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We propose and discuss a method to engineer stroboscopically arbitrary one-dimensional optical potentials
with subwavelength resolution. Our approach is based on subwavelength optical potential barriers for atoms
in the dark state in an optical � system, which we use as a stroboscopic drawing tool by controlling their
amplitude and position by changing the amplitude and the phase of the control Rabi frequency in the � system.
We demonstrate the ability of the method to engineer both smooth and comblike periodic potentials for atoms
in the dark state, and establish the range of stroboscopic frequencies when the quasienergies of the stroboscopic
Floquet system reproduce the band structure of the time-averaged potentials. In contrast to usual stroboscopic
engineering which becomes increasingly accurate with increasing the stroboscopic frequency, the presence of
the bright states of the � system results in the upper bound on the frequency, above which the dynamics strongly
mixes the dark and the bright channels, and the description in terms of a time-averaged potential fails. For
frequencies below this bound, the lowest Bloch band of quasienergies contains several avoided-crossing coming
from the coupling to high-energy states, with widths decreasing with increasing stroboscopic frequency. We
analyze the influence of these avoided crossings on the dynamics in the lowest band using Bloch oscillations as
an example, and establish the parameter regimes when the population transfer from the lowest band into high
bands is negligible. We also present protocols for loading atoms into the lowest band of the painted potentials
starting from atoms in the lowest band of a standard optical lattice.
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I. INTRODUCTION

Generating arbitrary landscapes of optical potentials for
atoms with optical subwavelength resolution is a key chal-
lenge in designing many-body systems and applications based
on cold atoms; see, for example, [1,2]. Realization of this
goal provides an unprecedented control over atomic systems,
beyond the familiar far-off resonant laser traps and optical
lattices. A particular example we have in mind is the creation
of an optical lattice, or superlattice with spacing much shorter
than the optical wavelength. One motivation to create such
short-spacing lattices is significantly increased energy scales
compared to achievable temperatures in implementing Bose
and Fermi Hubbard, and spin models, i.e., the promise to
prepare quantum phases which are not accessible in standard
setups. A second example is to generate optical potentials with
optical barriers of arbitrary shape, compared to the sinusoidal
potentials generated by standing light waves. In the present
paper we address the problem of “painting” arbitrary opti-
cal potential landscapes with subwavelength resolution. The
present work builds on the ability to generate δ-function-like
potentials as nonadiabatic corrections in atomic dark states
of the � systems [3–5]. These potential peaks are used as
“drawing pencils” of the optical landscape, which is obtained
as a time averaged potential by moving rapidly the spatial
position and changing height of these barriers; i.e., we require
the stroboscopic painting of the potentials to be fast relative
to the time scale of atomic motion in the resulting potential.
The present scheme goes beyond previous proposals [6–13],

by allowing the generation of an arbitrary potential landscape
(within the scale of the optical wavelength).

The paper is organized as follows. In Sec. II we describe
our stroboscopic painting procedure and present possible pro-
tocols for painting smooth and comblike potentials. Section III
contains the description of our approach to numerical cal-
culations of the quasienergies and eigenfunctions within the
Bloch-Floquet scheme, which we then apply to the analysis
of the atomic motion in the dark-state channel (Sec. IV) and
in the full three-channel problem (Sec. V). We also establish
there the conditions on the stroboscopic frequency for the
appearance of well-defined low-energy Bloch bands in the
dark channel, and discuss their properties. In Sec. VI we
address the dynamics of the Bloch states in the time-averaged
potential by considering Bloch oscillations. Section VII con-
tains the description of two protocols for loading atoms into
the lowest Bloch band of the painted potentials, followed by
concluding remarks in Sec. VIII.

II. PAINTING POTENTIALS USING
NANOSCALE BARRIERS

We start with a brief description of the setup for producing
a periodic comb of narrow δ-function-like optical potential
peaks for atoms using an optical � system (for more details
see [3] and Appendix A). Let us consider an atom that can
move along the z direction, while the motion in the other two
transverse directions is frozen to the ground state of a strong
confining potential. We also assume that the atomic internal
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FIG. 1. Panel (a) shows the atomic optical � scheme with two
stable atomic states |g1〉, |g2〉 and one excited state |e〉, which is used
for creation a subwavelength comb potential shown in (b) (see text).
The Rabi frequency �p is time- and position-independent, while
�c(z, t ) depends on both. Panels (c) and (d) show schematically two
possible protocols for stroboscopic painting of a potential V̄ (z): In
protocol I in panel (c) peaks of the potential move with a constant
velocity and time-varying amplitude, while in protocol II in panel
(d) the potential peaks of a constant height move with varying
velocity.

structure allows formation of a well-isolated optical � system
consisting of two stable internal states |g1〉 and |g2〉 coupled
to an excited state |e〉 by the probe field and by the control
one satisfying the condition of the two-photon resonance, with
the strengths given by the Rabi frequencies �p and �c(z),
respectively [see Fig. 1(a)], such that the Hamiltonian takes
the form

H (z) = − h̄2

2ma
∂2

z + H�(z), (1)

where

H�(z) = h̄

⎛
⎝ 0 �c(z)/2 0

�c(z)/2 −� − i�/2 �p/2
0 �p/2 0

⎞
⎠. (2)

The Rabi frequency �p is z independent, while �c(z) has the
form of a standing wave,

�c(z) = �c sin[k(z − z0)]. (3)

Because of the position dependence of �c(z), the eigenstates
of the � system in the adiabatic Born-Oppenheimer approx-
imation [i.e., the eigenstates of the Hamiltonian H�(z, t )] are
also position-dependent and include the dark state |D(z)〉 =
− cos α(z)|g1〉 + sin α(z)|g2〉 with α(z) = arctan[�c(z)/�p],
which has zero eigenenergy and is a linear combination of
the stable atomic states |g1〉 and |g2〉 only, and two bright
states |B±(z)〉 containing also the excited state |e〉 and sepa-
rated from the dark state by the gaps �EB± = minz |h̄E±(z)|,
respectively (see Appendix A).

With the Hamiltonian of the kinetic energy [the first term
in Eq. (1)] taken into account, an atom in the dark state

|D(z)〉 experiences a conservative nonadiabatic optical
potential [3,5],

Vna(ε, z − z0) = ER
ε2 cos2[k(z − z0)]

{ε2 + sin2[k(z − z0)]}2
, (4)

which depends on the ratio ε = �p/�c of the amplitudes
of the Rabi frequencies and the phase kz0 of the control
field, ER = h̄2k2/2ma is the recoil energy, ma is the mass
of the atom. In addition, the kinetic-energy term generates
nonadiabatic couplings between the dark and the bright states.
As shown in Refs. [3] and [5] the effects of these couplings
are small if the energy gaps �EB± are much larger than the
height ER/ε2 of the potential Vna(ε, z − z0), namely �EB± �
ER/ε2. (For zero detuning � = 0, this condition requires
�p/2 � ER/ε2.) Under this condition, the motion of an atom
in the dark state corresponds to motion of a particle in the
potential (4).

A. Stroboscopic painting

For ε � 1, the potential Vna(ε, z − z0) has the form of a
comb of sharp δ-function-like peaks centered around z0 +
πn/k with integer n, which have a subwavelength width
σ = ε/k � λ (here λ = 2π/k) and a height h̄2/(2maσ

2) =
ER/ε2 � ER [see Fig. 1(b)]. These high and narrow peaks can
be used as “pencils” for drawing in the stroboscopic way an
arbitrary periodic potential with the spatial resolution σ by
fast changing the positions of the peaks and their height. This
can be achieved by taking a time-dependent control field

�c(z) → �c(z, t ) = �c(t ) sin{k[z − z0(t )]} (5)

with the amplitude �c(z, t ) � �p which is periodic in time
with the period T = 2π/ω and z0(t ) periodic or quasiperiodic,
for example, z0(t + T ) = z0(t ) + 2π/k. The Hamiltonian (2)
and, hence, the total Hamiltonian (1) become now periodic
functions of time with the period T , H�(z, t ) = H�(z, t + T ),
and H (z, t ) = H (z, t + T ). [We note here that, although the
spatial period of the potential Vna(ε, z − z0) is π/k, the control
field �c(z, t ) and, therefore, the Hamiltonian have the spatial
period 2π/k, and the stroboscopic approach has to be con-
sistent with the spatial periodicity of the Hamiltonian H (z, t ).
Another option, however, could be to use an antiperiodic func-
tion �c(t ), �c(t + T ) = −�c(t ), and z0(t + T ) = z0(t ) +
π/k.] The resulting nonadiabatic potential Vna[ε(t ), z − z0(t )]
is then periodic in time with the frequency ω = 2π/T and
corresponds to the moving comb of peaks with positions
determined by z0(t ), and with the time-dependent amplitude
ER/ε(t )2.

