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Dynamics of interacting dark soliton stripes
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In the present work we examine the statics and dynamics of multiple parallel dark soliton stripes in a
two-dimensional Bose-Einstein condensate. Our principal goal is to study the effect of the interaction between
the stripes on the transverse instability of the individual stripes. The cases of two-, three-, and four-stripe states
are studied in detail. We use a recently developed adiabatic invariant formulation to derive a quasianalytical
prediction for the stripe equilibrium position and for the Bogoliubov–de Gennes spectrum of excitations of
stationary stripes. We subsequently test our predictions against numerical simulations of the full two-dimensional
Gross-Pitaevskii equation. We find that the number of unstable eigenmodes increases as the number of stripes
increases due to (unstable) relative motions between the stripes. Their corresponding growth rates do not
significantly change, although for large chemical potentials, the larger the stripe number, the larger the maximal
instability growth rate. The instability induced dynamics of multiple stripe states and their decay into vortices
are also investigated.
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I. INTRODUCTION

The study of dark solitons has attracted considerable the-
oretical and experimental attention in various branches of
physics. Prominent examples include nonlinear optics [1]
and atomic Bose-Einstein condensates (BECs) [2,3], but also
mechanical [4] and electrical [5] dynamical lattices, magnetic
films [6], electromagnetic [7] and acoustic [8] metamaterials,
hydrodynamics [9], plasmas [10], nematic liquid crystals [11],
as well as other nonlocal media [12], dipolar atomic conden-
sates [13], and exciton-polariton condensates [14].

In the context of BECs, a number of experiments have
addressed diverse phenomena including the formation of
dark solitons by laser beams dragged through an elongated
BEC [15], their oscillations in the trap [16,17], their pairwise
interactions [17,18], as well as their transverse instability
in higher-dimensional settings and their concomitant decay
into vortices and vortex rings [19–22] (see the recent volume
[3] summarizing many of these phenomena). Furthermore, a
sizable literature has emerged in the topic of multicompo-
nent condensates, where one of the components assumes the
form of a dark soliton (see, e.g., the recent review [23] and
references therein). Regarding applications, matter-wave dark
solitons have been proposed for use in atomic matter-wave
interferometers [24] and as qubits in BECs [25].

*kevrekid@math.umass.edu
†wenlongcmp@gmail.com
‡http://nlds.sdsu.edu.

Generally, dark solitons are unstable against decay when
embedded in a higher dimensional space. The study of their
transverse (or “snaking”) instability has been of particular
significance since its theoretical inception [26] (see also the
review [27] and references therein). However, the instabilities
associated with the mutual interactions between multiple dark
solitons in a BEC have been only partly investigated; see, e.g.,
Ref. [18] for the quasi-one-dimensional setting, as well as
the recent work [28] for two- and three-dimensional settings.
Importantly, these works always considered the role of trap
induced confinement in the corresponding dimensionality of
the problem. In the higher-dimensional cases, examples of sta-
bility have been reported numerically for suitable parametric
regimes suppressing the snaking instability.

In the present work, we analytically and numerically char-
acterize the dynamics of up to four parallel dark solitons,
finding that while the number of unstable eigenmodes in-
creases as the number of stripes increases, their corresponding
growth rates do not significantly change; nevertheless for large
chemical potentials the rates are found to increase with the
stripe number. Progress on this front is especially relevant
in experimental settings that involve solitons produced in the
merging or collisions of BECs [29], the interaction of multiple
dark solitons [17,18,20,21], or the decay of multiple dark
solitons as a generator of vortices [19] and two-dimensional
(2D) quantum turbulence [30] in BECs as well as in optics
[31]. The subject of dark soliton decay also continues to
attract theoretical attention [32,33], including the possibility
of “engineering” avoidance of this instability [34].
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In recent work [35,36], we provided a framework for
addressing the transverse instability of a diverse array of
structures including dark soliton stripes, ring dark solitons
(extensively studied in optics [37–39] and BECs [40–43]),
and spherical shell solitons [37,44–46], as well as dark-bright
solitons in multicomponent BECs [23]. Our approach in the
present work involves extending this formulation to the case
of multisoliton settings. We seek to understand how the pres-
ence of a secondary stripe may affect the growth rate of a
transverse instability. To address this problem we combine the
adiabatic invariant (AI) of a single dark soliton stripe [36] with
the pairwise interaction between the stripes. This allows us
to identify the equilibrium states of the multiple stripes, and
more importantly the modes of linearization as per the well es-
tablished Bogolyubov–de Gennes (BdG) analysis, around the
solitonic multistripe solution. Finally, this formulation enables
an exploration of the fully nonlinear stage of the instability by
examining the filament partial differential equation (PDE) for
each of the relevant stripes. While the analytical framework
becomes rather complex as the number of stripes increases,
we explore the relevant instability numerically for larger stripe
numbers (such as 3 and 4).

Our presentation is structured as follows. In Sec. II we
provide the theoretical analysis of the case of two dark soliton
stripes, which we refer to as “two stripes.” In Sec. III, we
explore numerically the scenarios of two, three, and four
stripes and, where appropriate, compare with the semianalyt-
ical predictions of the filament theory. Finally, in Sec. IV, we
summarize our findings and present our conclusions, as well
as a number of directions for future work.

