings in general, the above correlations
emerge in the shape of beats [45,46]. The superfluid order
could be denoted by noninteger fillings and power-law decay-
ing of the nondiagonal correlation [42–44]

Ca(r) = 〈a†
i ai+r〉. (7)

Besides the usual single-particle tunneling correlation,
pairing correlations may be defined as

Cσ
a (r) = 〈a†

i σ
†
i σi+rai+r〉,

Ca
a (r) = 〈a†

i a†
i+1ai+rai+r+1〉,

Cσ
σ (r) = 〈σ †

i σ
†
i+1σi+rσi+r+1〉,

Ca
a,2(r) = 〈a†

i a†
i+2ai+rai+r+2〉. (8)

In Fig. 9 we plot the correlations for a fixed density for
various tuning rates. While in the SF phases, the density-
density correlation Cn, the superfluid single particle Ca, and
the pairing correlations Ca

a (r) exhibit an algebraic decay; upon
entering the P-SS region, the single-particle correlations Ca

decay faster than a power law. The pairing correlations decay
fast, but clearly with a power law (corresponding to a line
in the log-log plot). For small tunneling rates [Fig. 9(a)] the
pairing correlations are also in absolute value exceeding the
single-particle correlations. In Fig. 10 we plot the different
pairing correlations Ca

a (r), Cσ
a (r), Ca

a,2(r) for the P-SS phase,
which all exhibit the same scaling properties.

Indeed, the presence of the pairing phase for the zigzag
ladder may be understood already from the BH limit for a
strong atom-photon coupling due to the presence of the solid
phase at half filling ρ = 1/2 for t → 0. In this limit, we
observe that it is energetically favorable in a grand-canonical
ensemble to dope the system with an even number of holes
such that the total size of domain-wall excitations (in pairs
of three lattice sites) becomes commensurate with the orig-
inal crystalline lattice structure (four lattice sites unit cell).
Hence we may understand the dominant pairing correlation
observed numerically in the JCH model on a zigzag ladder as
reminiscent of this phase. For a minimal handwaving
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Ca
a,2

FIG. 10. Various correlation functions in the P-SS phase of
the extended JCH model on the triangular zigzag ladder (V/U =
0.4, ρ = 0.416, L = 192 sites, t/U = 0.012). DMRG data.

example, one may analogously consider the doping of a
single excitation on top of the DW1/3, in a schematic pic-
ture given by | · · · − 00 − 00 − 00 − 00 − 00 · · · 〉, using the
nomenclature of Eq. (3). In the limit of U � V and U �
V also, an additional particle creates two domain-wall–like
excitations | · · · − −0 − 00 − 00 − 00 − 00 · · · 〉 at a cost of
∼2V/4 − U − μ, which can move through the lattice gain-
ing kinetic energy, e.g., | · · · − −00 − 000 − 00 − −00 · · · 〉.
Now a second photon can be added, e.g., | · · · − −00 − 00 −
−00 − −00 · · · 〉, at a lower cost ∼3V/8 − U − μ. The soft-
core character of the JCH model allows one to further lower
the energy cost and thus maintain the preservation of the
crystalline lattice structure, leading to the formation of a
supersolid ordering, as will be shown in the following.

D. Emergence of the supersolid correlations

Interestingly, the P-SS region not only exhibits a strong
pairing, but we also find evidence for a supersolidlike order-
ing. For this, we study the scaling of the structure factor which
helps to characterize the solid order [46–52]

S(k)ν =
∑
j, j′

〈
nν

j n
ν
j′
〉
exp[ik( j − j′)], (9)

where ν = σ, a and both quantities can reflect the solid order.
Note that in this paper we define the structure factor (as well as
the momentum distribution) for simplicity ordering the lattice
sites as a single 1D chain along the zigzag direction. This
corresponds to an interpretation of the zigzag ladder as a 1D
J1 − J2 model well described in the literature (compare, e.g.,
Ref. [38] and references therein). Apart from the trivial peak at
k = 0, S(k) has a second pronounced peak at kmax = ±2/3π

for the gapped DW phase. Also in the gapless P-SS phase,
we observe a pronounced second maximum S(kmax) which is
shifted slightly away from kmax = ±2/3π . Examples for the
structure factor are shown in Fig. 11(a). This peak indicates
the presence of a density ordering in the liquid phase, which
defines a supersolid. In Fig. 11, we also plot the Fourier
transform of the Ca(r), namely, the momentum distribution
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FIG. 11. Structure factor S(k) and momentum distribution n(k)
for the zigzag ladder for ρ = 5/12, V/U = 0.4 and (a) t/U = 0.008,
P-SS phase, and (b) t/U = 0.026, SF phase (L = 96 sites, DMRG
simulation). For (a), in the P-SS the third local maximum of the
structure factor is also observed.

is defined as

n(k) = 1

L

∑
j, j′

〈a†
j a j′ 〉 exp[ik( j − j′)], (10)

which was observed experimentally [5]. The exponential sup-
pression of the single-particle correlations may also be seen
by the blurring of the momentum distribution in the P-SS
phase.