When the stroboscopic frequency ω is much larger than
the typical frequency ωat of the motion of an atom in the dark
state but much smaller than the gaps �EB± to the bright states,
ωat � ω � �EB±/h̄, the atom in the dark state experiences
the time-averaged potential

V̄ (z) = 1

T

∫ T

0
Vna[ε(t ), z − z0(t )]dt, (6)

which is the leading term in the Magnus expansion [11] based
on the condition ω � ωat, and the effects of the bright states
can still be neglected. It is clear from the previous discussion
that, by choosing various functions ε(t ) and z0(t ), one can
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generate a large family of potentials V̄ (z) restricted by only
two constraints: (i) the potential changes on a spatial scale
which is larger than σ (or, in other words, its spatial Fourier
decomposition does not contain components with the wave
vector larger than σ−1), and (ii) it is non-negative, V̄ (z) � 0.
The latter constraint does not actually impose any physical
limitations because one can always add a (positive) constant to
the potential of interest without changing the related physics.

We note however that Eq. (6) for the potential filled by
an atom in the dark state is valid only in the ideal situation
when ωat/ω → 0 and �EB±/ω → ∞. For finite values of
these ratios, Eq. (6) is only the leading approximation, and in
the next sections we establish the conditions which ensure the
validity of this approximate solution and find corrections to
it. We address these issues on the two examples of potentials:
the one of the standard sinusoidal form and the other of the
comb type, both with the shorter period λ/2M (M > 1 is an
integer) as compared to the standard optical lattice and the
comb potential from Refs. [3,5].

Following the above discussion, the stroboscopic “paint-
ing” of an arbitrary optical potential V (z) � 0 with spatial res-
olution σ starts with finding the functions ε(t ) and z0(t ) which
solve Eq. (6) for V̄ (z) = V (z). Note that there are (infinitely)
many solutions of this problem, and one can use this ambigu-
ity to minimize the errors related to the approximate character
of (6), including the effects of the bright states. Below we
discuss possible solutions (painting protocols) of Eq. (6) for
the cases of a smooth potential (for precise definition, see
below) and of a comblike one. It turns out that in the former
case there exist two simple approximate solutions of Eq. (6)
for a general potential V (z).

B. Painting smooth potentials

We consider first a smooth potential V (z) that changes on
a typical scale L such that λ/2 > L � σ and satisfies the
condition Vmin > ER with Vmin being the minimal value of
V (z), which, as discussed above, is not restrictive because
we can always add a constant to the potential. This condition
originates from the fact that the potential (6) is strictly positive
and its typical value V̄ can be estimated as a product of
the typical height of the potential peak Vna ∼ h̄2/(maσ

2) and
the typical fraction ∼ε of the period during which the peak
crosses a spatial region of the size σ having a typical velocity
v ∼ λ/T . We thus obtain V̄ ∼ ER/ε � ER. Note also that
in experiments, the width of the peaks σ is always limited,
σ � σmin = εmin/k, by the available laser power and by the
necessity of having as large as possible gap between the dark
and the bright states. This provides an upper limit Vmax �
ER/εmin on the maximal value Vmax of the smooth potential
V (z) which can be painted stroboscopically.

For a potential satisfying the above conditions, the func-
tions ε(t ) and z0(t ) change slowly on the time scale σ/v ∼
σT/λ, and can be easily found from Eq. (6) in two limiting
cases, when either peaks of varying heights move with a
constant velocity (protocol I) [see Fig. 1(c)], or they have
a fixed height but move with varying velocity (protocol II)
[see Fig. 1(d)].

Let us first present the solution of Eq. (6) for protocol I
when the peaks of the potential, Eq. (4), move with a constant

velocity v = λ/T = ω/k, i.e., z0(t ) = vt . It is easy to see
that the desired function ε(t ) [and, therefore, �c(t )] changes
slowly on the time scale σ/v, and that the main contribution
to the averaged potential at position z comes from the value of
ε(t ) at time tz ≈ z/v. We therefore obtain

ε(t ) ≈ ER

2V (vt )
� 1, (7)

where we used the condition V (z) � ER. Note that the spatial
resolution σ = ε/k in this protocol is not homogeneous: it is
worse in the region of small values of V (z).

In protocol II with a constant height of the peaks, we have
ε(t ) = ε0 � 1, and the peaks, keeping their form, move with
the varying velocity v = dz0/dt . The value of ε0 is related
to the average (over the spatial period λ/2) value V of the
potential V (z) as

V ≡ (2/λ)
∫ λ/2

0
V (z)dz = ER/(2ε0), (8)

which follows from the fact that (2/λ)
∫ λ/2

0 Vna[ε0, z −
z0(t )]dz ≈ ER/(2ε0). The velocity v(z) at which the peak
should cross the point z is

v(z) ≈ πER

2ε0V (z)

1

kT
= v0

V

V (z)
, (9)

where v0 = λ/T is the average velocity, and the required z0(t )
can be found from the equation

2

λ

∫ z0(t )

0

V (z)

V
dz = t

T
. (10)

As an illustration, let us consider the potential

VW (z) = V sin2(Mkz) + W, (11)

where M is an integer (M � 1) and W is a positive offset,
which is an analog of a standard optical potential but with a
shorter lattice spacing a = λ/(2M ). The results of applying
both protocols with the approximate solutions from Eqs. (7)
and (9) are presented in Fig. 2. The left panels show the
resulting painted potential V W (z) calculated for V = 10ER

and three different values of the offset W/ER = 0.1, 1, and
10, together with the original potential VW (z). We see that
in protocol I, following Eq. (7), the subwavelength peak is
smaller and broader near the minima of VW resulting in a
larger error as compared to that in the maxima. In protocol
II, the height and the width of the peaks are constant and
the errors at the minima and maxima of VW are the same.
Panels (b) and (d) illustrate the mean-square error between
the painted potential V W (z) and the original one VW (z),

E = ||VW − V W ||L2 =
{∫ π/2kM

−π/2kM
[VW (z) − V W (z)]2dz

}1/2

.

(12)
We see that generically the error decreases with increasing
the potential offset W because it results in a smaller value of
ε and, as a consequence, in a better spatial resolution σ . We
note, however, that for a smooth potential, the values W � ER

suffice to obtain a very good result; see Fig. 2. On the other
hand, the error increases with increasing M (for a fixed W ),
because the scale L on which the potential changes decreases
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(a) (b)

(c) (d)

FIG. 2. Comparison of the two protocols for painting being
applied to the potential V (x) = V sin2(Mkx) + W with V = 10ER.
Panels (a) and (b) correspond to protocol I, Eqs. (6) and (7), and
(c) and (d) to protocol II, Eqs. (6) and (9). Panels (a) and (c) show
the painted potential V W (z) for M = 3 and W = 0.1, 1, 10ER (red
long-dashed, blue dotted, and green dot-dashed curves), as well as
the original potential V (x) (black solid curve). The W dependence of
the approximation error ||V − V W ||L2 for these protocols is shown in
(b) and (d), respectively, for M = 1, 2, 3 (black circles, red triangles,
and blue rhombi, from bottom to top) (see text).

with increasing M, and, having the same spatial resolution σ,

one naturally expects a larger error in painting. To increase
the accuracy, therefore, one has to consider as high value of
the offset W as possible. Another option is to optimize the
time dependencies of ε(t ) and z0(t ).