II. THEORETICAL ANALYSIS

The model under consideration is the normalized 2D
Gross-Pitaevskii equation (GPE), describing a condensate
confined in a highly oblate trap along the z axis of frequency
ωz [3]:

iut = − 1
2 (uxx + uyy) + |u|2u + V (x)u, (1)

where subscripts denote partial derivatives and u(x, y, t ) de-
notes the wave function. Here, the density |u|2, length, time,
and energy are respectively measured in units of 2

√
2πaaz,

az, ω−1
z , and h̄ωz, where a and az are, respectively, the s-

wave scattering length and harmonic oscillator length in the
z direction. The external potential is given by

V (x) = 1
2�2x2, (2)

which is independent of the transverse y direction, with � =
ωx/ωz being the trap’s aspect ratio. After this dimension
reduction, we carry out a subsequent scaling and consider
� = 1 (see Sec. III A for more details).

The model is supplemented with periodic boundary condi-
tions in the y direction. Equation (1), for V = 0, conserves the
Hamiltonian

H = 1

2

∫∫ ∞

−∞
[|ux|2 + |uy|2 + (|u|2 − μ)2]dx dy, (3)

where μ is the chemical potential. In the dimensionless form
of the GPE given here, we consider chemical potentials rang-
ing from the linear limit up to μ = 80 in the Thomas-Fermi

limit. This range is sufficient to address the chemical poten-
tial and atomic densities in typical experimental BECs; see
Ref. [3] for a detailed discussion on the translation between
dimensionless and dimensional units.

Let us first study the case of two dark soliton stripes. To
describe each stripe, we consider the following ansatz:

u = e−iμt [
√

μ − v2 tanh(
√

μ − v2(x − x0)) + iv], (4)

which is the functional form of the quasi-one-dimensional
dark soliton solution of Eq. (1), for V = 0, that extends
uniformly in the y direction. In the 2D setting under con-
sideration, Eq. (4) describes a one-dimensional dark soliton
stripe embedded in 2D space, characterized by its center
x0 and velocity v = x0t ≡ dx0/dt . In order to describe the
transverse instability-induced undulation of the stripe, we
assume that the center position x0 is not solely a function
of t , but also a function of the transverse variable y, i.e.,
x0 = x0(y, t ). We also wish to consider cases in which the
potential V (x) may be nonzero, which involves replacing μ

with μ − V (x0) (representing the effective, or local, chemical
potential where the dark soliton is sitting) in Eqs. (4) and
(3). Then, substituting the ansatz (4) into the Hamiltonian
(3), we obtain the following “effective energy” (an adiabatic
invariant) of the stripe:

E = 4

3

∫ ∞

−∞

(
1 + 1

2
x2

0y

)(
μ − V (x0) − x2

0t

)3/2
dy. (5)

Here, the transverse energy contribution (of the |uy|2 term)
has been accounted for through the term proportional to x2

0y.
For convenience, hereafter we use the following compact
notation:

A = μ − V (x0) − x2
0t , B = 1 + 1

2
x2

0y.

Earlier work on the interaction of dark solitons [47,48] in
one-dimensional (1D) settings, including relevant work in the
context of quasi-1D atomic BECs [17,18,49], has quantified
the interaction effect between dark solitons. Now, this inter-
action becomes a pointwise effect across the stripes, when the
interaction term is integrated along x, as per the variational
formulation of Ref. [48]. Thus the corresponding energy,
incorporated through its last term this interaction effect, reads

E = 2
∫ ∞

−∞

(
4

3
A3/2B − 8A3/2e−4A1/2x0

)
dy.

Here, we have used the symmetry of the two solitons, which
are assumed to be located at ±x0(y). This represents the
simplest possible scenario, where a single dynamical variable,
x0 (i.e., the symmetric position of the two solitons), can
adequately describe the dynamics of both. Nevertheless, it
should be pointed out that this scenario is of direct relevance to
experiments [17,18]. Due to the consideration of two solitons,
the energy of each individual soliton is doubled, hence the
factor of 2 in front of the integral.

We can now find the evolution of the two-stripe parameter
x0 from energy conservation, dE/dt = 0. Indeed, the relevant
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calculation leads to the following PDE for x0:

B

(
x0tt + V ′

2

)
+ A

3
x0yy

= V ′

2
x0

2
y + x0yx0t x0ty

− [(V ′ + 2x0tt )(−3 + 4A1/2x0) − 8A3/2]e−4A1/2x0 , (6)

where V ′ ≡ ∂V/∂x0. Hereafter, the above equation will be
called the “adiabatic invariant PDE” (AI PDE).

The next step is to examine the stationary states of this PDE
and their stability. As we know, there exists a homogeneous
(independent of y) solution corresponding to the two parallel
soliton stripes. Retrieving that, as well as its linearization,
yields information about the existence and stability of the
two-stripe state, and more specifically on how the presence of
a second stripe affects the transverse (in)stability of the first
one.

