
PHYSICAL REVIEW A 100, 033613 (2019)

Spin-polarized droplets in the unitary Fermi gas
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We demonstrate the existence of a type of spatially localized excitations in the unitary Fermi gas: spin-
polarized droplets with a peculiar internal structure involving an abrupt change in the pairing phase at the surface
of the droplet. It resembles the structure of the Josephson-π junction occurring when a slice of a ferromagnet
is sandwiched between two superconductors. The stability of the impurity is enhanced by the mutual interplay
between the polarization effects and the pairing field, resulting in an exceptionally long-lived state. The prospects
for its realization in experiments are discussed.
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I. INTRODUCTION

The unitary Fermi gas (UFG), routinely realized in ultra-
cold atomic gases, is a remarkable system possessing univer-
sal properties. One of its features is an exceptionally strong
pairing which results in a pairing gap of the order of half
the Fermi energy [1]. Such a strong pairing field makes it an
appealing system for studies of pairing-related phenomena.
In particular, spin-imbalanced systems offer the possibility
to investigate superfluidity under time-reversal symmetry-
breaking conditions. Due to the different radii of Fermi
spheres for spin-up and spin-down fermions one expects the
appearance of effects characteristic for the FFLO phase [2,3],
Sarma phase [4–7], or interior gap phase [8]. Unfortunately
in trapped inhomogeneous gases the excess of majority-spin
particles is expelled towards the edges of the cloud, and the
predicted effects of nonstandard pairing mechanisms appear
close to the trap boundaries [9–11], which make them difficult
to observe experimentally. However, the recent experimental
realization of boxlike traps offers the possibility to investigate
almost-homogeneous systems and, thus, may eventually help
in the detection of these exotic phases [12].

In spin-imbalanced systems the behavior of the pairing
field at the interface between the superfluid (paired atoms)
and the normal (excess of spin majority atoms) component
is similar to that at the superconductor (S)–ferromagnet (F)
junction [13]. The issue which is of paramount importance in
the case of ultracold atoms, however, and makes it qualita-
tively different from solid state physics, is the stability and
dynamics of these structures. Namely, in ultracold atomic
gas the stability is governed by the same interaction that is
responsible for its pairing properties. This is quite a different
situation than in the case of solid state structures, where the
long-range Coulomb interaction between heavy ions governs
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the stability of, e.g., the SF junction, and the pairing properties
of electrons contribute to transport and thermal properties
only. In this article we describe a novel type of long-lived
structure in ultracold atomic gas which appears when spin
polarization is induced locally by an external potential.

II. SPIN-POLARIZED DROPLETS

Let us consider an unpolarized and uniform UFG. When a
time-dependent and spin-polarizing potential is applied within
a certain region and it is strong enough, it locally breaks
Cooper pairs [see Fig. 1(a)]. Namely, it creates a region where
the pairing field is weaker (or even vanishes) and is charac-
terized by a nonzero spin imbalance p(r) = n↑(r)−n↓(r)

n↑(r)+n↓(r) , where
n↑(↓) is the density of spin-up (spin-down) fermions. Con-
sequently due to the different locations of Fermi surfaces of
spin-up and spin-down fermions, induced by the polarization,
the pairing field starts to oscillate and changes sign inside the
impurity. A similar situation is encountered at SFS junctions
[13,14]. In Fig. 1(b) we present a sketch of the behavior of
the order parameter � through the SFS junction within a thin
ferromagnet layer. Regions close to the nodal points, where
� → 0, store the unpaired particles [15], and in these regions
the spin polarization is enhanced. This effect may be viewed
also as a consequence of the occupation of certain Andreev
states which are localized around the pairing nodal points
due to the scattering of quasiparticles on a spatially varying
pairing potential (see also Fig. 2). As a consequence the
pairing nodal points and the enhanced spin-polarized regions
are mutually connected. While the aforementioned effects are
known it is surprising that the structure persists even if one
removes the external potential. This self-sustained polarized
droplet is presented in Fig. 1(c).

The natural question concerns the origin of the stability of
the structure, which, as we argue in this paper, is particularly
enhanced. If we ignore the pairing structure within the im-
purity, its stability is governed by the spin transfer processes
which result from the scattering of quasiparticles on the inter-
face between the superfluid and the spin-polarized region. If
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FIG. 1. (a) Spin-polarizing potential consisting of two Gaussian-
shaped potentials that couple with different signs to different spin
states. The potential generates a region where the system is locally
polarized, n↑(r) � n↓(r). (b) Schematic structure of the order param-
eter � in the SFS junction, where the ferromagnet layer is sufficiently
thin. Inside the layer the order parameter is suppressed and changes
sign. (c) Structure of the polarized droplet. The spin polarization p(r)
and the pairing field �(r) distributions are shown on the left and
right, respectively. The characteristic feature is the presence of the
nodal surface of the pairing field at which the pairing changes its
sign. The spin polarization reaches its maximum in the vicinity of
the nodal surface.

the system is at low temperatures and not far from equilibrium
the spin transfer, which in this regime is mainly due to
Andreev reflection, is effectively suppressed [16–19]. How-
ever, the creation of the polarized impurity by the time-
dependent potential brings the system relatively far from equi-
librium. The process of inducing polarization creates various