C. Painting comb potentials

Now we turn to the case of potentials with L ∼ σ , when
the functions ε(t ) and z0(t ) vary on a short-time scale σT/λ.
Unfortunately, with a potential V (z) of this type, Eq. (6) for
ε(t ) and z0(t ) cannot be solved explicitly, except for special
cases. One of them is a periodic comb potential made of
peaks with a width ∼σ separated by a distance a = λ/(2M ),
where M > 1 is an integer, which we consider below, see
Fig. 3(a) for M = 3. This potential is an analog of a comb
potential from Refs. [3,5] but with a shorter lattice spacing. A
possible solution is given by protocol III which corresponds
to a sequence of stroboscopic “flashes” of the potential Vna

during the stroboscopic period T , with some spatial shift of
Vna from flash to flash; see Fig. 3(b). Due to the fact that the
potential Vna(z) has a twice shorter period than the original
Hamiltonian, a specific realization of this protocol depends on
the parity of M. For an odd M, it is sufficient to have M flashes
of Vna per stroboscopic period, and from flash to flash the
potential Vna should be shifted by the distance 2a = λ/M. The
details of this procedure are presented in Fig. 3(c). The upper
panel shows the time dependence of the height of the potential
Vna: It first increases from 0 (this formally corresponds to
ε = ∞, or �c = 0) to its maximal value ER/ε2

0 during time
τs, then remains constant for the time τh, and finally decreases

FIG. 3. A comb potential with M = 3 peaks per length λ/2
(a) and a “flashing” steps for its painting (protocol III) in (b), see text.
Panel (c) shows functions ER/ε2(t ) and z̄(t ) used for this protocol.

back to 0 during time τs. When the potential Vna stays close
to zero, the function z0(t ) rapidly increases its value by the
amount λ/M = 2a, see lower panel in Fig. 3(c), and then the
process repeats. For an even M, one needs 2M flashes of Vna

per stroboscopic period, and from flash to flash the potential
Vna should be shifted by the distance a = λ/(2M ).

Assuming the potential Vna being switched on or off lin-
early in time τs, we obtain from Eq. (6) that the generated
potential V̄ consists of equidistant peaks of the height

max V̄ (z) = 1

M

ER

ε2
0

α, α = τh + τs

τh + 2τs
< 1, (13)

and the width ε0λ/2π , separated by the distance a = λ/2M;
see Fig. 3(a). Being compared to the potential Vna(z), the
resulting potential V̄ (z) has M times shorter spatial period,
the potential peaks in V̄ (z) have the same width as in Vna(z),
but their height is M times smaller (for τs → 0). The above
conclusions are practically independent on how one switches
on or off the potential during the time τs; a different choice
results in small variations of the form of V̄ (z) and the value of
max V̄ (z). In the next section we present a detailed quantum-
mechanical Floquet analysis of the above schemes, illustrated
by examples of both smooth and comb potentials with a three
times shorter spatial period than that of Vna (M = 3).

III. FLOQUET ANALYSIS AND BAND STRUCTURE

In this section we perform a complete Floquet analysis
of the time-periodic three-level Hamiltonian H (z, t ) [see (1)]
to manifest the role of the bright states in the � system, to
establish the limits of validity of the simple approximation
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given by Eqs. (4) and (6), and to find corrections to them.
Following the previous discussion, we consider the control
Rabi frequency of the form �c(z, t ) = �c(t ) sin k[z − z0(t )],
where �c(t ) is periodic with the period T = 2π/ω. As a
result, the Hamiltonian H (z, t ) takes the form

H (z, t ) = − h̄2

2ma
∂2

z + h̄

⎛
⎝ 0 �c(z, t )/2 0

�c(z, t )/2 −� − i�/2 �p/2
0 �p/2 0

⎞
⎠

(14)

and is periodic in space and time, H (z, t ) = H (z + λ, t ) =
H (z, t + T ). The solutions of the Schrödinger equation

ih̄
∂

∂t
ψ (z, t ) = H (z, t )ψ (z, t ) (15)

for the three-component wave function ψ (z, t )={ψg1 (z, t ),
ψe(z, t ), ψg2 (z, t )} which defines the state of the system

|ψ (z, t )〉 =ψg1 (z, t ) |g1〉 +ψe(z, t ) |e〉 +ψg2 (z, t ) |g2〉 (16)

can be taken in the Bloch-Floquet form:

ψq,n,k (z, t ) = eiqze−iεq,n,kt/h̄uq,n,k (z, t ), (17)

where q ∈ [−π/λ, π/λ] and εq,n,k ∈ [−h̄ω/2, h̄ω/2) are
the quasimomentum and the quasienergy, respectively, and
uq,n,k (z, t ) is a periodic function both in space and in time,
uq,n,k (z + λ, t ) = uq,n,k (z, t + T ) = uq,n,k (z, t ). Here n refers
to the Bloch (spatial) band index and k to the Floquet (tem-
poral) one. Formally, the quasienergies and the corresponding
functions uq,n,k (z, t ) can be found by solving the eigenvalue
problem

Hq(z, t )uq,n,k (z, t ) = εq,n,kuq,n,k (z, t ) (18)

with the Bloch-Floquet Hamiltonian

Hq(z, t ) = Hq(z, t ) − ih̄∂t , (19)

where

Hq(z, t ) = e−iqzH (z, t )eiqz = − h̄2

2ma
(∂z + iq)2 + H�(z, t ).

(20)
After performing the Fourier transform in time,

uq,n,k (z, t ) =
∞∑

m=−∞
u(m)

q,n,k (z)eimωt , (21)

we can reformulate the eigenvalue problem (18) as a standard
eigenvalue problem,

Ĥquq,n,k = εq,n,kuq,n,k, (22)

for the eigenvectors uq,n,k = {u(m)
q,n,k (z)} and the Hamiltonian

Ĥq:

Ĥq=

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . H1,q H2,q H3,q H4,q

H−1,q −ω + H0,q H1,q H2,q H3,q

H−2,q H−1,q H0,q H1,q H2,q

H−3,q H−2,q H−1,q ω + H0,q H1,q

H−4,q H−3,q H−2,q H−1,q
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(23)

where the operators Hn,q originate from the expansion
Hq(z, t ) = ∑

s eiωst Hs,q(z).
A version of this approach, which is convenient when

the driving frequency ω is small compared to the gap ∼�p

between the dark and the bright states and, therefore, when
the dark and the bright channels are only weakly coupled, can
be formulated in terms of the instantaneous dark and bright
eigenstates {|D(z, t )〉 , |B+(z, t )〉 , |B−(z, t )〉} of the atomic
part Hamiltonian (14); see Appendix A for details. Namely,
if we write the state of the system in the form

|ψ (z, t )〉 = ψ (d )(z, t ) |D(z, t )〉 + ψ (+)(z, t ) |B+(z, t )〉
+ψ (−)(z, t ) |B−(z, t )〉 , (24)

the Schrödinger equation for the three-component wave func-
tion ψ̃ (z, t ) = {ψ (d )(z, t ), ψ (+)(z, t ), ψ (−)(z, t )} reads

ih̄
∂

∂t
ψ̃ (z, t )

=
[
− h̄2

2ma
[∂z + Â(z, t )]2 + h̄Ê (z, t ) − ih̄Ât (z, t )

]
ψ̃ (z, t ),

(25)

where Â and Ât are matrices of the spatial and temporal con-
nections, respectively, (Â)αβ = 〈α(z, t )| ∂z |β(z, t )〉, (Ât )αβ =
〈α(z, t )| ∂t |β(z, t )〉 with α, β = D, B±, and Ê (z, t ) =
diag[0, E+(z, t ), E−(z, t )] (see Appendix A). The last term
in the above equation introduces an extra coupling ih̄Ât

between the dark and the bright channels, in addition to
the coupling −(h̄2/ma)(Â∂z + ∂zÂ) from the expansion of
the kinetic-energy term. Another term in this expansion,
−(h̄2/2ma)Â2, gives the nonadiabatic potential Vna(z, t )
in the dark channel. With the ansatz (17) for the wave
function ψ̃ (z, t ), we then end up with the standard eigenvalue
problem (22), (23) with the blocks Hs,q(z) being now
determined by the Hamiltonian