More specifically, we seek a symmetric pair of soliton
stripes with x0 independent of y that yields the following
algebraic (transcendental) equation for x0 (see, e.g., Ref. [18]
for a relevant analysis):

−V ′

2
= e−4A1/2

0 x0
[
V ′( − 3 + 4A1/2

0 x0
) − 8A3/2

0

]
, (7)

where A0 = μ − V (x0). Notice that results stemming from
Eq. (7) are expected to be more accurate in the framework of
the so-called particle approximation, whereby individual soli-
tons feature a particle-like nature; this situation corresponds
to the case of sufficiently large values of the chemical poten-
tial μ, the so-called Thomas-Fermi (TF) large density limit.
Thus, this step leads to the determination of the equilibrium
positions ±x(eq)

0 of the constituent stripe solitons forming the
stationary stripe pair. Then, the stability of x(eq)

0 can be studied
by introducing the ansatz

x0 = x(eq)
0 + εX1(t ) cos(kny),

with kn = nπ/Ly denoting the transverse perturbation wave
numbers and Ly being half the size of the computational
domain in the y direction; see below. Then, we linearize
with respect to the small-amplitude perturbation X1(t ), and
determine whether such a stationary stripe pair is robust under
transverse modulations or not. By doing so, we obtain a rather
elaborate expression that can be summarized as

RX1tt = −[
1
2V ′′(x0) − 1

3 k2
nA0 + S

]
X1.

Here, A0 = A(t = 0) and the coefficients R and S are given by

R = 1 + 2
( − 3 + 4A1/2

0 x0
)
e−4A1/2

0 x0 ,

S = R
[ − 4S1

(
V ′(x0)S2 − 8A3/2

0

) + 4V ′(x0)S1
]

+ [
V ′′(x0)S2 + 12V ′(x0)A1/2

0

]
R0,

where S0 = e−4A1/2
0 x0 , S1 = A1/2

0 − V ′A−1/2
0 x0/2, and S2 =

−3 + 4A1/2
0 x0. Note that here, for simplicity, we have used x0

instead of x(eq)
0 ; furthermore, both R and S are evaluated at the

equilibrium position x0 = x(eq)
0 . With the equation of motion

for a generic perturbation X1, we can look for normal mode

frequencies by setting

X1(t ) = X (0)
1 exp(λt ),

where X (0)
1 is a constant amplitude and λ is the eigenvalue of

the normal mode n.
In the numerical section below, we compare this prediction

about multistripe stability with detailed computations of the
spectrum at the 2D GPE level. This is done upon perform-
ing the standard Bogoliubov–de Gennes (BdG) analysis (see
details, e.g., in Ref. [3]). Moreover, given the favorable com-
parison reflected in our results, it is relevant to examine the
full AI PDE dynamics of Eq. (6) against the corresponding
2D dynamical evolution of the GPE. This will help us to build
a systematic appreciation of the role of soliton interactions
in enhancing or mitigating transverse instabilities. It will also
serve as a stepping stone towards generalizing this to a larger
number of stripes, by means of the (AI PDE) extension of the
significantly simpler, ODE-based, 1D picture of Refs. [18,49].

III. NUMERICAL RESULTS

A. Preliminaries

It is worth noting that the theoretical analysis in the last
section applies to a generic potential V (x) varying slowly on
the soliton scale. In what follows, we focus on the experimen-
tally relevant harmonic trap described by Eq. (2). For all of
the numerical computations we set the trap strength � = 1.
However, it is important to mention that, after a scaling trans-
formation, smaller values for � would correspond to larger
values of the chemical potential μ. Specifically, by defining
the rescaled variables (x̄, ȳ) = �̄−1/2 (x, y), ū = �̄1/2 u, and
μ̄ = �̄ μ, Eq. (1) with � = 1 transforms to the same equation
but with arbitrary �̄.

As for our computational domain we use (x, y) ∈
[−Lx, Lx] × [−Ly, Ly] with periodic boundary conditions in
y. The values of Lx and Ly will be chosen as Lx = 16 and
Ly = 2, Ly = 4, or Ly = 8. In terms of physical parameters,
and for Ly = 4, one may estimate the system parameters
corresponding to a 87Rb condensate confined in a parabolic
trap with ωz = 2π × 100 Hz. In this case, the number of
atoms (resulting from the normalization of the wave function)
is given by

N = 4Ly

3
√

π

(az

a

)
μ3/2.

For 87Rb, the s-wave scattering length is a = 5.3 nm. The trap-
ping frequency ωz corresponds to a harmonic oscillator length
az = √

h̄/(mωz ) = 2.7 μm. With these parameters, typical
numbers of atoms, as well as respective values of the healing
length ξ = h̄/

√
2mg2Dn2D (where g2D = 2

√
2πaazh̄ωz is the

effective 2D interaction strength and n2D the peak density [3]),
are as follows: for a (dimensionless) chemical potential μ =
1, one has N ∼ 1500 atoms and ξ ∼ 1.9 μm; for μ = 40 the
respective values are N ∼ 3.9 × 105 atoms and ξ ∼ 0.3 μm;
while for μ = 80, we have N ∼ 106 atoms and ξ ∼ 0.2 μm.
Notice that the above characteristic values of the chemical
potential correspond to various numerical results that will be
presented below. Furthermore, in the simulations depicting
stripe dynamics, the time unit t = 1 corresponds to ∼2 ms.
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FIG. 1. Cross sections (y = const) along the x direction of typ-
ical wave functions 	 [which are found from the GPE (1) using
u(x, y, t ) = 	(x) exp(−iμt )] corresponding from top to bottom to
one, two, three, and four dark solitons, respectively. In all cases
� = 1 and μ = 5 (left) and μ = 40 (right) correspond to chemical
potential values close to the linear (small density) and Thomas-Fermi
(large density) limits, respectively. Note that these 2D stationary
states are homogeneous in the y direction, as the potential (2) is
only x dependent. All quantities in this and subsequent figures are
dimensionless; see text.