FIG. 2. Total energy of a 1D Fermi gas with (total) polarization
p = 0.05 in an external pairing field as a function of the distance
between pairing nodal points (2L). The dashed line indicates the
energy of the configuration with the pairing set to 0 between nodal
points. Inset: Pairing configuration (lower panel) at the distance in-
dicated by the arrow; the upper panel shows the density distributions
of spin-up and spin-down fermions and the particle (spin-up)/hole
(spin-down) distributions associated with Andreev states localized
around the nodal points, which are responsible for spin polarization.
EFFG denotes the energy of a uniform, unpolarized Fermi gas with
the same number of particles; ξ is the coherence length of the
corresponding uniform system.

phonon excitations in a superfluid, which would eventually
decay into quasiparticle excitation and increase the tempera-
ture of the system. This effect would speed up the spin transfer
processes between the polarized region and the surrounding
superfluid, eventually leading to the disappearance of the
impurity. When pairing is present inside the impurity the prox-
imity effects, similar to those at the SFS junction, enhance
the stability of the configuration. In order to understand better
the reason for the stability it is instructive to consider the
one-dimensional (1D) case. In this case the initially created
structure starts to expand as the two polarized regions, in the
vicinity of nodal points, repel each other. This in turn implies
that the pairing field becomes complex, � → � exp(iqx), and
induces the current | �j| ∝ q. As a result one ends up with two
polarized regions which travel at finite velocity in opposite
directions and the region between them becomes again fully
paired (see Fig. 2). For more details of 1D calculations see
Appendix C. In the 3D case this process, however, will not
occur, as the radial expansion of the polarized region would
inevitably increase the size of the polarized shell, which
clearly costs energy. Thus the “surface tension” associated
with the polarized shell counterbalances the repulsion and
stabilizes the size of the impurity. Namely, the stability of the
polarized impurity is dictated by the energy balance of the
impurity energy, which can roughly be decomposed into two
terms,

Eimp = Eshell + Eint, (1)

where Eshell describes the energy of the polarized shell sur-
rounding the impurity (concentrated around the pairing nodal
surface) and Eint is the energy related to the impurity volume.
The interplay between these terms leads to an enhanced
stability in three dimensions. Similarly, the opposite process,
leading to the collapse of the impurity, is suppressed due to the
presence of the pairing field inside with an opposite phase.
It creates an effective potential barrier, as the pairing inside
has to be destroyed during the collapse. We emphasize that
this configuration corresponds to an excited state. We dub it a
ferron, since the pairing fields inside the impurity and at the
SFS junction share many similarities.

The considerations concerning the stability of the polarized
region allow for estimations of the minimum impurity size. It
is clear that the pairing within the impurity needs a space to
develop which is of the order of the BCS coherence length ξ .
This sets the minimal limit for the size of the impurity to be
stable. Numerical simulations show that the minimal radius of
the stable ferron is about 2.5 ξ .

III. NUMERICAL SIMULATIONS

A. Framework

In order to investigate the effect described above uncon-
strained 3D numerical calculations have been performed,
using the framework based on time-dependent density func-
tional theory in the form of the asymmetric superfluid local
density approximation (TDASLDA). It allows for accurate
treatment of the pairing correlations in a time-dependent
fashion. It employs a density functional of generic form (we
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set units to m = h̄ = kB = 1) [20]:

EASLDA = α↑(p)
τ↑
2

+ α↓(p)
τ↓
2

+ β(p)(n↑ + n↓)5/3

+ γ (p)

(n↑ + n↓)1/3
ν†ν +

∑
i=↑,↓

[1 − αi(p)]
j2
i

2ni
. (2)

The terms ni, τi, ν, and ji, respectively, denote the normal,
kinetic, anomalous, and particle current densities, which are
defined in terms of Bogoliubov quasiparticle wave functions
{vn,i, un,i},

ni(r) =
∑

|En|<Ec

|vn,i(r)|2 fβ (−En), (3)

τi(r) =
∑

|En|<Ec

|∇vn,i(r)|2 fβ (−En), (4)

ν(r) =
∑

|En|<Ec

v∗
n,↓(r)un,↑(r)

fβ (−En) − fβ (En)

2
, (5)

ji(r) =
∑

|En|<Ec

Im[vn,i(r)∇v∗
n,i(r)] fβ (−En), (6)

where En is the quasiparticle energy and Ec is the energy
cutoff value as required by the regularization scheme. The
Fermi-Dirac distribution, fβ (E ) = 1/(exp(βE ) + 1), where
β = 1/T , allows us to model finite-temperature effects. The
terms in the functional given by Eq. (2) have the follow-
ing meaning: the first two describe the kinetic energies of
particles with spin i = {↑,↓} possessing effective masses αi,
and the third and fourth terms describe normal and pairing
interactions, respectively, where strengths are controlled by
the coefficients β and γ . The latter two terms are required in
order to preserve the Galilean invariance of the theory. All
coupling constants αi, β, and γ are functions of the local
polarization of the gas p = n↑−n↓

n↑+n↓
. They have been adjusted to

quantum Monte Carlo results for spin-imbalanced, homoge-
neous unitary Fermi gas and exhibit a remarkable agreement
with the calculations for trapped systems [20,21]. In this
way the density functional treatment offers a description of
superfluidity beyond the mean-field Bogolubov–de Gennes
(BdG) approximation, which is unable to reproduce correctly
the quantum Monte Carlo data.