H̃q(z, t ) = − h̄2

2ma
[∂z + iq + Â(z, t )]2 + h̄Ê (z, t ) − ih̄Ât (z, t )

=
∑

s

eiωst Hs,q(z). (26)

In the following analysis of the stroboscopic potential
painting, we apply both versions of this general scheme.
In Sec. IV we approach the problem from the side of low
stroboscopic frequencies ω when couplings between the dark
and the bright channels can be ignored. The approach based on
the state representation (24) with the Hamiltonian (26) is then
more convenient, because it allows straightforward reduction
of the problem to the dark channel only and makes numerical
simulations simpler. We establish the lower bound ω1 on
ω, above which the approach based on the time-averaged
potential becomes adequate. In Sec. V, we consider higher
stroboscopic frequencies ω and, using the approach (16), (20),
analyze the effects of the bright states on low-energy eigen-
states in the dark channel, as well as establish the upper bound
ω2 on ω, above which the stroboscopic dynamics strongly
mixes the dark and the bright channels.
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IV. DARK STATE REGIME

We first consider the case when the stroboscopic frequency
ω is much smaller that the energy gap to the bright states in
the atomic � system, such that the dynamics occurs entirely
within the dark state and the couplings to the bright states can
be ignored. We can therefore keep only the dark state part in
the decomposition (24) and in Eq. (25). Within the ansatz (17)
for the dark state wave function, the term Hq in the Bloch-
Floquet Hamiltonian, Eq. (19), then reads

Hq(z, t ) = − h̄2

2ma
(∂z + iq)2 + Vna[ε(t ), z − z0(t )], (27)

where ε(t ) and z0(t ) correspond to the chosen stroboscopic
protocol.

A time averaging of Hq(z, t ) over the stroboscopic period
gives the operator H0,q(z) that appears on the diagonal
in Eq. (23). We note that the operator H0,q contains the
time-averaged potential V̄ (z) which is periodic and, therefore,
the equation H0,q(z)uq,n(z) = ε (0)

q,nuq,n(z) determines the
eigenenergies of the Bloch states in the potential V̄ (z) for a
given quasimomentum q, where n is the Bloch band index.
For a potential V̄ (z) which has an M times shorter period
a = λ/(2M ) than Vna.(z), the Brillouin zone q ∈
[−π/a, π/a] = [−kM, kM] ≡ BZM is 2M times larger than
the Brillouin zone q ∈ [−π/λ, π/λ] = [−k/2, k/2] ≡ BZ
for solutions of Eq. (18), which are λ periodic. The two
Brillouin zones can be mapped onto each other by introducing
a subband index n′ = 0, 1, . . . , 2M according to the rule
q = q + πn′sgn(q)/λ = q + kn′sgn(q)/2, where q ∈ BZM

and q ∈ BZ. Figure 4(a) shows an example of such mapping
for the quasienergy εq,0,0 in the lowest (n = 0 and k = 0)
Bloch-Floquet band obtained by using protocol III for the
comb potential with M = 3.

When one neglects the off-diagonal blocks in the Hamil-
tonian (23), the quasienergies will simply be ε (0)

q,n,m = ε (0)
q,n +

h̄ωm. Nondiagonal blocks Hm,q, m = 0 couple the bare states
in different Floquet and Bloch bands via the matrix elements
(Hm,q )n1n2 . This coupling is essential when the two coupled
level are close in energy, ε (0)

q,n1,m1
≈ ε (0)

q,n2,m2
+ h̄ωm, and results

in the avoiding crossing with the gap �E = 2|(Hm,q0 )n1n2 |,
where q0 corresponds to the resonance, ε (0)

q0,n1,m1
= ε (0)

q0,n2,m2
+

h̄ωm. For low-energy bands ε
(0)
q,n,0 = ε (0)

q,n of H0,q (with small
n), a level ε (0)

n1,q with n1 ∼ 1 can be significantly coupled to the
level ε (0)

q,n2,m = ε (0)
n2,q + mωh̄ provided |ε (0)

n1,q − ε (0)
n2,q − h̄ωm| �

|(Hm,q)n1n2 |. In the considered case of a large driving fre-
quency h̄ω � ER, this takes place for m < 0 and n2 ∼√

mh̄ω/ER � 1, meaning the coupling to the states in the high
bands where ε (0)

q,n generically changes rapidly with q. As a re-
sult, the range δq of the quasimomentum where the coupling is
important can be estimated as δq ∼ (Hm,q )n1n2/vn2 (q), where
vn2 (q) = dε (0)

n2,q/dq is the group velocity in the band ε (0)
n2,q

at the resonant quasimomentum. Keeping in mind that the
matrix elements (Hm,q )n1n2 decay fast with |n2 − n1| ∼ √

ω,
we conclude that the low-energy part of the coupled band
structure is given by the bands of V̄ with avoided crossings
whose widths decay with ω; see Fig. 4.

To support this picture, we performed numerical simu-
lations of the the Floquet problem for all three protocols
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FIG. 4. Panel (a) shows the lowest band for the potential
V̄ (z) with ε0 = 1/15 (see text) in the full Brillouin zone BZM =
[−2Mπ/λ, 2Mπ/λ] (left) and in the folded Brillouin zone (right).
The lowest band for driving frequencies h̄ω/(2πER) = 50 (b), 250
(c), and 5000 (d), with visible avoided crossings for the smallest and
for the intermediate ω. The dependence of the quasienergies εq,0,0 for
q̄ = 0, π/3λ, . . . , 5π/3λ (q = 0 in the folded picture) on the driving
frequency ω for the comb potential painted with protocol III (e), and
for the smooth potential from Eq. (11) painted with protocols I (f) and
II (g) (see text). Panel (h) shows the maximal width of the avoided
crossing �E in the lowest band as a function of ω: Black crosses
are for protocol III, red squares and blue triangles for protocols I
and II, respectively. The parameters are the same as in (e)–(g).
Panel (i) compares the dependence of the size �E of the avoided
crossings on the height of the potential, which is encoded in the
ratio of the lowest band gap �E12 and the width of the lowest band
�E1, for different protocols (see text). Triangles refer to protocol I
(solid line for ω = 2π×22ER/h̄ and dashed for ω = 2π×13ER/h̄),
rectangles to protocol II (solid for ω = 2π×62.5ER/h̄, dashed for
ω = 2π×22.7ER/h̄, and dash-dotted for ω = 2π×16.1ER/h̄), and
crosses to protocol III (solid for ω = 2π×910ER/h̄ and dashed for
ω = 2π×161ER/h̄).
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considered above. For this purpose we truncate the matrix in
Eq. (23) up to |m| � 10 and |nz| < 300 spatial Fourier com-
ponents in the decomposition of the eigenvectors uq,n,k (z) =∑

nz
uq,n,k (nz ) exp(iknzz) (we have checked that increasing

these cutoffs to larger values does not change the results), and
use the SciPy Python library [14] to compute the eigenvalues.
Figures 4(b)–4(d) show the results for the quasienergy εq,0,0 in
the first Bloch-Floquet band (in the folded Brillouin-zone pic-
ture) for the comb potential with ε0 = 1/15 and M = 3, calcu-
lated using protocol III (see details in Appendix B) for driving
frequencies h̄ω/ER = 2π×50, 2π×250, and 2π×5000, re-
spectively. For the smallest driving frequency, the couplings to
high bands disrupt the band structure almost completely. With
increasing the driving frequency to the intermediate value, the
effect of the couplings decreases drastically but is still visible,
and for the largest ω the lowest band looks practically perfect,
with only a few extremely narrow avoided crossing regions
(see however the discussion of the effects of the couplings
to the bright states in Sec. V). The calculated parameters of
the low-energy band structure in this case are max V̄ (z) =
63ER, bandwidth of the lowest band of �E1 ≈ 5.3ER, and the
band gap to the next band �E12 ≈ 8.7ER, such that �E12/

�E1 ≈ 1.64.
The band structures calculated for the potential in Eq. (11)

with M = 3 painted by using protocols I and II show the
same features with only some minor quantitative differences.
To compare different protocols, we chose the value of the
amplitude V in Eq. (11) to be V = 17.2ER for protocol I and
V = 18.2ER for protocol II (W = 3ER in both cases). With
these values, for both protocols we obtain �E1 = 5.3ER for
the width of the lowest band and �E12 = 8.8ER for the gap be-
tween the lowest bands, such that the ratio �E12/�E1≈1.66
is almost the same as in the above case of the comb potential
with M = 3 painted with protocol III.