With respect to our numerical simulations, we use a com-
putational framework, similar to our earlier works [35,36,45].
This is based on finite differences to approximate partial
derivatives and the partial wave method to reconstruct the
spectrum for the full (2D) system by computing a handful
of 1D (x) spectra. To fully resolve the 1D spectra we used
64 000 mesh points over the interval −16 � x � 16.

B. Two dark soliton stripes

In the linear, low-density limit of Eq. (1), each of the
dark soliton multistripe states corresponds to an eigenstate of
the simple harmonic oscillator. That is, at chemical potential
μ = (n + 1/2)�, the nth harmonic oscillator eigenfunction
is a starting point for the continuation of a nonlinear state
with n stripes (see, e.g., Ref. [50]). We thus use parametric
continuation towards higher values of the chemical potential,
gradually tending to the large chemical potential limit. In
Fig. 1 we depict the different steady states with one to four
stripes for the small and large density limits. It is important
to stress that it is in the Thomas-Fermi (large density) limit
that we expect the above developed theory to be valid. This is
because, in that limit, the dark-soliton stripe width ∝ μ−1/2

tends to 0, thus justifying its consideration as a filament
(without internal dynamics).

We start with the equilibrium points of the (homogeneous)
stationary stripes. Here, the comparison of the analytical
prediction of Eq. (7) with the full numerical results of the
GPE is depicted in Fig. 2. A remarkably good agreement
is found between the two, for all of the considered values
of the chemical potential, with the result indeed becoming

0.3
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0.7

0 20 40 60 80
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FIG. 2. Top: Equilibrium position x0 = x(eq)
0 for the two-stripe

case, as obtained from the GPE (1) (red line) and the AI PDE model
(6) (blue circles). Bottom: Difference 
x0 between the equilibrium
position from the GPE (1) and the one predicted by the AI PDE
model (6). Notice the remarkably good agreement even near the
linear limit.

essentially exact for sufficiently large values of μ (five digits
of precision for μ ≈ 80). In some sense, however, this agree-
ment should be expected, given the corresponding 1D results
of Ref. [49], as well as the effectively quasi-1D nature of the
pertinent equilibria. A far more challenging test of the theory
lies in the examination of the corresponding linearized modes.

Once we have identified the steady states for N dark soliton
stripes, we proceed to compare their respective spectra of the
BdG analysis of the GPE (“BdG-GPE” hereafter) with the
corresponding predictions of the AI PDE, Eq. (6). At this
point, it should be recalled that, for mathematical simplicity,
we have restricted consideration to two dark soliton stripes
symmetrically placed around the center of the trap (in line
with, e.g., the experiments of Refs. [17,18]). Therefore, the
AI theory will naturally capture only the normal modes cor-
responding to dark soliton stripes oscillating out of phase
(OOP); for simplicity these modes will be referred hereafter
to as OOP modes. Figure 3 depicts the spectra obtained via
BdG-GPE [(red and blue) dots] and AI PDE [thick (pink and
orange) curves] for the two-stripe steady state. It is relevant to
mention that the spectra have a strong dependence on the nu-
merical domain, namely (x, y) ∈ [−Lx, Lx] × [−Ly, Ly], and
particularly on the size of Ly. Specifically, since the snaking
instability of dark soliton stripes is only present for relatively
small wave numbers, reducing the length of the domain in
the y direction results in long wavelengths being suppressed
(i.e., not accessible) on this smaller domain. As a result, as
Ly is reduced, more (long-wave) modes are suppressed and
only shorter wavelength eigenmodes will be unstable (cf. the
Ly = 2 and the Ly = 4 spectra in Fig. 3). In fact, for small
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FIG. 3. Comparison between the two dark soliton stripes’ sta-
bility spectra for the full GPE and the analytical prediction based
on the AI PDE. Depicted are the real (λr ; top subpanels) and
imaginary (λi; bottom subpanels) parts of the stability eigenvalues,
λ = λr + i λi, vs the chemical potential μ (note that λr is scaled by√

μ). For the numerical domain we use Lx = 16 as well as Ly = 2
(top set of panels) and Ly = 4 (bottom set of panels). In the top
subpanels (displaying λr) the real part of the eigenvalues from the
full GPE is depicted by the small red dots, while the thick pink
(light gray) curves depict the real part of the eigenvalues for the
effective AI PDE model and the thick violet (dark gray) curves depict
the (unstable) n � 1 in-phase modes; see Eq. (9). In the bottom
subpanels (displaying λi) the imaginary part of the eigenvalues from
the full GPE is depicted by the small blue dots, while the thick
orange (light gray) curves depict the real part of the eigenvalues for
the effective AI PDE model, the thick green (dark gray) horizontal
line depicts the single-stripe n = 0 (stable) in-phase mode Im(λ) =
�/