The TDASLDA equations can be obtained from the sta-
tionarity condition of the action,

S =
∫ t1

t0

(
〈0(t )|i d

dt
|0(t )〉 − E (t )

)
dt, (7)

where |0(t )〉 denotes the quasiparticle vacuum at time t and
E (t ) is the total energy

E (t ) =
∫ ⎛

⎝EASLDA(r, t ) +
∑

i=↑,↓
Vi(r, t )ni(r, t )

⎞
⎠dr. (8)

Vi is an arbitrary external one-body potential, which couples
to the number density ni. Formally TDASLDA equations
resemble time-dependent Bogoliubov–de Gennes (TDBdG)

equations:

i
∂

∂t

(
un,↑(r, t )

vn,↓(r, t )

)
=

(
h↑(r, t ) �(r, t )

�∗(r, t ) −h∗
↓(r, t )

)(
un,↑(r, t )

vn,↓(r, t )

)
.

(9)
Here hi(r, t ) denotes the single-particle Hamiltonian, which
consists of kinetic, mean-field, and external potential terms.
The pairing field � is proportional to the anomalous den-
sity ν. Spin-reversed components of quasiparticle wave func-
tions can be obtained via the symmetry relation un,↑ → v∗

n,↑,
vn,↓ → u∗

n,↓, and En → −En.
The framework has been extensively tested over the last

years, and it has proved to provide an accurate description
of various dynamical properties of the strongly interacting
Fermi gas, including generation and proliferation of quantum
vortices [22] and dynamics of solitonic cascades [15,23].
More details related to technical aspects of solving
TDASLDA equations are provided in Appendix A.

B. Demonstration of dropletlike properties of the ferron

The initial condition for simulations consists of a uniform
solution of unpolarized UFG, at a very low temperature,
T/εF = 0.01, where εF denotes the Fermi energy. In order
to check the stability of the results with respect to finite-size
effects, we used lattice sizes ranging from 403 to 643. The
lattice constant dx is chosen to be about three times smaller
than the average interparticle distance n−1/3, and the number
of particles is fixed to get kF dx ≈ 1, where kF = (6π2n↑)2/3

is the Fermi wave vector. Subsequently an external potential in
the form of the Gaussian Vi(r, t ) = λiA(t )e−r2/2σ 2

of width σ

and amplitude A0 = max[A(t )] has been applied. The poten-
tial is spin dependent, attracting spin-down atoms (λ↓ = −1)
and repelling spin-up atoms (λ↑ = 1), as shown in Fig. 1(a).
The potential is switched on for a time interval sufficient to
induce spin polarization locally, leading to the destruction of
Cooper pairs within the region of radius R ≈ σ . Eventually
the external potential is removed, and the system evolves
in time. For more details on the protocol for the impurity
generation see Appendix B. In Fig. 3 the time evolution of
the local polarization, induced at the center of the simulation
box p(r = 0), is presented. In Fig. 3(b) the relative phase
of the pairing field at the center of the polarized region,
measured with respect to the phase outside the impurity
�ϕ = ϕin − ϕout, is shown, where ϕ = arg �. Simulations
were performed for the external potential of the amplitude
A0 = 2 εF = k2

F and three widths, σ/ξ = 2.38, 3.14, and
7.07. The potential has been applied within the time interval
t < 150 ε−1

F . In the first two cases the time interval was suffi-
ciently long to generate a region of high local polarization p �
0.8 with an almost-vanishing pairing field �(r) ≈ 0 inside
the region. The evolution after the potential was removed
turned out to be different and depended crucially on the size of
the polarized region. A too small polarization radius σ � 3 ξ

does not provide enough space to develop the aforementioned
oscillatory pairing field pattern. As a result it is not stabilized
by the pairing field and decays. For larger sizes, σ � 3 ξ , as
the potential is removed, the pairing field inside the impurity
reappears with the opposite phase. Moreover, within the time
scale 1000 ε−1

F there is no visible decrease in the polarization,
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(a)

(b)

FIG. 3. Time evolution of the local polarization p (r = 0) in the
center of the box (a) and the pairing phase difference �ϕ (b). An
external potential of strength A0 = 2 εF and various widths σ has
been applied within the time interval 0–150 ε−1

F . In the case where
σ = 3.14 ξ stabilization of the polarization and the phase difference
at a constant value for t εF > 150 indicates creation of the ferron. For
animations showing the distributions of both the local polarization
p(r) and the pairing field �(r) see the movies in the Supplemental
Material [24].

indicating the unusual stability of the polarized droplet. In
the latter case, for σ ≈ 7 ξ , the potential acts within a time
interval too short to excite the ferron. Thus, both the potential
radius and its duration have to be large enough to generate the
stable polarized droplet. It turns out that in the latter scenario
the time interval needs to be increased by at least a factor of 2
in order to produce a self-sustained spin-polarized droplet.