Following Refs. [47–50], we study the scaling of the peak
height of the structure factor S(kmax) with the system size.
As shown in Fig. 12(a), an extrapolation to the thermo-
dynamic limit of the maximum structure factor S(kmax) is
performed with different sizes for a cut through the phase
diagram of Fig. 5. The structure factor S(kmax) remains finite
in the P-SS phase and vanishes after the transition to the SF
region.
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FIG. 12. Cuts through the phase diagram of Fig. 5 for a fixed
density ρ = 5/12. (a) DW order in the SS phase. Scaling of the
peak maximum of the structure factor in Eq. (9) S(kmax) for different
system sizes L = 48, 96, 144, and 192. The lower black line is
the extrapolation to the thermodynamic limit using a higher-order
polynomial. (b) Scaling of the fidelity susceptibility χFS/L according
to Eq. (11) across the P-SS to SF phase transition.
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FIG. 13. Scaling of the peak maximum of the structure factor in
Eq. (9) S(kmax) for different system sizes L = 12 × 3, 24 × 3, and
36 × 3 sites of the three-leg ladder JCH model for a fixed density ρ =
5/12 (U = 1, V = 0.4). The lower black line is the extrapolation to
the thermodynamic limit using a higher-order polynomial.

The phase transition point may be further classified by a
study of the fidelity susceptibility [53]

χFS(t ) = lim
δt→0

−2 ln |〈�0(t )|�0(t + δt )〉|
(δt )2

, (11)

with the ground-state wave function |�0(t )〉, a tunneling pa-
rameter t , and a small parameter δt . In Fig. 12(a) we observe
the emergence of distinct divergent peaks of χFS/L close to the
phase transition between the P-SS and SF phase. The roughly
linear scaling of χFS/L with the system size hints at an Ising
character of the phase transition between the two regimes.

IV. THREE-LEG TRIANGULAR LADDER

As argued above, the pairing and the emergence of the
P-SS phase is an intrinsic property of the two-leg ladder limit
and, hence, we do not expect the pairing still to be present
in the three three-leg ladder or 2D case. It is, hence, an
interesting question what happens to the supersolidity in the
absence of pairing. Therefore, before proceeding to the 2D
lattice we extend our DMRG results and study the presence of
a supersolid phase in the three-leg ladder limit. We study the
three-leg ladder JCH model for again the low-density hardcore
limit at a fixed low density ρ = 5/12 intermediate between
ρ = 1/3 and ρ = 1/2 filling. The results are shown in Fig. 13.

We observe a distinct peak in the structure factor at k =
2π/3 (not shown) which extrapolates to a finite value in the
thermodynamic limit as shown in Fig. 13. We do not find
the signatures of a pairing phase. As expected, the single-
particle momentum distribution remains finite for the region
with a density order, indicating the presence of a supersolid
phase. Due to the absence of pairing, the transition between
the SS and the SF phase is apparently very different for the
three-leg ladder case. The transition to the SF phase is very
smooth contrary to the two-leg ladder model, where a sharp
(potentially Ising-like) transition was observed. Interestingly,
the supersolid order remains finite for much larger values
of the hopping amplitude t ∼ 0.1U . This may indicate the
interesting possibility of a stable light-supersolid phase also
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in the 2D limit, as we will examine in the following. Further
details of the three-leg ladder model will be studied elsewhere.

V. CMF RESULTS FOR TRIANGULAR LATTICES

A. Cluster mean-field method

The single-site MF has successfully predicted the SF-
MI phase transition without long-range interaction (V = 0)
[54]. The cluster mean-field (CMF) will be more reliable
in predicting the physics in the interaction systems (V �= 0)
[55–58]. The basic idea is to divide the system into Nc unit
cells, periodically patterning an infinite lattice, and each unit
cell contains nc sites. The Hamiltonians within each cell are
treated exactly and the Hamiltonians between each cell are
approximated by AB ≈ A〈B〉 + 〈A〉B − 〈A〉〈B〉.