√
2, and the thick gray horizontal lines correspond to the 1D TF

spectrum; see Eq. (8).

enough Ly, no unstable wavelengths will fit in the domain and
the solutions will be effectively stable in a manner akin to
the stabilization of transverse dark solitons in elongated BECs
reported in Ref. [28]. Therefore, we have selected two typical
Ly values to compare the BdG-GPE and AI PDE. The results
for Ly = 2 and Ly = 4 are shown in Fig. 3 (see top and bottom
sets of panels, respectively). As can be seen from the figure,
all of the AI PDE modes referring to the soliton stripes are
also present in the original BdG-GPE.

It is crucial to note that the AI PDE cannot capture
modes referring to the background (stripeless configuration).
These background modes correspond to both longitudinal
and transverse modes. The longitudinal background modes
in our system correspond to the collective oscillations of a
1D trapped BEC, characterized by the imaginary eigenvalues
λ� = iω�, where the corresponding frequencies are given by
[51]

ω� =
√

�(� + 1)

2
�. (8)

Note that, in our notation, instabilities are characterized by
a positive real part of the eigenvalue λ, which in turn corre-
sponds to an imaginary part of the corresponding eigenfre-
quency ω. The frequencies of the longitudinal background
modes are depicted by the thick gray horizontal lines in
Fig. 3, which give a good approximation of the corresponding
frequencies of the full BdG-GPE modes, especially as μ

becomes larger. Another set of modes that the AI PDE is
not able to capture corresponds to in-phase (IP) oscillating
dark soliton stripes (hereafter, these will be called IP modes).
Nevertheless, one can approximate the relevant oscillation fre-
quency as follows. According to the AI analysis the oscillatory
modes of a single dark soliton in a 1D trap are characterized
by the frequencies [36] (see also Ref. [49])

λn = i ωn =
√

1

3
μk2

n − 1

2
�2, (9)

where kn = nπ/Ly. Then, for in-phase oscillating soliton
stripes and large chemical potentials, one may approximate
the oscillation frequency of the relevant IP modes by Eq. (9).
This is because for such IP modes the distance between the
stripes remains the same during the evolution, and thus the
interaction (depending on their relative distance) effectively
does not affect the motion. These modes are depicted by
the violet curves in Fig. 3. A relevant example concerns
the appearance of the important stable IP mode, namely the
kn = 0 mode (see thick green line) in the full BdG-GPE
spectrum shown in Fig. 3. The eigenfrequency of this mode
corresponds to the oscillation frequency Im(λ) = �/

√
2 of

a single [52] or multiple in-phase [18] solitons. However,
one should not expect that the frequencies of the IP modes
in the full BdG-GPE will be identical to ωn in Eq. (9).
This results in the collective oscillation for the multisoliton
stripe state to have a frequency that is slightly larger than the
single-dark-soliton prediction (9). Here it should be pointed
out that the convergence of the full BdG-GPE and the n = 0
IP modes in the TF limit, as shown in Fig. 3, can simply
be understood as follows: as μ increases, the interactions
become increasingly short-ranged and, hence, the solitons are
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FIG. 4. Dynamics for in-phase modes corresponding, from top
to bottom, to the one-, two-, and three-stripe states for μ = 40.
The color bars on the right-hand side correspond to the density
|u(x, y, t )|2. The system was initialized at t = 0 with an N-stripe state
perturbed by the mode A cos(kny) in the transverse direction, where
kn = nπ/Ly with A = 10−3, n = 5, and Ly = 8 (only the portion
corresponding to −5 � y � 5 at the times indicated is shown). Note
that the dynamics, including the growth rate, seem to be closely
analogous in the different cases.

all pushed towards the center of the trap. Thus, they should all
oscillate with the same IP frequency (�/

√
2) at the bottom of

the well. We shall see this mode again when we generalize to
three and four stripes in the next subsection.

The lower the order n of the mode, the better the approx-
imation in Eq. (9) is, and all results asymptotically match as
μ → ∞. It is evident that the modes of the full BdG-GPE
analysis arise in pairs, i.e., IP and OOP for the case of two
stripes. Similarly, we will see below that the modes arise
in triplets for three stripes, groups of 4 for four stripes, etc.
Among these, we have confirmed that the lowest growth rate
corresponds to the IP excitation, while the higher growth rate
corresponds to the OOP one.

An example of the relevant dynamics of in-phase evolution
of multisoliton stripes is depicted in Fig. 4 for the case
of the n = 5 IP mode for one, two, and three stripes and
for a relatively large chemical potential μ = 40. As can be
seen from the figure, the instability evolutionary dynamics
(and thus the associated growth rates) seem to be largely
independent of the number of stripes. Furthermore, the actual
destabilization evolution of the stripes even in the nonlinear
regime (but before the stripes break into pairs of vortices)
seems to also be largely independent of the number of stripes.
Hence, the IP mode excitations behave similarly to the case of
a single stripe.