The numerical simulations indicate that there is a prefer-
able shape and size of the impurity. The calculations reveal
that changing the potential width σ within the range 3 ξ–7 ξ

weakly affects the size of the generated ferron. In each case
the measured radius of the droplet (defined as the distance to
the nodal surface) evolves towards a value within the interval
2.5 ξ–3.5 ξ . Another dropletlike feature of the ferron can be
observed when a deformed impurity is generated. Namely,
the external potential in the form of a Gaussian function
Vi = λiA exp (− x2

2σ 2
x

− y2

2σ 2
y

− z2

2σ 2
z

) with different widths σx,y,z

in each spatial direction induces initially a deformed impurity.
However, it evolves rather rapidly (within a time of order
100 ε−1

F ) towards an almost spherically symmetric configura-
tion. These results confirm that the peculiar pairing structure
is responsible for the existence and stability of the ferron. The
spherical shape of the droplet at a fixed volume minimizes
Eshell, without affecting Eint, whereas the preferable size of
the impurity is due to the nodal structure of the pairing field.

The above simulations demonstrate that ferrons in 3D form
long-lived excitations and indeed bear similarities to droplets.
In order to investigate this aspect further the collisions of two
initially separated ferrons have been performed. They have
been generated by applying two spin-selective potentials mov-
ing towards each other. The potentials’ velocities, generating
ferrons, were set lower than the speed of sound and the process
of head-on collision is shown in Fig. 4. Note that the structure
of ferrons is preserved during the collisions. They fuse and

FIG. 4. Head-on collision of two ferrons. The droplets were
created by two moving potentials of amplitude A = 2 εF and width
σ = 3.14 ξ as indicated by the arrows. The potentials were applied
within the time interval 0–150 ε−1

F , and snapshots of the pairing field
spatial distributions �(r)/εF taken at later times (as indicated by
labels on the horizontal axis). Color coding is the same as in Fig. 1.
For a full movie see the Supplemental Material [24].

a new droplet of a larger size is created with the typical
pairing nodal structure. Although initially the obtained ferron
is deformed one expects that it will evolve toward a spherical
shape, which may take a relatively long time, as it is immersed
in an excited superfluid bath.

Finally, we have also checked that qualitatively the same
results are obtained within the mean-field BdG approach; see
Appendix D for comparison. This means that the existence of
the stable ferron is not sensitive to the choice of a particular
form of the functional.

IV. STABILITY OF THE RESULTS WITH RESPECT
TO PERTURBATIONS

A. The impurity stability vs its size

The width σ of the external spin-polarizing potential,
Eq. (B1), represents an important parameter in the process of
droplet generation. If it is too small, then inside the polarized
region there is not enough space to allow for the order
parameter fluctuations, which naturally occur at the scale of
the coherence length (ξ ). Therefore, based on the presented
argument, one expects that σ has to be at least of the order
of ξ . Numerically we have confirmed that the minimal width
needed for successful creation of the ferron is indeed σ � 3 ξ ,
which is a threshold value (as we go through the impurity the
phase difference varies from 0 to π and again to 0). In Fig. 5
we present the time evolution of the spin polarization inside
the impurity and the phase difference between the interior
and the outside regions, for different values of σ . It is clearly
shown that for widths exceeding the coherence length ξ by a
factor of 3, both the polarization and the phase difference re-
main fairly constant during the simulations, which correspond
to times t εF ≈ 1000. Note that as we increase the width of the
potential we excite more phonons in the background super-
fluid. These fluctuations propagate towards the edges of the
box, and due to periodic boundary conditions they again reen-
ter the box and interfere with the ferron structure. This effect,
which is due to the finite size of the box and imposed periodic
boundary conditions, gives rise to oscillations of the phase
difference, especially visible for the case with σ = 6.28 ξ .

Performed calculations indicate the existence of a prefer-
able size of the impurity. In order to demonstrate this feature,
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FIG. 5. Impact of the spin-polarizing potential width σ on the
process of impurity generation. (a) Time evolution of the local polar-
ization in the center of the impurity; (b) pairing phase difference.
The box size, 403, corresponds to a length of 31 ξ along each
dimension. The amplitude of the potential was fixed at A0 = 2 εF .
Results for σ � 3 ξ correspond to the cases where a ferron was
successfully created. Calculations presented in this graph are shown
in Supplemental Movies 1–4 [24].

let us consider a certain volume Vπ characterized by the
shifted phase (by π ) of the order parameter with respect to
the value far away from the polarized region. This volume
may serve to define the radius of the ferron by means of
the relation Vπ = 4

3πr3. In Fig. 6 we present the radii of
impurities, generated by potentials of different widths σ , as
a function of the time. It is clearly visible that increasing the
width of the spin-polarizing potential above the value σ � 4 ξ

does not lead to the creation of impurities with larger radii.
Instead it is observed that in most cases the size of the impurity
remains essentially constant at r ≈ 3.5 ξ .

B. The impurity stability vs the potential strength

We have analyzed the impact of the potential strength A0 on
the process of impurity formation. The time evolution of the
spin polarization inside the impurity and the phase difference
for three selected strengths are presented in Fig. 7.