The total Hamiltonian can be considered as a sum over the
local Hamiltonians on each unit cell, which contain the parts
Hc

in, which are treated exactly, and the CMF Hamiltonian Hc
MF

as follows:

H =
Nc∑

c=1

(
Hc

in + Hc
MF

)
. (12)

The Hamiltonian Hc
in can be expressed as

Hc
in = − zt

∑
i, j∈c

(a†
i a j + H.c.) + zV

∑
i, j∈c

nσ
i nσ

j +
∑
i∈c

hi,

(13)
where hi = −μpna

i − (� + μs)nσ
i + U (σ †

i ai + a†
i σi ) and the

sum runs over all nc cluster sites. The chemical potential of
photons is μp and the chemical potential of atoms is μs, and
the different labels of chemical potential are convenient to
test our codes. In actual simulations, μp = μs = μ − ω, � =
ω − ε, and � are maintained at zero for convenience.

The Hamiltonian Hc
MF is given by

Hc
MF = − qt

∑
i, j∈ce

[(a†
i + ai )� j + (a†

j + a j )�i − 2�i� j]

+ qV
∑

i, j∈ce

(
nσ

i ρσ
j + nσ

j ρ
σ
i − ρσ

i ρσ
j

)
, (14)

where z is equal to 1, the chosen setting in Ref. [34], q = 2z
for the triangular lattices, �i = 〈ai〉 is the superfluid order
parameter, and ρσ

i = 〈nσ
i 〉 is the number of atomic excitations.

Here the sum over ce runs over the bonds between the differ-
ent clusters.

By systematically scaling the cluster size nc, one may
obtain quantitative exact results for 2D systems when com-
paring to more extensive QMC studies [26,27,59]. Therefore,
we consider different cluster sizes and tessellations of the
triangular lattice to examine the stability of our findings. In
Fig. 14, we exemplify different cluster sizes employed in the
study.

In practice, we determine the self-consistent solutions ρσ
i

and �i by iterative calculation of the ground state of the
cluster system until the mean fields have converged. While for
small cluster sizes such as Fig. 14(e) the ground state of the
cluster may be obtained by exact-diagonalization techniques,
for the larger cluster sizes we employ the DMRG simulation.
Following Ref. [60] in this MF scheme already a low number

(a) (b)

(c)

(d) (e)

FIG. 14. Examples of different cluster geometries employed in
the simulations: single site MF cluster (a) with nc = 1 and Nc = 36
one-site MF sites, triangular clusters [(b) with nc = 3 and (c) with
nc = 6] with Nc = 2, and square tessellations [(d) with nc = 6 and
(e) with nc = 12 sites] with Nc = 3 independent clusters.

of matrix states is sufficient. In the present examples we
choose 30 and 60 states for nc = 12 site cluster results shown
below.

The solid or density wave orders denoted by δρa, δρσ , and
δ� are defined by the averaged local order parameters:

δA = 1

Nc · nc

∑
c,i∈c

|〈Ai〉 − Ā|, Ā = 1

Nc · nc

∑
c,i∈c

〈Ai〉. (15)

So, e.g., δ� = 1
Nc·nc

∑
c,i∈c |〈ai〉 − ā|. The sum runs over all

nc sites in all Nc clusters c. We also define the total excitation
ρ = ρa + ρσ [16] and δρ = 1

2 (δρa + δρσ ).

B. MF results for the triangular lattice

In analogy to the zigzag ladder case, by increasing μ, the
density ρ will undergo platforms with values of 1/3, 2/3 with
solid patterns shown in Fig. 15. A solid phase at half filling is
not present in the 2D case. In a grand-canonical ensemble, the
two solid phases exhibit a direct transition at t → 0 with all
states where 1/3 < ρ < 2/3 is macroscopically degenerate in
this classical limit.

In Fig. 16 and Fig. 17 we present the results of one-
site MF (or Gutzwiller MF, nc = 1) simulations. In order to
reproduce different crystalline phases we use a large number
of independent sites Nc = 6 × 6 (results for Nc = 3 × 3, not
shown, are the same). We observe the two solid phases DW1/3

(a) (b)

FIG. 15. Sketch of the typical density configurations (blue bul-
lets) for (from one-site method) the (a) DW1/3 phase (t/U =
0.015, μ/U = −0.9) and (b) DW2/3 phase (t/U = 0.015, μ/U =
−0.7). The black lines indicate the strength of the nearest-neighbor
density correlations 〈nb

i 〉〈nb
j〉.
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FIG. 16. Schematic phase diagram of the JCH model as obtained
from the one-site MF approach (Nc = 6 × 6) in the μ − t plane for
V/U = 0.4. The colors depict the (a) superfluid order parameter �

and (b) supersolid order δ�.

and DW2/3 for a finite atom-photon coupling U in the limit
of small t � U . The typical density patterns are shown in
Fig. 17. As shown in Fig. 16, due to the coupling between
atoms and photons, the DW1/3 and DW2/3 phases are not sym-
metric with μ/U = −0.77, which is an important difference
to the particle hole symmetry of the hardcore bosons on the
triangular lattices [35–37].