Finally, concerning the spectra, it is worth mentioning that
there exist other eigenmodes corresponding to the background
(rather than the dark soliton stripes). For instance, there exist
imaginary eigenvalues that appear in pairs (starting at the

linear limit) and that monotonically increase as a function of
μ. These eigenvalue pairs seem to quickly approach (asymp-
totically) each other as μ is increased (for the Ly = 4 case they
visually coalesce around μ ≈ 20; see the relevant monotoni-
cally increasing blue curves in the bottom panel of Fig. 3).
Each of these eigenmode pairs corresponds to undulations
of the background’s edges, where the left and right ends
oscillate with progressively higher wave numbers as the mode
frequency increases. These oscillations are in or out of phase
between the two edges (at opposite x’s), yet as the chemical
potential increases, and so does the separation between the
edges, the former and latter tend to oscillate with the same
frequency. We do not describe further these modes as they
only pertain to benign (i.e., purely oscillatory) perturbations
away from the dark soliton stripes.

With the above observations in mind, let us now summarize
a number of key features of the multistripe spectra:

(1) Our theory correctly captures with good accuracy the
stable n = 0 out-of-phase (OOP) oscillation mode (see anal-
ysis in the end of Sec. II) of the two stripes, in line with the
pertinent 1D theory [49].

(2) The oscillation frequency of the stable n = 0 in-phase
(IP) mode for the two-stripe state can be well approximated
by the frequency for the one-stripe state in the trap; this is
confirmed in the full BdG-GPE spectrum.

(3) Our theory detailed above in Sec. II only captures the
OOP modes. The IP modes appear to be independent of the
interaction, and hence essentially equivalent to the single-
stripe results of Ref. [36] in the TF limit. This also refers to
the three- and four-stripe cases (see below).

(4) Each of the finite kn transverse wave number modes,
compared with the single-stripe case, splits into two. This
has a natural explanation as the number of stripe degrees of

-2 0 2

-1

-0.5

0

0.5

1

-2 0 2

FIG. 5. Eigenfunctions corresponding to the in-phase (IP; left)
and out-of-phase (OP; right) unstable modes of the stationary two-
stripe state 	(x) for Ly = 2 and μ = 40. Shown are the k1 modes
with transverse dependence given by cos(kny) with kn = nπ/Ly. The
eigenmodes corresponding to other values of n are very similar
(results not shown here). The thick solid (blue) and dotted (red)
lines correspond, respectively, to the real and imaginary parts of
the eigenfunction w(x). The corresponding normalized steady state,
	(x)/

√
μ, is depicted by the thin black line. Note that the real

part of the eigenmodes has localized “humps” that, when out of
phase, produce in-phase motion of the dark solitons and vice versa.
The reason for this apparent contradiction is that the dark solitons
are themselves of opposite phase: in this figure the left soliton
corresponds to − tanh while the right one corresponds to + tanh.
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freedom has been doubled. In a similar vein, there are three
sets of branches for the three-stripe case and four branches
for the four-stripe case (see below). In Fig. 5 we depict the
longitudinal dependence of the IP and OOP modes extracted
from the full BdG-GPE. As expected, for two stripes there are
two “normal” modes for each kn corresponding to the IP and
OOP ones.

(5) Despite the increase in the multiplicity of the normal
modes, different normal modes of the same kn mode have
similar growth rates, which are also similar to those of a single
dark soliton stripe. Therefore, the increase of the number of
solitons creates more instabilities, but does not substantially
increase the instability growth rate. Nevertheless, as we will
show below, for large μ there is a monotonic (albeit weak)
increase of the growth rate of the instabilities with the stripe

number. It also appears that the branches of the same unstable
kn mode for the two stripes converge together in the TF limit.

(6) There is also one interesting difference near the linear
limit. In contrast to the single stripe, which has a narrow
fully stable regime near the linear limit, many stripes (in-
cluding the following cases of three and four stripes) stud-
ied here all become unstable right from the linear limit.
Note the small “bumps” in λr near the linear limits (see
inset in the top panel in Fig. 3). This instability is anal-
ogous to the one observed in the corresponding quasi-1D
[18] and 1D [49] cases, arising from opposite energy mode
collision and associated with complex eigenvalues. However,
before the latter is stabilized (as in 1D), transverse modes
start yielding unstable growth (via real eigenvalues). This
causes the multistripe configurations to be susceptible to

FIG. 6. Dynamical destabilization and collision of two dark soliton stripes. The background color map corresponds to full GPE numerics
while the green overlaid curves correspond to the AI reduction The corresponding systems are initialized symmetrically with the right dark
soliton stripe at x0(y) = ξ0 + ∑ν

n=1 εn sin(2πny/Ly + ϕn) with εn = 0.01, ϕn = (n − 1)Lyπ/10, ξ0 = 0.45 (i.e., close to the steady state
equilibrium x(eq)

0 = 0.368), and μ = 40. The top two rows of panels correspond to a single-mode perturbation (ν = 1) with Ly = 2 while
the bottom two rows of panels correspond to a perturbation containing five modes (ν = 5) and Ly = 8. Within each set of panels the top and
bottom rows (and their color bars) correspond to the density [|u(x, y, t )|2] and phase (−π to π ) of the field at the indicated times.
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instability for all the values of chemical potentials considered
herein.