If the amplitude is too low, A0 � εF , then the potential
is too weak to break efficiently Cooper pairs and to induce
locally a sufficiently large spin polarization. As a consequence
a stable impurity is not formed. On the other hand, if the
amplitude is too high, A0 � 4 εF , the potential induces excita-
tions of the background superfluid (e.g., phonon excitations)
which have sufficient energy to effectively interfere with the
ferron structure, leading to its decay. Thus there is a partic-
ular range of potential amplitudes for which we observe the
creation of a long-lived impurity.

FIG. 6. Time evolution of radii of impurities generated by poten-
tials of different widths σ . The amplitude of the potential was fixed
at A0 = 2 εF . The potential was turned off at time toff = 150 ε−1

F .
Variations of radii at short time scales are related to the finite
resolution of the lattice.

C. Deformed impurities

In most of the simulations, we used the spin-polarizing
potential, (B1), with additional, small symmetry-breaking

(a)

(b)

FIG. 7. Time evolution of the central local spin polarization
(a) and pairing phase difference (b) for impurities generated by
potentials of different strengths. The simulation box is 483, which
corresponds to 38 ξ along in each dimension. The width of the Gaus-
sian potential is set to σ = 4.71. For the three presented scenarios,
only the potential of strength A0 = 2 εF produces a stable ferron.
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FIG. 8. Cross sections through the pairing field �(r) along three
perpendicular planes. The top row shows the pairing field configura-
tions just before the deformed potential (σ = 4.7 ξ , εy = 0.44, and
εz = 0.64) is switched off. The bottom row shows the pairing field
configurations after the potential is switched off and the system has
evolved for an additional time interval 500 ε−1

F . The plot indicates
that a spherical shape is the preferable configuration for a ferron. For
a full video see Supplemental Movie 8 [24].

parameters |εy/z| ≈ 10−6. In this case, almost spherically
symmetric impurities were created. In order to explore the
possibility of creation of a deformed impurity and to in-
vestigate its stability, we have executed runs involving a
strongly deformed external potential. Namely, we set potential
parameters: εy = 0.44 and εz = 0.64. We have found that
the generated impurity is as stable as the one generated
by a nearly spherically symmetric potential. Moreover, the
potential generated initially deformed the impurity, which
subsequently evolved toward a spherical configuration (see
Fig. 8). This demonstrates that the spherical shape represents
the most favorable configuration.

D. Collision of impurities

Since ferrons are long-lived and localized excitations, one
may consider scenarios which are sensitive to their mutual
arrangements and investigate their dynamics involving colli-
sions. There are several issues which may be explored and
here we touch upon only the most basic ones. Namely, there
is clearly an induced interaction between ferrons which is
mediated by the superfluid background. The natural question
is how strong this interaction is and whether it may effectively
repel or attract impurities. The second question is whether
the peculiar structure of the ferron is rigid enough to survive
collision or whether collision leads to its immediate decay. As
examples of such scenarios, we performed simulations where
we collided two ferrons. The ferrons were created by means
of two moving potentials along the x axis. The velocity of
potentials was set lower than the speed of sound. The shape
of each potential was determined by Eq. (B1). In Fig. 9 we
show a few snapshots of a collision with a nonzero impact
parameter. We observe a fusion process which results in the

FIG. 9. Snapshots from a simulation demonstrating the periph-
eral collision of two ferrons. In the left column the absolute value
of the pairing field is plotted; in the right column, the pairing phase
difference (with respect to the value at the box edge). For the full
video see Supplemental Movie 9 [24].

creation of a new stable ferron. These simulations indicate that
the ferron states represent very stable configurations.

V. EXPERIMENTAL REALIZATION

Recent developments of experimental techniques allow
us to implement spin-dependent potentials using close-to-
resonance laser beams [25]. Both the size and the strength
of the beam can be controlled. In order to induce ferron
excitation it is not sufficient to polarize the system locally;
the spin-polarizing potential has to be strong enough to
allow the pairing field to reappear with the flipped phase.
Clearly, the potential strength must be at least of the order
of the pairing gap, which is quite large for a UFG, �/εF ≈
0.5. Our calculations indicate that a potential of amplitude
A0 ≈ εF is not sufficient to induce a ferron, and one needs
A0 ≈ 2 εF for efficient droplet creation. Therefore we suggest
using two crossing laser beams, each of about εF amplitude.
In the crossing region the amplitude will be enhanced to the
required strength, allowing for the creation of a localized
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FIG. 10. Idea of an experimental protocol leading to ferron cre-
ation in a boxlike trap. Each panel shows the spatial distribution of
the local polarization p(r) and the pairing field �(r). Color coding
is the same as in Fig. 1. Two crossing beams, each of amplitude
A0 = 1 εF and width σ = 3.14 ξ , are applied for time t εF /h̄ = 150.
(a) Only in the crossing region the total strength is sufficient to
efficiently polarize the gas. (b) After removal of the beams, the
polarized region converts into a stable ferron. For the full video see
the Supplemental Movie 11 [24].

ferron. This procedure has been tested numerically for a UFG
confined in a box trap [12] (see Fig. 10).