The results of the three protocols are compared in
Figs. 4(e)–4(g) where we present the dependence of the
lowest band quasienergy εq,0,0 for the quasimomenta q̄ = 0,

π/3λ, . . . , 5π/3λ (corresponding to the folded quasimomen-
tum q = 0) on the driving frequency ω for protocols III, I,
and II, respectively. For each ω we have six values of εq,0,0

immersed in the background of the quasienergies from other
Floquet bands, which show a complicated avoided crossing
structure for small ω but form a continuous lines (two middle
ones are double degenerate) when ω increases and the descrip-
tion in terms of the averaged potential V̄ (z) becomes accurate.
We see that in the case of the comb potential [Fig. 4(e)], the
region of significant avoided crossings extends to much high
driving frequencies as compared to the cases of the smooth
potential [Figs. 4(f) and 4(g)]. This is a result of a much slower
decay of the Fourier components, both in frequency and in
momentum spaces, of the Vna(z, t ) in this case.

To compare the avoided crossings for different protocols
quantitatively, we consider those values of ω when the avoided
crossing takes place for q̄ = 0 (at the bottom of the Bloch
band). The corresponding avoided crossing gaps �E for these
values of ω are plotted in Fig. 4(h) for all three protocols,
showing that the gaps �E for the smooth protocols I and II
are generically much smaller than that for protocol III, and
vanishes much faster with increasing ω. In Fig. 4(i) we present

for several values of ω and different painting protocols the
dependence of the maximal �E across the lowest band on the
ratio �E12/�E1 which is mostly determined by the height of
the painted potential. To obtain this dependence, we scan the
parameters used for painting (ε0 for protocol III and both V
and W for protocols I and II) such that the painted potentials
have band structures with the ratio �E12/�E1 in the range
1–20. The values of the stroboscopic frequency ω are chosen
in the range where the values of �E are between a fraction of
ER and a few ER. For the smooth protocols I and II this results
in the values of ω between 2π×13ER/h̄ and 2π×67.5ER/h̄,
and between 2π×161ER/h̄ and 2π×552ER/h̄ for potential
III. Again we see that the painting of a comb potential is
generically much more demanding to the value of the strobo-
scopic frequency ω, in order to produce the lowest band of the
same “quality.” Note that the growth of �E with �E12/�E1

for a fixed ω, which is clearly seen in Fig. 4(i), is mostly
related to the increase of the coupling matrix element (H1,q )0n2

which couples the lowest Bloch band with the high ones.

V. BRIGHT STATES’ EFFECTS

From the results of the previous section we see that the
stroboscopic approach in the single-channel (dark-state) ap-
proximation becomes increasingly accurate with increasing
the driving frequency ω. However, one would expect that for
ω of the order of the gap between the dark and the bright states
(actually, much earlier due to higher Fourier components;
see below), couplings to the bright states become important
and, therefore, the single-channel approach of the previous
section fails. Another effect of the bright states which shows
up before the driving frequency becomes comparable to the
gap is the appearance of significant imaginary parts for the
quasienergies in the lowest dark-state band in the regions
of avoided crossing. These imaginary parts are much larger
than one would expect on the basis of the direct coupling
between the states in the lowest dark-state band and the bright
states [3]. They originate from the large imaginary parts for
the quasienergies of the states in the high-energy dark-state
band (having much higher energy, they are stronger coupled
to the bright states) which strongly coupled to the states in the
lowest dark-state band in the avoided crossing regions.

To take the bright states into account, we consider the
Floquet problem with the Hamiltonian (23), where the Floquet
blocks Hs,q(z) are determined by the full Hamiltonian (14).
For our numerical calculations we consider the cases of a
smooth and of a comb potential, both with the spatial period
λ/6 (M = 3). The smooth potential is taken in the form (11)
with W = 3ER and V = 15ER, and for its painting we use
protocol II with ε0 = 0.06. In painting the comb potential
according to protocol III, we take ε0 = 0.2 (see below) and
fix the maximal value of �c(z, t ) to 2×106ER/h̄ (see also
Appendix B) which corresponds to �p = 4×105ER/h̄.

The Floquet-Bloch Hamiltonian Ĥq, Eq. (23), is truncated
to |m| � 300 and |nk| < 300 (we get similar results with
twice larger cutoffs), and in calculating its matrix elements
we use two-dimensional (2D) discrete Fourier transform and
keep only terms which are larger than 10−6 maxi, j |(Hq)i, j |.
This gives ∼100 nonzero entries per row for protocol II and
604 for protocol III in the 1 083 603×1 083 603 matrix. By
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(a)

(b)

FIG. 5. Low-energy Bloch-Floquet eigenenergies calculated us-
ing Eqs. (23) and (14) for the smooth potential Eq. (11) with
W = 3ER and V = 15ER, painted using protocol II. Panel (a) shows
real part Reεq,0,0 of the quasienergies, with black dots used for
the states in the lowest Bloch-Floquet band and gray dots for all
others. In panel (b) we indicate also the imaginary part Imεq,0,0

of the quasienergies in the lowest band by the shaded region with
boundaries Reεq,0,0 ± Imεq,0,0. The data in both panels are for ω =
2π×30ER/h̄ and �c = 2×106ER (ε0 = 0.06). The width of the
excited atomic state |e〉 is � = 300ER.

using Sparse diagonalization routines from Python’s SciPy
library [14], we extract 30 eigenvalues which are the closest
to the lowest dark-state band in the m = 0 Floquet block.

Figure 5(a) shows the real parts of the quasienergies in
the lowest band for the case of the smooth potential painted
with the driving frequency ω = 2π×30ER/h̄ which is well
below the gap �p/2 = 6.7×104ER/h̄ to the bright state, such
that direct couplings between dark states in the lowest band
and bright states are very small. We see a well-defined band
with few avoided crossings due to couplings to the states in
the high dark-state bands. This band is immersed into the
background of other quasienergies which we plot only if the
corresponding eigenstates have an overlap of more than 0.7
with the eigenstates ψ

(d )
q,n,0 calculated for the dark channel

only (see previous section) in the limit ω → ∞ (with the time
averaged potential). In Fig. 5(b) we show the corresponding
imaginary part which is generically very small due to small
couplings to the bright states (see [3,5]), except for several
regions with avoided crossings. As it was pointed out before,
these large imaginary parts are due to large imaginary parts
of the admixed high-energy dark states from different Floquet
blocks, which are strongly coupled to decaying bright states.