The results presented above indicate that the AI PDE is
able to approximate very well the (linear OOP) modes that it
is designed to capture. However, our ultimate goal with the
AI method is not only to obtain the BdG modes, but more
importantly to obtain a reduced AI PDE that is also able
to capture the (linear and) nonlinear dynamics of the stripe
dynamics. We therefore now compare the dynamics of the
full GPE and of the AI PDE. We initialize typical symmetric
stripes of the form

x0(y, t = 0) = ±[ξ0 + p(y)], (10)

where ξ0 is the initial location of the stripes and p(y) is a
perturbation to accelerate the destabilization dynamics. We
depict in Fig. 6 two typical cases that compare the full
GPE dynamics (see background color map) and the AI PDE
dynamics (see overlaid green curves). The first case (see
top set of panels) corresponds to an initial position close
to stationary equilibrium x(eq)

0 perturbed by a single mode
(n = 1 for Ly = 2) with amplitude 0.01. The second case
(see bottom set of panels) corresponds to the same initial
position of the stripe but now perturbed by five different
modes (see caption for more details); see figure caption for
details on the perturbation p(y) used in these two cases. As
can be noticed from the figure, for both cases, the AI PDE is
able to capture (a) the initial growth of the perturbation (in
accordance with our previous results on the BdG spectra),
(b) the strong interactions between the stripes that include
collision and bounce-back, and importantly (c) even some of
the nonlinear stripe dynamics before the stripes finally break
into vortices. It is remarkable that indeed the AI PDE is able
to capture the full GPE dynamics even when the stripes are
interacting quite strongly.

C. Three- and four-stripe states

In this section, we consider the cases of three- and four-
stripe states, and study their spectra and dynamics. The de-
pendence of the real and imaginary parts of the eigenvalues
on the chemical potential is shown in Fig. 7 for both cases.
Besides the presence of the same background modes as the
ones described above for the two-stripe case, we can clearly
see the multiplicity of the interstripe vibrational modes. The
three-stripe case has three modes while the four-stripe case
has four. As explained above, this multiplicity stems from the
different normal modes of vibration of the N-stripe solution.
Indeed, we have extracted the longitudinal dependence of the
normal modes for n = 2 as depicted in Fig. 8. As can be
observed from the figure, the three- and four-stripe cases have,
respectively, three and four normal modes.

It is also evident, more so in the three- and four-stripe cases
when compared to the two-stripe case, that in comparison,
e.g., with Fig. 2 of Ref. [36], the higher N is, the more
unstable the corresponding state becomes in the TF limit.
This makes intuitive sense, as the differential repulsion of the
stripes at different locations (in the presence of perturbations)
can be expected to lead to enhancement of the undulations
and ultimately of the instability growth rate. This is more
concretely quantified in Fig. 9. The top panel clearly shows

FIG. 7. Similar to Fig. 3 (for two stripes), but now for the three-
and four-stripe cases, for Lx = 16 and Ly = 2.

that the IP modes converge, in the TF limit, to the same
frequency of IP oscillations for the different stripes. On the
other hand, the bottom panel shows, interestingly, that the
single-stripe state is the one that bifurcates into instability
the earliest. Nevertheless, and going towards the analytically
tractable limit of large μ, we observe that there exists a
crossover. As a result, more soliton stripes lead to higher—but
only slightly higher—growth rates. Nevertheless, the scales of
the growth rates of different numbers of stripes remain quite
proximal.

Finally, we have performed simulations to study the dy-
namics when random noise is added to the stationary state.
In this case we do not compare with the AI PDE dynamics
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FIG. 8. Same as Fig. 5 but for the three-stripe (top) and four-
stripe (bottom) states. Parameters correspond to Ly = 2 and μ = 40
for the transverse modes involving the motion of the dark soliton
stripes. The notation ±1 : ±1 : ±1 is used to denote a normal mode
that has a displacement from the steady state of the first, second, and
third dark solitons in the positive (+) or negative (−) direction. The
same notation is used for the four-stripe case.

FIG. 9. Top panel: Comparison of the fully in-phase oscillation
mode (n = 0) frequency for different numbers of dark soliton stripes
using the same Ly = 2. DSN denotes the N-stripe state. Note that
they all converge to the 1D single dark soliton results �/

√
2 (see

horizontal dashed line) corresponding to the IP oscillation of the
N stripes. Bottom panel: The most unstable mode growth rate for
different numbers of dark soliton stripes. Note there is an interesting
crossover behavior. The growth rate is larger for the one-stripe state
near the linear limit, but in the TF limit more dark solitons are
more unstable. Moreover, in the latter limit there is a (weak, yet)
monotonic increase of the growth rate with N . The DS1, DS2, DS3,
and DS4 cases are depicted, respectively, with the red (gray), blue
(dark gray), black, and yellow (light gray) curves.