It must be emphasized that the associated time scales are
also experimentally accessible. In the numerical tests, we
applied the polarizing potential for time intervals of about
150 ε−1

F , and we concluded that the lifetime of ferrons is
at least 1000 ε−1

F . Assuming the value of Fermi energy for
a typical experimental setup εF ≈ h × 13 kHz according to
Ref. [12], the required time for a beam impulse is 2 ms, which
subsequently allows at least 12 ms for ferron detection, e.g.,
by measuring the density difference between two spin states.

The mechanism responsible for the stability of a ferron
is generic and is valid on both the BEC and the BCS side.
However, other features of the system come into play when
one considers these limits. The energy needed to create a
ferron scales approximately linearly with the pairing gap
Eimp ∼ |�|, as the main energy cost comes from breaking
of the Cooper pairs. On the BCS side, the condensation
energy scales as Econd. ∼ |�|2, and thus these two scales will
become comparable in the deep BCS regime. Therefore by
trying to induce local spin imbalance (a ferron) in the system
one may likely remove the pairing completely, turning the
system into the normal phase. For more details, see Appendix
C. In the opposite BEC limit two energy scales exist: one
associated with the binding energy of composite bosons,
which is steeply rising on the BEC side, and one related
to the condensation temperature, which is fairly constant. In
order to locally spin-polarize the BEC one needs to break up
composite bosons, which requires rather strong laser beams,
which would lead to extensive excitation. In our tests (see
Sec. IV B), we find that even at unitarity the application of
strong potentials (like A0 � 4 εF ) typically induces too many
phonons, which effectively interfere with the ferron structure,
leading to its destruction. Thus, we predict that the unitary
regime is the most suitable for ferron creation. There is also
another technical problem, namely, close-to-resonance laser
beams may heat up the system due to incoherent scattering

FIG. 11. Snapshot from a simulation demonstrating the internal
structure of a large ferronlike excitation taken after time �t ≈
220 ε−1

F with respect to the moment when the potential was removed.
It is clearly shown that the phase changes sign three times as we
proceed towards the center of the impurity. For the full video see
Supplemental Movie 13 [24].

of photons (an effect not included in our simulations) and
thus cause loss of superfluidity before the ferron structure
is created. This aspect requires more sophisticated analysis
which is beyond the scope of this work.

VI. IMPURITIES WITH A MORE COMPLEX
INTERNAL STRUCTURE

Studies of proximity effects on SFS junctions proved that
the order parameter may change sign a few times, depending
on the width of the ferromagnet layer [13,14]. A similar
effect is also expected in the case of ferronlike excitations. In
order to investigate this possibility, we performed exploratory
simulations using an external potential of a large width,
σ = 11.8 ξ , and high amplitude, A0 = 3.5 εF . Indeed, we
have observed that after removal of the potential (at time
toff εF ≈ 170) inside the impurity the order parameter changes
signs a few times as we move towards the center. A sample
configuration is presented in Fig. 11. The simulation revealed
also that the internal pairing structure exhibits various
oscillations in time. Further studies are required in order to
determine whether these oscillations are related to the internal
dynamics of the impurity or originate from the superfluid
background fluctuations.

VII. CONCLUSIONS

We have demonstrated using state-of-the-art time-
dependent density functional theory that one may create,
in the bulk of a unitary Fermi gas, a surprisingly long-lived
excitation consisting of a spin-polarized region characterized
by a peculiar structure of the pairing field, which governs
its stability. The mechanism responsible for its creation is
similar to the one responsible for the FFLO phase or for
the appearance of a Josephson-π junction in SFS structures.
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The experimental conditions for creation of these structures
(ferrons) are within reach and may offer the possibility to
explore a plethora of new phenomena involving dynamics
and interactions between ferrons and, e.g., quantum vortices
or domain walls. Note also that their creation and detection
may turn out to be simpler than the detection of the FFLO
phase and thus would provide an indirect strong argument for
the existence of this long-sought phase [26].
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF THE TDASLDA

Calculations have been performed using the numerical
code constructed for studies of solitonic cascades in a spin-
imbalanced unitary Fermi gas (UFG). It was described in
detail in the Supplemental Material to Ref. [15] and therefore
here we limit the description to the most important details.
The code solves TDASLDA equations [20] (which have the
formal structure of time-dependent Bogoliubov–de Gennes
equations) on a 3D spatial lattice without any symmetry
restrictions. Periodic boundary conditions are imposed. Spa-
tial derivatives appearing in the single-particle Hamiltonian
are calculated using spectral methods (via FFTs), while for
time integration the Adams-Bashforth-Moulton (predictor-
corrector) scheme of fifth order is implemented. In order to
accelerate computations, graphics processing units (GPUs)
are utilized. In calculations presented here the number of
GPUs exceeded 128 (nvidia P100) and in some cases (for large
lattices) it reached 1600. Calculations were preformed on the
TSUBAME3.0 (Tokyo Institute of Technology) and Piz Daint
(CSCS, Switzerland) supercomputers.