In Fig. 6 we present the quasienergies for q = 0 as a func-
tion of driving frequency ω for the smooth case with protocol
II [panels (a) and (b)] and for the comb case with protocol
III [panel (c)]. The black points mark quasienergies in the
lowest Floquet block, which correspond to the eigenstates
with an overlap of at least 0.99 with the dark channel eigen-
states ψ

(d )
q,n,0. Other quasienergies are gray points and form a

background. In the region of small ω, we recover the same
behavior as in Figs. 4(e)–4(g) with formation of a well-defined
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FIG. 6. Low-energy Bloch-Floquet eigenenergies for quasimo-
menta q̄ = 0, π/3λ, . . . , 5π/3λ (q = 0 in the folded picture) as a
function of the driving frequency ω, calculated on the basis of
Eqs. (23) and (25) (see text). Panels (a) and (b) show real parts of
the quasienergies when protocol II is used with �c = 2×106ER/h̄
and �c = 1.5×106ER/h̄, respectively (ε0 = 0.06 in both cases) for
painting the smooth potential given by Eq. (11) with W = 3ER, V =
15ER, and M = 3. Panel (c) is for the comb potential with M = 3
painted with protocol III when ε0 = 0.2 and maxz�c = 2×106ER/h̄,
where we also indicate the imaginary parts for the states in the
lowest Bloch-Floquet band by the shaded region with boundaries
Reεq,0,0 ± Imεq,0,0, calculated for � = 300ER.

dark-state Bloch band for the driving frequencies ω larger
than some typical value ω1. For the entire system, however,
with increasing ω, the dark-state band structure terminates at
some value ω2 due to strong coupling to the bright states,
when also substantial imaginary parts appear [see Fig. 6(c);
similar behavior is also present for the cases in panels (a)
and (b) but is not shown]. The value of ω2 is related to the
gap �p/2 as it is demonstrated in Figs. 6(a) and 6(b) which
corresponds to the same ε0 = 0.06 but different �c and, there-
fore, different �p: �p = 1.2×105ER/h̄ for �c = 2×106ER/h̄
and �p = 9×104ER/h̄ for �c = 1.5×106ER/h̄, respectively.
Note, however, that ω2 is typically two orders of magnitude
smaller than the gap �p/2, indicating the importance of higher
Fourier components mω in the couplings to the bright states.
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We mention also that in the case of protocol III, Fig. 5(c),
the chosen value ε0 = 0.2 results in a rather shallow comb
potential with the height ∼7ER. This, together with rapid
change of �c(z, t ) in time and space and, hence, the presence
of high Fourier components, results in a stronger coupling to
the bright states for this protocol. Note that, if for protocol
III we decrease ε0 without increasing maxz�c(z), the result
will be the decrease of the gap �p/2 to the bright states,
and, as a consequence, the destruction of the low-energy
bands in the dark channel. Taking smaller values of ε0 would
therefore require considering much high values of �c which
is problematic for numerical simulations.

The above examples show that the stroboscopic painting
of a smooth potential requires less restrictive conditions on
the Rabi frequencies �c and �p to ensure the existence of an
intermediate driving frequency regime where the description
based on the dark-state channel with a time-averaged potential
is legitimate. This is, of course, related to the fact that the
smoother the function, the faster high Fourier components
decay. Therefore, for a rapidly varying potential one needs a
much larger gap to the bright states, as compared to a smooth
potential, in order to minimize their effect on the low-energy
states in the dark channel.

VI. BLOCH OSCILLATIONS

As we have seen in the previous section, the low-energy
band structure of the painted potentials has a number of
avoided crossings due to coupling to states in high-energy
bands. For an evolving state in the lowest band, these avoided
crossings result in a “leakage” into higher-energy states each
time the evolving state passes through them. Intuitively, the
faster the speed at which the state passes through the avoided
crossing, the smaller the fraction transferred into the higher
bands. On the other hand, applying too strong forces in order
to speed up the dynamics can also introduce transitions into
higher bands. We address these effects below by considering
Bloch oscillations in the lowest band. Our consideration will
be limited to the dark-state channel, and the effects of the
bright states will be discussed at the end of the section.

To initiate the Bloch oscillations, we apply a constant force
F which corresponds to a linear potential −Fz added to the
Hamiltonian. This force results in an evolution of the quasi-
momentum q(t ) = qi + Ft/h̄ which, starting from an initial
value qi, winds around the Brillouin zone after the Bloch oscil-
lation period τB, q(τB) = qi + 2π/λ with τB = 2π h̄/(Fλ) =
h̄k/F . As an initial state |ψi〉 we take a state with a quasi-
momentum qi in the lowest Bloch-Floquet band, and apply
the the time-evolution operator T exp [i/h̄

∫
(Hq(t ) − Fz)dt]

during time τB with Hq from Eq. (27). The resulting final
states |ψ f 〉 of the system is then compared with the initial
one by calculating the fidelity F = |〈ψi|ψ f 〉|. The decrease
of F from its maximal value 1 determines the loss into higher
bands. For our numerical simulations we use protocol III to
paint a comb potential with M = 3 peaks per length a = λ/2
and ε0 = 1/15. We choose this protocol because it results in
the most prominent avoided-crossing structure in the lowest
band among the three considered protocols. The calculation
of the time evolution operator is performed by the Lanczos
algorithm implemented with adaptive time steps.

FIG. 7. The overlap of initial Bloch state ψi on the final state,
after one period of the Bloch oscillations. Panel (a) shows such
fidelity F = |〈ψi|ψ f 〉| in the case of evolution in tilted time-averaged
potential V̄ , i.e., no avoided crossings present, ω → ∞ limit in the
dark state channel. Drop of the fidelity for F̃ > F̃0 due to population
of higher Bloch bands. Panel (b) shows F computed for the dark state
Floquet Hamiltonian, for the comb potential ε0 = 2/30, N = 3 with
M = 5 Floquet blocks for several values of projection frequency ω.
For ω → ∞ limit from (a) is recovered. For finite ω the fidelity is
maximized for the moderate tilt of the lattice F̃ . For F̃ → 0 the state
follows adiabatically any avoided crossing, for F̃ → ∞ population
is spread to higher Bloch bands.

Let us first establish the upper bound on the force F .
For this purpose we consider the limit ω → ∞ when the
Hamiltonian Hq contains the time-averaged potential V̄ (z)
and no avoided crossings are present in the band structure.
Figure 7(a) shows the fidelity F for this case as a function
of the dimensionless force F̃ = F/(kER) = h̄/(τBER). We see
that the fidelity F shows a noticeable decrease for F̃ � F̃0 ∼ 1
due to interband transitions, when the change of the potential
energy caused by the force F over the lattice period, �E ∼
Fλ, becomes of the order of the gap between the lowest
and the next Bloch bands. We therefore obtain the condition
F < kER which sets the upper bound on the force F and
ensures the absence of the interband transitions in the case
of no avoided crossings.

For a finite stroboscopic frequency ω, we perform our cal-
culations using the Floquet scheme with the Hamiltonian (27).
In these calculations, for each set of parameters we chose an
initial quasimomentum qi to be far away from any avoided
crossing. The calculated dependence of the fidelity F on the
dimensionless force F̃ is shown in Fig. 7(b) for different ω.
As in Fig. 7(a), we see a decrease of F for F̃ > 1 for all
ω due to interband transitions. The behavior of the fidelity
for F̃ < 1 strongly depends on the the value of ω. For the
highest considered frequency ω = 2π×103ER/h̄, the fidelity
F remains very close to unity even for very small values of
the force F̃ , while we see a strong decrease of the fidelity with
decreasing F̃ for smaller values of ω. This behavior is related
to the ω dependence of the widths of the avoided crossing
regions, which grow with decreasing ω [see discussion in
Sec. IV and Fig. 4(h)]. As a result, the higher the stroboscopic
frequency ω, the more diabatic is the traverse through the
avoided crossing region for a given force F̃ .

A more quantitative picture can be obtained on the ba-
sis of the Landau-Zener expression for the probability of
nonadiabatic passage during a linear sweep through a single
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avoided crossing [15],

P = exp(−2π�), � = |�E/2|2
αh̄

, (28)

where �E is the minimal energy difference (twice the cou-
pling matrix element) in the avoided crossing and α is the
speed with which the energy difference between the crossing
levels changes during the sweep. To estimate α we assume
that the avoided crossing takes place at some quasimomentum
q∗, when two states, one in the lowest band (n = 0) and one
in the high-energy band (n1 � 1), are at resonance, ε

(0)
q∗,n1,0

−
ε

(0)
q∗,0,0 = h̄ω, where we consider the Floquet resonance with

m = 1 because it results in the strongest coupling matrix
element. For the dispersion ε

(0)
q,n1,0

in the high-energy band we

can assume a quadratic in form ε
(0)
q,n1,0

≈ h̄2(q + 2kMn1)2/2m
and, therefore, for the group velocity at q = q∗ we obtain
vn1 (q∗) = dεq∗,n1,0/dq ≈ h̄

√
2h̄ω/m. As a result, the energy

difference between the crossing levels during the sweep can
be written as �ε(q) = ε

(0)
q,n1,0

− ε
(0)
q,0,0 − h̄ω ≈ ε

(0)
q,n1,0

− h̄ω ≈
vn1 (q∗)(q − q∗) for q ≈ q∗, and for the speed α we obtain
α = vn1 (q∗)F/h̄ = F

√
2h̄ω/m. The expression for � can now

be written in the form

� = |�E |2
h̄F

√
2h̄ω/m

=
∣∣∣∣ (H1,q∗ )0,n1

ER

∣∣∣∣
2 1

2F̃
√

h̄ω/ER
, (29)

and we see that a substantial adiabatic passage through the
avoided crossing and, therefore, strong loss into high bands,
occurs when F̃ � f̃0 ∼ [(H1,q∗ )0,n1/ER]2√ER/h̄ω. The value
of f̃0 decreases rapidly with increasing ω, also due to the
decrease of the coupling matrix element (H1,q∗ )0,n1 for large
n1 ∼ √

ω, in accordance with Fig. 7(b).
Let us now briefly discuss the effects of the bright channels.