FIG. 10. Dynamical destabilization of two-stripe states using
different small random perturbations. Each set of two rows of panels
corresponds, from top to bottom, to two different realizations for
a random perturbation of amplitude 10−1, 10−2, 10−4, and 10−12,
respectively.

as our analytical characterization captures the OOP modes
(in terms of their nonlinear dynamics) but not the IP ones.
Given that random perturbations excite both, a more elaborate
and less straightforwardly tractable AI approach without the
assumption of symmetric center positions would be needed
for comparison here. In Fig. 10 we depict the dynamics
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FIG. 11. Dynamical destabilization of the three- and four-stripe states as obtained from the full GPE. In these cases, we have added a small
(10−4 amplitude) random noise. Both states, following the spectral picture, break with the most unstable mode, and give rise to numerous
vortex pairs. Note that, despite the existence of more unstable modes, the maximum decay rates are about the same for different numbers of
stripes.

ensuing from the two-stripe state perturbed by a small, uni-
formly distributed random perturbation. For each perturbation
size we show two typical runs and, from top to bottom,
we depict the cases for random perturbations of diminishing
amplitude. Surprisingly, as the perturbation is set to smaller
values, the full GPE dynamics tends to a symmetric OOP
configuration for the two stripes.

In Fig. 11 we depict the dynamical destabilization for
the three- and four-stripe cases. The BdG spectra depicted
in Fig. 7, computed for Ly = 2, suggest that the dominant
unstable mode for μ = 40 should be the n = 3 one which
corresponds to the n = 6 mode in Fig. 11, as in this latter case
we used Ly = 4. The dynamics indeed follows this prediction
until each stripe breaks into vortex pairs. It is, arguably, not
entirely straightforward to define a precise breaking time, as
this is a continuous process, but both states start to bend
around t = 1 and therefore the two states break at about
the same timescale, as expected from the spectra. It should
be noted that, for the three-stripe case, the AI approach is
conceptually straightforward to construct, generalizing the

energy functional of Eq. (5), because for OOP configurations
the dark soliton in the middle is centered at x = 0 and the
relevant center positions are −x0, 0, and x0. However, the
resulting expressions are particularly tedious and hence we do
not attempt to give them here.

We now comment on the possibility of generating quantum
turbulence from the transverse-instability-induced dynamics
of multiple dark soliton stripe states. This scenario was con-
sidered and investigated in Ref. [30] for an initial configu-
ration different from that used in this work, namely for a
square grid of many dark soliton stripes in a spatially uniform
condensate. In our case, Fig. 11 (see panels corresponding
to t = 1.6) suggests that the instability-induced generation of
vorticity could also lead to quantum turbulence. Nevertheless,
the state of quantum turbulence that is induced by the decay
of a series of dark soliton stripes is likely to lack the vortex
clustering, as well as the statistical signatures of classical and
quantum two-dimensional turbulence [53–55]. Nonetheless,
weak correlations and small clusters can build after some
vortex-antivortex annihilation [56], which we surmise is one
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of the more interesting effects that could be observed for this
type of turbulent state. In any case, a pertinent systematic
study of such effects is beyond the scope of this work.

IV. CONCLUSIONS AND FUTURE WORK

In the present work, we have extended considerations of
the solitonic stripes as filaments to the realm of multiple
stripes, taking into consideration their pairwise interactions.
We have seen how this allows one to evaluate the equilibrium
position of multistripe states. Perhaps more importantly, this
also enables the consideration of the linearized eigenmodes
around such an equilibrium. These modes can be partitioned
into in-phase and out-of-phase ones. The in-phase ones are
similar to the single-stripe modes. On the other hand, the out-
of-phase ones introduce additional growth modes of the trans-
verse instability. Despite the larger number of instabilities, the
maximum growth rates remain comparable to that of a single
stripe, although we have found a weak monotonic dependence
thereof on the number of stripes N in the large chemical
potential limit. In addition to this linearization picture, we
have explored the full dynamics of the two stripes, which
are always in the cases examined in good agreement with
the filament (AI PDE) method results that consider each of
the stripes as a reduced PDE for the stripe center x0(y, t ).
We have extended the numerical consideration of such stripe
interaction scenarios to the case of three- and four-stripe
settings, obtaining a natural generalization of the two-stripe
results.

This effort paves the way for a number of future possi-
bilities. One of the most intriguing ones, in line with the
experimental thesis results of Ref. [29], is to examine the

interaction of a quasi-1D pattern (like the stripe) and a gen-
uinely 2D pattern, like the vortex. This has been associated
with a nonlinear variant of the famous Aharonov-Bohm effect
in Refs. [57,58]. Yet, it has not been systematically explored
at the level of a filament theory such as the one presented
herein, which could shed quantitative light in the relevant dy-
namics. Moreover, this is an especially appealing problem at
the interface of dimensionalities and at the interface between
differential and integral equations (preliminary calculations
suggest that the vortex has a distributed effect on the stripe,
while the stripe has an integrated effect on the motion of
the vortex). A version of this problem that could be radially
symmetric and hence simpler to tackle could be that of a
ring dark soliton with a vortex sitting in its center. One can
also go beyond 2D settings and consider effective PDEs for
1D filaments such as vortex rings embedded in 3D space,
as in the recent works of Refs. [59,60], and then attempt to
generalize these incorporating ring-ring interaction to account
for multi-vortex-ring settings [61–63]. These directions will
be considered in future studies.
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