We have used lattice sizes ranging from 403 up to 643, with
lattice constant dx = 1. Various box volumes allowed us to
investigate the influence of finite-size effects on the stability of
ferrons. In each simulation the number of particles was chosen
in such a way as to satisfy the condition kF = (6π2n↑)1/3 = 1.
In the case of the smallest box (403) this requirement corre-
sponds to 1081 particles per single spin state. The integration
time step �t was taken to be �t = 0.005 ε−1

F (units are set
by the requirement m = h̄ = 1). This integration time step
enabled us to execute numerically stable simulations within
time intervals tmax ≈ 1000 ε−1

F .

APPENDIX B: PROTOCOL FOR IMPURITY GENERATION

The initial condition for simulations consists of the uni-
form solution of an unpolarized UFG at a very low temper-
ature, T/εF = 0.01. The self-consistent solution of ASLDA
equations for a uniform system provided the correct system
properties, namely, E/EFFG = 0.40(1) (Bertsch parameter)
and �/εF = 0.50(1), where uncertainties arose due to finite-
size effects, related to various lattice sizes used in the calcula-
tions. Having a uniform, unpolarized solution of the ASLDA,
we subsequently applied a spin-selective external potential
that locally polarized the system,

Vi(r, t ) = λiA(t ) exp

[
−x2 + (1 − εy)y2 + (1 − εz )z2

2σ 2

]
,

(B1)

where λ↑ = +1 denotes spin-up particles (repulsive potential)
and λ↓ = −1 denotes spin-down particles (attractive poten-
tial). The width of the Gaussian potential σ was set to be a
few times larger than the BCS coherence length, ξ ≈ 1.27.
The coefficients |εy/z| � 1 were introduced in order to break
the spherical symmetry of the potential. The amplitude A(t )
varied in time according to the prescription

A(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0 s(t, ton), 0 � t < ton,

A0, ton � t < thold,

A0 [1 − s(t − thold, toff − thold)], thold � t < toff,

0, t � toff,

(B2)

where s(t,w) denotes a function which smoothly varies from
0 to 1 within the time interval [0,w]:

s(t,w) = 1

2
+ 1

2
tanh

[
tan

(
πt

w
− π

2

)]
. (B3)

A0 denotes the amplitude of the potential, which we typically
set to be about A0 ≈ 2 εF . In Fig. 12 we present the typical
energy evolution of a system that is the subject of an external
spin-polarizing potential that is switched on at a certain rate
and subsequently switched off. It is clearly shown that the

FIG. 12. Example of the time evolution of the total energy of the
system.
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(a)

(b)

FIG. 13. Time evolution of the total energy (a) and pairing phase
difference between the polarized region and the outside superfluid
background (b). Presented results were obtained for three time
intervals during which the external potential was turned on. In the
first case (red triangles) the potential was applied within the time
interval toff εF ≈ 150, whereas in the other cases the time interval
was enlarged by a factor of 2 and 3, respectively. The amplitude of
the potential is A0 = 2 εF and the width is σ = 7.07 ξ . Calculations
presented in this figure are shown in Supplemental Movies 5–7 [24].

energy changes only within time intervals when the exter-
nal potential Vi is turning on and off. Otherwise, the total
energy of the system is conserved. The energy difference,
�E = E (toff ) − E (0), can be attributed to the excitation en-
ergy of the system, and it roughly measures the energy con-
tained in the impurity (one needs to remember that creation
of the impurity in real time generates also various background
oscillations, which carry part of the energy).

It is important to stress that the generation of a stable ferron
requires some time. If the external potential is applied within
a time interval that is too short, the system will not manage to
develop a peculiar structure of the pairing field, with the phase
shifted by π inside the polarized region. This situation is
demonstrated in Fig. 13, where we have compared three types
of calculations, differing by the time interval during which the
potential was kept at its maximum strength. It is clearly shown
that in the case of the potential which is completely turned off
at toff ≈ 150 ε−1

F , a phase difference between the interior of
the polarized region and the outside superfluid is not created.
In the second case, where the spin-selective potential was kept
on twice as long, we observed that a certain phase difference
developed. It does not reach the value of π , however, and the
impurity decays. Finally, for the potential duration toff εF ≈
450 we have observed that a phase difference π is developed.
It results in the generation of a nodal surface, which strongly
suppresses the effects responsible for the decay. The energy
plot demonstrates that there is indeed a certain energy cost
related to the generation of the nodal surface, which can be
quantified as the total energy difference for states with versus

without the flipped phase. This contribution to the energy is
depicted as Enodal in Fig. 13.

APPENDIX C: INSTABILITY OF FERRONS IN
ONE DIMENSION

We have argued that the stability of ferrons is attributed
to their geometry and dimensionality. Here we present a
simple example visualizing the instability of a ferron in one
dimension. Namely, we have applied the TDBdG approach in
one dimension (all quantities depend on the position x and
time t , which we drop for notation brevity),

i
∂

∂t

(
un,λ

vn,−λ

)
=

(
hλ λ�

λ�∗ −h∗
−λ

)(
un,λ

vn,−λ

)
, (C1)

where λ = ±1 denotes spin indices, hλ(x, t ) = − 1
2

d2

dx2 +
gn−λ(x, t ) + Vλ(x, t ), and �(x, t ) = gν(x, t ) (nλ is the density
of spin-λ particles, ν is the anomalous density). The coupling
constant g has been adjusted so as to fulfill the condition