It is clear that the above consideration of the Bloch oscillations
makes sense only when the couplings to the bright channels
are small such that the dark-channel low-energy bands are
well defined, that is for ω much less than the gap to the bright
states. In this case, the effect of the bright states can be taken
into account by introducing an effective overall decay rate
�eff (ω) which is an averaged (over the Brillouin zone) decay
rate of the states in the lowest-energy Bloch band in the dark
channel; see Fig. 5(b). The fidelity F gets then an extra factor
exp[−�eff (ω)τB] reflecting a finite lifetime of the states in the
dark channel. Note that the quantity �eff (ω) can be computed
within the three-channel calculations from Sec. V, similar to
the approach used in [5] for describing an effective loss rate
in the experiments with a static comb potential implemented
using an atomic � scheme.

VII. LOADING PROTOCOL

We now describe protocols for loading atoms into the
lowest band of a painted potential. We consider a smooth
and a comb potential painted with protocols II and III, re-
spectively, both with M = 3. In both cases we start with an
atom described by the Hamiltonian (2) with �c=0 but �p =0
in the presence of an additional far-off-resonance optical
potential

VL(z) = V0 cos2(kz), (30)

(a)

(b)

(c)

FIG. 8. Steps of the protocol for loading an atom into the low-
est band of the time-averaged potential V̄ (z) from Eq. (11). Each
panel shows the time-averaged potential on the left part and the
corresponding band structure on the right part. Panel (a) shows the
beginning of the loading, when the atom is in the lowest band of
the auxiliary time-independent optical lattice potential VL (z), and
also the end of the first step if all plots are shifted up in energy
by W . During the second step we slowly switch VL (z) off together
with switching on the amplitude V in the painted potential. An
intermediate moment of the second step is presented in (b), and the
final moment in (c) (see text).

which is assumed to act equally on all three atomic states
involved in the � scheme (in our calculations we use the
value V0 = 10ER). Initially, the atom is in the dark state
|D(z, t )〉 = |g1〉 and its motional state is in the lowest Bloch
band of the potential VL(z). Note that Vna = 0 in this � scheme
configuration. Another important thing to keep in mind is that
the probe Rabi frequency �p remain constant during the entire
loading procedure, providing a nonzero gap between the dark
and the bright channels.

Let us first discuss a two-step loading into the smooth
potential VW (z), Eq. (11), with M=3, V =15ER, and W =3ER,
painted with protocol II; see Sec. II B. The initial potential
VL(z) and the corresponding three lowest Bloch bands are
shown in Fig. 8(a). In a first step, we gradually increase
the amplitude �c of the “moving” control Rabi frequency
�c sin{k[z − z0(t )]} with z0(t ) = v0t = λt/T to the value
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(a)

(b)

(c)

(d)

FIG. 9. Loading protocol for painted comb potential. Each panel
shows the time-averaged potential V̄ (z) in the left upper part, the time
dependence of the Rabi frequencies �p and �c in the left lower part,
and the lowest energy bands of V̄ (z) in the right part. Panel (a) cor-
responds the end of the first step when the auxiliary optical potential
VL (z) is switched off and the control Rabi frequency in the form of a
standing wave �0

c (z) = �0
c sin(kz) with time-independent amplitude

�(0)
c is on. In (b) we present the end of the second step when the time-

dependent amplitude �c,1(t ) of the control Rabi frequency generates
only the first flash in the sequence of flashes in the painting proto-
col III. Panels (c) and (d) show some intermediate and final moments
of step 3, respectively. During this step we gradually recover the
entire sequence of flashes of the painting protocol (see text).

�cW such that the painted part of the potential is equal to
the offset W of the desired potential VW (z). The total (av-
eraged) potential at this stage is V̄ (z) = VL(z) + W and the
corresponding band structures are similar to those in Fig. 8(a)
but shifted upwards in energy by W . In the second step,
we slowly decrease V0 to zero [say, as V0(t ) = V0(1 − t/τ )
with τ � T ] and increase �c to its final value �cV = �p/ε0

with ε0 = W + V/2 [say, �c(t ) = �cW (1 − t/τ ) + �cV t/τ ],
together with the corresponding adjustment of the velocity
dz0(t )/dt from v0 to v(z) from Eq. (6). The time-averaged
potential and the corresponding low-energy band structure at
some intermediate time and at the end (t = τ ) of this stage are
shown in Figs. 8(b) and 8(c), respectively. We see that during
this loading protocol, the three lowest bands of the initial
potential VL(z) merge together and form the lowest band of the
final potential (11), while all other bands are kept separated by
a finite energy gap, ensuring the transfer of the atom into the
final lowest band.

The loading procedure into the painted comb potential is
similar and has three steps. First, as in Ref. [5], we slowly
decrease V0 to zero and simultaneously ramp up the con-
trol Rabi frequency to �0

c (z) = �0
c sin(kz) with �0

c = �p/ε0,
where ε0 determines the maximal value ER/ε2

0 of the Vna(z, t )
used for the painting; see Sec. II C. An atom which initially
was in the lowest band of V0(z) is now loaded into the lowest
band of the time-independent potential Vna(z), Eq. (4), with
z0 = 0; see Fig. 9(a). During the next step we gradually
introduce a periodic time dependence with period T = 2π/ω

of the control Rabi frequency, �0
c → �c,1(t ), where �c,1(t )

[see Fig. 9(b)] reproduces only the first flash in the painting
protocol as discussed in Sec. II C and shown in Fig. 3. At the
end of this step, the time averaged potential is simply Vna(z)
scaled down by a factor ≈1/M (≈1/3 in the considered case)
with the corresponding modification of the band structure. In
the final step we quickly switch on the motion of the potential
peaks z0(t ) according to protocol III, see Fig. 3(c), and then
adiabatically increase the amplitude of the “missing” M − 1
flashes in the painting protocol to their final value by changing
the time dependence of �c(t ) such that it acquires increasing
nonzero values during the times of missing flashes, �c,1(t ) →
�̃c(t ) = �c,1(t )(1 − t/τ ) + �c(t )t/τ with τ � T . [Note that
switching on z0(t ) at the beginning of this step does
not affect the potential Vna(z, t ) because z0(t ) = 0 when
�c,1(t ) = 0.] The corresponding time-averaged potentials
V̄ (z), time dependence of �c(t ), and the low-energy band
structures are presented in Figs. 9(c) and 9(d) during and at
the end of this step, respectively. As in the case of the loading
into the smooth potential, the three lowest energy bands of
V0(z) are merged into a single band of the painted potential
after the loading protocol, and all higher bands always kept
separated by a finite gap.