Interestingly, as shown in Fig. 16, two SS phases appear
between the DW1/3 and DW2/3 phases with δ� �= 0. Sketches
of the two different SS patterns are shown in Fig. 17. The
hardcore BH model on the triangular lattices has been studied
in Refs. [35–37] on triangular lattices for a finite hopping
|t | > 0 and the emergence of supersolid phases stabilized
by an order-by-disorder mechanism for intermediate fillings
1/3 < ρ < 2/3 has been shown. Also here, the SS phase
could be understood in terms of photon tunneling breaking the
degeneracy between the DW1/3 and DW2/3 phases. Hence the
emergence of such a SS phase may be based on an order-by-
disorder mechanism as conjectured for the BH limit [35–37].

C. Stability of the mean-field results with the cluster size

To illustrate the above results with more detail and study
the stability of the one-site MF results, we increase the size
of the clusters nc and scan the phase diagram along the lines
with different values of t/U . As an example, we choose

(a) (b)

FIG. 17. Sketch of the typical density configurations (blue bul-
lets) for (from one-site MF method) the (a) SS1/3 phase (t/U =
0.022, μ/U = −0.79) and (b) SS2/3 phase (t/U = 0.022, μ/U =
−0.74). The red lines indicate the strength of the bond kinetic energy
|〈a†

i 〉〈aj〉|.
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FIG. 18. CMF method detailed description of the (a) total density
ρ, and density of photons and excitations ρa and ρσ , (b) SF order
�, �a and �σ , and (c) (super)solid order δρ and δ� vs μ/U with
V/U = 0.4, t/U = 0.018 on the triangular lattices. CMF data for
clusters of three-site triangular shape (B in Fig. 14).

t/U = 0.018 in Fig. 18 obtained now by a three-site CMF
simulation. Starting at μ/U ≈ −0.95 and increasing μ/U to
−0.8, the system is in the DW phase with ρ = 1/3, � = 0,
and δρ = 0.44. With a further increase of μ/U , the three
quantities �, δ�, and δρ become nonzero continuously, and
the system enters into a SS phase. Since this SS phase is
understood from particle doping on the DW1/3 phase, we
therefore denote it as a SS1/3 phase.

By increasing μ/U to −0.75, the quantities ρ and ��

jump to nonzero values and the system enters into another
SS phase. This SS phase could be called SS2/3, because it
is formed by hole doping on the solid DW2/3. The phase
transition of SS1/3 to SS2/3 is first order. This is consistent
with previous work [61,62], in which the two SS phases of
hardcore bosons take place according to first-order transitions.
By continued increase of μ/U to −0.7, it is obvious that �

becomes nonzero, which means that the first-order DW2/3-SF
phase transition takes place.

In previous works, the nearest [44] or next to nearest [63]
repulsive interactions are the necessary conditions for the
formation of the supersolid. It should be noted that in our
model, even though there is no interaction between photons,
the light supersolid emerges, because the repulsion of atoms
will cause the effect of repulsion between photons due to
atom-photon coupling. This affected atom photon can be
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FIG. 19. Comparison and scaling of the CMF results for various
cluster sizes for (a) the density ρ, (b) the SF order �, and (c) the
supersolid order δ� vs μ/U with V/U = 0.4, t/U = 0.015 on
the triangular lattice. The different curves show the one-site MF
simulation (simulation of a Nc = 36 site-unit cell), different clusters
of triangular shape (B and C in Fig. 14 with nc = 3 and nc = 6 sites,
Nc = 2), and square parketting (D and E in Fig. 14 with nc = 6 and
nc = 12 sites, Nc = 3).

verified by calculation of the expectation values of σ
†
i ai or

σia
†
i , which is nonzero even when the system is in the DW1/3,

DW2/3, and MI(ρ = 1) phases, where � = 0 (not shown).
The behaviors of 〈σ †

i ai〉 �= 0 and 〈σ †
i σ

†
i+1〉 �= 0 mean that a

type of fluctuation with transitions between atom excitations
and photons remains in the system.