�/εF ≈ 0.5, εF = k2
F
2 . In one dimension one may generate a

similar form of spin-polarized impurity. Supplemental Movie
14 [24] shows an example of a ferron in one dimension created
by the potential,

Vλ(x, t ) = 1.8 f (t )λ εF exp

(
− x2

2σ 2

)
, (C2)

where

f (t ) = sin2

(
πt

2T

)
θ (T1 − t ) + θ (t − T1)θ (T2 − t )

+ cos2

(
π (t − T2)

2T

)
θ (t − T2)θ (T1 + T2 − t ) (C3)

describes the switching-on and switching-off rates. For the
particular realization of the ferron shown in Supplemental
Movie 14 we used the parameters kF σ = 4.441, T = T1 =
29.55 ε−1

F , and T2 = 49.25 ε−1
F . Note that after the initial cre-

ation of a ferron with a characteristic structure of the pairing
field, the polarized regions are repelled by each other and
the system between them becomes again fully paired. This
behavior, which can also be understood by means of the
results presented in Fig. 2, indicates that the ferron is unstable
in one dimension.

It is also instructive to analyze the structure of the ferron
and its excitation energy as a function of the pairing gap. This
sheds light on the properties of the ferron when moving from
a unitary regime towards the BCS limit. We performed an
analysis in one dimension using the BdG approach. Namely,
we considered a spin-imbalanced system with N + 2 spin-up
and N − 2 spin-down fermions on a lattice of size L with
periodic boundary conditions. The spin imbalance generates
two nodes of the pairing field, which we have placed at
x = ±L/4. This is the only possibility of generating a sta-
tionary configuration in one dimension. We have calculated
the energy of such a configuration with respect to a uniform,
unpolarized system of N spin-up and N spin-down fermions.
The results are shown in Fig. 14 as a function of the pairing
gap of the uniform system. It is clearly shown that the
energy, which can be thought of as the excitation energy
associated with the creation of the nodal structure of the
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FIG. 14. The energy of the ferronic structure in one dimension
(with respect to the uniform system) vs the pairing gap for N = 20
and L = 200 (see text for details) is indicated by the solid red line.
The dashed blue line and dotted blue line show the pairing energies
for the spin-imbalanced system: N + 2 spin-up fermions, N − 2
spin-down fermions and uniform, unpolarized system, respectively.

pairing field in the spin-imbalanced system, changes linearly
with the magnitude of the pairing gap. This is because the
main energy cost comes from local spin polarization of the
system, i.e., breaking of Cooper pairs. The size of the ferron
is much larger in the weak-coupling limit due to the increase
in the coherence length, which makes the polarized shell
surrounding the ferron significantly wider than in the unitary
regime. The dashed lines shown in the figure indicate the
behavior of the condensation energy, which scales as Econd. ∼
|�|2. In the deep BCS regime the energy required to create
the ferron and the condensation energy become comparable
and may even become lower, since the pairing gap decreases
exponentially there. Therefore trying to induce local spin im-
balance (the ferron) in the system, one may likely remove the
pairing completely, placing the system in the normal phase.
Consequently in the BCS limit the creation of a ferron may be
practically difficult, as it will likely lead to the destruction of
pairing correlations and creation of a normal system.

APPENDIX D: TDASLDA VS BdG DESCRIPTION
OF THE FERRON

In this paper we have discussed the properties of ferronic
excitation obtained within the TDASLDA approach, which
was tuned to describe a spin-imbalanced UFG. The analysis
indicates that the ferron’s stability is due to the interplay
between pairing and spin polarization and is therefore generic,
not depending on the particular form of the functional. In

FIG. 15. Simulation demonstrating the ferron stability obtained
within the BdG approach (see text for details). The total excitation
energy Eex = E (t ) − E (0) as a function of the time is shown together
with the phase difference of the pairing field between the center of
the ferron and the surrounding matter. The internal structure of the
pairing field (|�|/εF ) and the phase pattern (�ϕ/π ) is also shown
for selected time t ≈ 225 ε−1

F . The color coding is the same as in
Fig. 9. For the full video see Supplemental Movie 15 [24].

order to illustrate this feature we have performed calculations
within the Bogoliubov–de Gennes approach, where only a
kinetic term and pairing term are present (no self-energy con-
tribution). The pairing strength has been adjusted to produce a
pairing gap corresponding to the unitary limit (|�|/εF ≈ 0.5).
The results are shown in Fig. 15. The ferron has been created
using the same technique as in the case of TDASLDA, i.e.,
by applying the external potential defined by Eq. (B1). The
induced local spin polarization, after a certain time interval,
generates a pairing phase difference inside the impurity [see
Fig. 15(b)]. It is clearly shown that the structure of the ferron
is qualitatively the same as obtained within the TDASLDA
framework. Moreover, the stability of the created object is
not affected. The difference between the BdG approach and
the TDASLDA comes into play only in the process of ferron
creation. Namely, the time needed to create the pairing phase
flip inside the impurity turns out to be different in these
approaches. Summarizing, the existence of a stable ferron is
not sensitive to a particular form of the functional.
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