VIII. CONCLUDING REMARKS

We have demonstrated that the subwavelength high optical
potential peaks created within an atomic � system can be
used for stroboscopic painting of optical potentials which
changes on a subwavelength scale, both in a smooth or in a
sharp way. In contrast to usual stroboscopic engineering of
atomic Hamiltonians (see, for example, [11–13]), which be-
comes progressively accurate with increasing the stroboscopic
frequency ω, the usage of the atomic � scheme for generating
the subwavelength painting element introduces an upper limit
for the stroboscopic frequency, when bright states inevitable
present in the � scheme become strongly coupled to the
states in the dark channel during stroboscopic dynamics. As a
result, the choice of ω is a compromise between the accuracy
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of painting (as well as of the widths of avoided crossings)
and the involvement of the bright channels, which limits the
lifetime of the system. When drawing a smooth potential,
the range of available stroboscopic frequencies ω is generally
broader than for the rapidly changing potential because of
a faster decay of high frequency Fourier components of the
time-dependent drawing potential. In principle, the upper limit
on ω can be pushed to higher values by increasing the gap
(given by the control Rabi frequency �p) to the bright states,
but, to keep the same painting spatial resolution, this would
also require higher control Rabi frequencies �c which could
be very challenging in practice.

As a final remark, the proposed method can be used not
only for painting static potentials. One can also think of
generating slowly time varying potentials with subwavelength
resolution, and using them for manipulations of atomic sys-
tems. Examples of such manipulations could be splitting of
a potential well into two wells by raising a subwavelength
barrier, or merging two potential wells by decreasing the
barrier between them. As compared with the standard usage
(see, for example, [16–18]) of optical superlattices for such
operations, our method provides much more flexibility in
spatial design of the potential barriers and wells.

Note added in proof. We note that related and complemen-
tary work is being pursued by Subhankar et al. [19].
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APPENDIX A: BORN-OPPENHEIMER
DESCRIPTION OF � SYSTEM

In the rotating wave approximation, the single-particle
Hamiltonian describing one-dimensional motion of an atom
in the � configuration in Fig. 1 as discussed in the main text
has the form

H = Hkin + H�(z, t ) (A1)

= − h̄2

2ma
∂2

z + h̄

⎛
⎝ 0 �c(z, t )/2 0

�c(z, t )/2 −� − i�/2 �p/2
0 �p/2 0

⎞
⎠,

(A2)

where � indicates the detuning of both Rabi frequencies
�c and �p from the excited state |e〉 with loss rate � due
to spontaneous emission. In the Born-Oppenheimer (BO)
approximation, one neglects the kinetic energy such that the
right eigenvectors of H are determined by the atomic Hamil-
tonian H�, which are the position- and time-dependent dark
state [3] (we prefer to use here different notations),

|D(z, t )〉 = −�p|g1〉 + �c(z, t )|g2〉
E (z, t )

with zero eigenenergy, E (z, t ) =
√

�c(z, t )2 + �2
p, and two

bright states,

|B±(z, t )〉 = �c(z, t )|g1〉 + 2E±(z, t )|e〉 + �p|g2〉
E±(z, t )

,

where E±(z, t ) =
√

E (z, t )2 + 4E±(z, t )2 with local eigenen-
ergies

h̄E±(z, t ) = h̄

2
[−�̃ ±

√
�̃2 + E2(z, t )], �̃ = � + i�/2.

(A3)
The corresponding left eigenstates of H�, which form
a biorthogonal system with the above right eigenstates,
〈α(z, t )|β(z, t )〉 = δαβ , are

〈D(z, t )| = −�p〈g1| + �c(z, t )〈g2|
E (z, t )

,

〈B±(z, t )| = �c(z, t )〈g1| + 2E±(z, t )〈e| + �p〈g2|
E±(z, t )

.

The BO local eigenbasis {|D(z, t )〉, |B+(z, t )〉, |B−(z, t )〉} ≡
{|α(z, t )〉} can be used for expansion of an arbitrary atomic
state, |ψ (z, t )〉 = ∑

α=D,B± ψ (α)(z, t )|α(z, t )〉, and the Hamil-
tonian for the wave functions {ψ (α)(z, t )}, obtained from
the Schrödinger equation ih̄∂t |ψ (z, t )〉 = H |ψ (z, t )〉 with the
Hamiltonian H from Eq. (A2), reads

HBO(z, t ) = − h̄2

2m
[∂z + Â(z, t )]2 + h̄Ê (z, t ) − ih̄Ât (z, t ),

(A4)
where the matrix Â(z, t ) has matrix elements Âαβ (z, t ) =
〈α(z, t )|∂z|β(z, t )〉, Ê (z, t ) is the diagonal matrix of BO
local eigenenergies, Ê (z, t ) = diag[0, E+(z, t ), E−(z, t )],
and the matrix elements of Ât (z, t ) are Ât,αβ (z, t ) =
〈α(z, t )|∂t |β(z, t )〉. Explicitly, the matrices Â(z, t ) and Ât (z, t )
are given by

Â(z, t )

= �p∂z�c(z, t )

E (z, t )

⎛
⎜⎝

0 −E −1
+ (z, t ) −E −1

− (z, t )

E −1
+ (z, t ) 0 D(z, t )

E −1
− (z, t ) −D(z, t ) 0

⎞
⎟⎠

and

Ât (z, t )

= �p∂t�c(z, t )

E (z, t )

⎛
⎜⎝

0 −E −1
+ (z, t ) −E −1

− (z, t )

E −1
+ (z, t ) 0 D(z, t )

E −1
− (z, t ) −D(z, t ) 0

⎞
⎟⎠

with

D(z, t ) = �c(z, t )

2�p

�̃

�̃2 + E2(z, t )
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The expressions for Â(z, t ) and Ât (z, t ) become substan-
tially simpler for �̃ = 0,

Â(z, t ) = �p∂z�c(z, t )√
2E (z, t )2

⎛
⎝0 −1 −1

1 0 0
1 0 0

⎞
⎠

and

Ât (z, t ) = �p∂t�c(z, t )√
2E (z, t )2

⎛
⎝0 −1 −1

1 0 0
1 0 0

⎞
⎠.

In the expansion of the kinetic energy term in Eq. (A4) in
powers of Â, the off-diagonal elements of Â and Â2, together
with Ât , define the nonadiabatic couplings between the dark
and the bright states, while the diagonal elements in Â2 give
rise to nonadiabatic potentials in the BO channels. For the
dark state this nonadiabatic potential is

Vna(z, t ) = h̄2

2m

{
�p∂z�c(z, t )

�2
p + [∂z�c(z, t )]2

}2

and takes the form of Eq. (4) in the main text with ε(t ) =
�p/�c(t ) and z0(t ) for �c(z, t ) = �c(t ) sin[k(z − z0(t )]. The
effects of the bright states on the atomic dynamics in the dark
state due to the nonadiabatic couplings can be decreased by
making larger gaps �EB± = minz |h̄E±(z)| between the BO
channels, which is achieved by increasing the values of the
Rabi frequencies. In this case, the dynamics of an atom in

the dark state is dominated by the time-averaged nonadiabatic
potential V̄ (z) from Eq. (6).

APPENDIX B: TIME DEPENDENCE
OF �c FOR PROTOCOL III

Here we specify the time dependence of the amplitude
�c(t ) of the control Rabi frequency we use in numerical
simulation for protocol III, which generates the time evolution
of the height of the potential peaks shown in Fig. 3(c).
Following this figure, the amplitude �c(t ) should be zero at
times t = 0, T/M, 2t/M, . . ., and in between these times it
increases to its maximal value �max.

c during time τs, stays
constant for time τh, and decreases back to zero during time
τs. For the elementary period t = [0, T/M], we define �c(t )
as �c(t ) = �max.

c f (t ) with the function f (t ) given by

f (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t ∈ [0, τh/2)
h(t ), t ∈ [τh/2, τh/2 + τs)
1, t ∈ [τh/2 + τs, 3τh/2+ τs)
h(3τh/2 + 2τs − t ), t ∈ [3τh/2+ τs, 3τh/2+ 2τs)
0, t ∈ [3τh/2 + 2τs, 2τh + 2τs)

,

(B1)

where

h(x) =

⎧⎪⎨
⎪⎩

0, x � 0
exp(−1/x)e2/2, x < 1/2
1 − exp[−1/(1 − x)]e2/2, 1/2 < x < 1
1, x � 1

.

This choice avoids discontinuities of �c(t ) and its derivatives
which lead to a slow decay of the matrix elements coupling
different Floquet blocks (as discussed in Sec. V).
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