Within the given range of parameters and observables
our results remain stable with increasing the cluster size.
As exemplified in Fig. 19 already the one-site MF approach
may qualitatively reproduce the main features of the phase
diagram, compared to the CMF results. The three-site and six-
site CMF results already give quantitatively good agreement
and the 12-site data mainly overlaps with the six-site results.
Interestingly, we observe only a small difference between the
two different tessellations with six-site clusters of Figs. 14(c)
and 14(d) employed in the CMF simulation. In particular,
the size of the SS phases increases slightly with the cluster
size, which indicates that this phase may be stable in the 2D
triangular JCH model.

In Fig. 20 we finally show the local patterns of density
and superfluid ordering for the DW2/3, the SS2/3, and the
SS1/3 phases obtained by the 12-site CMF method. Both local

(a) (b) (c)

(d) (e) (f)

FIG. 20. Sketch of the typical density configurations (blue bul-
lets) for (from the 12-site MF method) the (a) and (d) DW2/3

phase (t/U = 0.015, μ/U = −0.72), (b) and (e) SS2/3 phase
(t/U = 0.015, μ/U = −0.752), and (c) and (f) SS1/3 phase (t/U =
0.015, μ/U = −0.784). The black lines indicate the strength of
the nearest-neighbor density correlations and bond kinetic energy:
(a)–(c) the disconnected part 〈nb

i 〉〈nb
j〉 and |〈a†

i 〉〈aj〉| and (d)–(f) the

connected two-site correlators in the clusters 〈nb
i nb

j〉 and |〈a†
i a j〉|.

and two-site correlations show similar patterns and compare
already well to the one-site MF data shown in Figs. 15
and 17.

We want to note that our CMF findings should be com-
plemented by a QMC study of the model to analyze the
stability and properties of the supersolid phases in more detail.
However, this goes beyond the scope of this work and will be
discussed elsewhere.

VI. DISCUSSION AND CONCLUSIONS

We perform a systematic study of the extended JCH model
on triangular lattices and find that the light supersolid is stable
in coupled cavities in the thermodynamic limit even when the
photon hopping term is considered.

Specifically, the JCH model on the two-leg triangular
ladders is studied by the powerful DMRG method. We find
a pairing caused by the interplay between the atoms in the
cavities and the atom-photon interaction in the two-leg tri-
angular ladders. The quantities such as single (two) -particle
binding energy �E1(2), single-particle correlation Ca(r), and
various pairing correlations Cσ

a (r), Ca
a (r), Cσ

σ (r), and Ca
a,2(r)

are shown. To see clearly the behaviors of these correlations,
we calculate the systems with sizes up to L = 192. We also
find that, for small tunneling rates, the pairing correlations
are also in absolute value exceeding the single-particle cor-
relations. The existence of the pair supersolid is also verified
by the finite-size scaling of structure factor and momentum
distribution, in combination of previous pair correlations. The
P-SS to SF phase transition has Ising character by the study of
the fidelity susceptibility χFS(t )/L.

To clarify the question of whether or not the P-SS phase
exists in the JCH model on the triangular ladders with more
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legs, we implement the DMRG method to simulate the JCH
model on the three-leg triangular ladders. The pairing disap-
pears but the regular supersolid, i.e., solid and single-particle
tunneling superfluid, still exists simultaneously. Interestingly
the SS phase may be observed for even larger values of t/U .
The phase transitions between SS to SF are different from
those in the two-leg JCH model, which will be further studied
in the future.

The JCH model on the two-dimensional triangular lattices
are studied by the cluster mean-field method. The global phase
diagram, which contains DW1/3, DW2/3, SS1/3, and SS2/3, are
presented. The mechanism of the solid could be understood as
intercavity tunneling of the photons breaking the degeneracy
between solids. For the formation of the SS phase of the BH
model, the key is the interaction, which is absent between
photons. However, the solid and SS of photons still can
form through the atom-photon coupling, which induces an
effective interaction between the photons. Different cluster
sizes and tessellations of the triangular lattice are used to
examine the stability of a supersolid phase. With the increase

of cluster size, the parameter ranges of the SS phase are
convergent.

To summarize, we have conclusively obtained the P-SS
phase of the JCH model on the two-leg triangular ladder and
also the SS phase on three-leg triangular ladders and regular
triangular lattices. Since the model is free of sign problems,
a study of the model by means of the worm quantum Monte
Carlo simulations will be published elsewhere. Our results,
obtained by the MF and DMRG methods, will be helpful
in guiding experimentalists in realizing different and novel
quantum phases on optical lattices.
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