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Tuning quantum reflection in graphene with an external magnetic field
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We theoretically demonstrate that an external magnetic field can be used to control quantum reflection
of matter waves in graphene due to its extraordinary magneto-optical properties. We calculate the quantum
reflection probabilities in graphene for three experimentally relevant atomic species (He, Na, and Rb) using the
full Casimir-Polder potential computed by the Lifshitz formula valid at all distance regimes, going beyond the
traditional approach to quantum reflection, based on power-law potentials, which are known to be valid only in
the short-distance (nonretarded van der Waals) or in the large-distance (retarded) regimes. We predict the energy
range for which quantum reflection is more likely to occur as a function of the magnetic field and show that the
quantum reflection probabilities exhibit discontinuities that reflect the structure of Landau levels in graphene.
Altogether our findings suggest an alternative way to control quantum reflection at the nanoscale and pave the
way for the design of alternative, magnetically tuned reflective diffraction elements for matter waves.
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I. INTRODUCTION

One of the most curious and unexpected effects related to
the wave nature of quantum particles is the so-called quantum
reflection (QR). It consists of the reflection of a quantum
particle that moves under the action of a potential that de-
creases monotonically in the direction of the particle motion,
even without the existence of any turning point. Classically,
the particle would suffer a force pushing it in the forward
direction. Rather than, increasing its velocity, the particle is
reflected by such a decreasing potential. The probability of
occurrence of QR increases as the wave nature of the particles
becomes more pronounced [1], facilitating QR of particles
with low masses at low energies. As a result there is a nonzero
probability of an atom at low energies, attracted by a wall
due to dispersive forces, to be reflected before reaching the
wall. It is worth mentioning that this intriguing phenomenon
is not restricted to quantum mechanics. Indeed, it is a general
feature of wave propagation in inhomogeneous media and it
may occur for mechanical waves or electromagnetic waves in
dielectrics and transmission lines [2].

The first experiments on QR were performed with he-
lium and hydrogen atoms reflected by liquid helium surfaces
[3–6]. Due to the low mass of atomic specimens in these
experiments, the QR regime was reached with relatively high
energies (1–10 neV). The heavier the particle is, the lower
its energy should be in order to reach the QR regime. In
Refs. [7–9] deep QR regimes have been reached for sodium
and rubidium atoms prepared in Bose-Einstein states with
normal incidence and energies of the order of 10−4 neV.
Lower-energy regimes can be reached with oblique incidence
of the incoming particles [10,11]. Since the pioneering paper
by Shimizu [12], in which an ingenious setup based on QR
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was developed to investigate the power laws of the nonre-
tarded and retarded dispersive interactions between an atom
and a wall, many different approaches have been put forward
to probe dispersive forces via QR [11,13–16]. In this context,
developing alternative mechanisms to control and/or tune the
probability of a beam of atoms to be reflected by a wall
may open new possibilities for designing new atomic mirrors
[17,18] or even atomic traps [19–21]. Quantum reflection
plays an important role in many other areas of physics, which
include atom optics [22–27], and, more recently, in high preci-
sion measurements of the short-range regime of gravitational
forces [28,29].

Quantum reflection strongly depends on the Casimir-
Polder interaction between the incident particles and the
reflecting wall. This interaction may change substantially if
one changes the material properties of the wall and the type
of incident particles. In this context two-dimensional (2D)
materials, such as graphene, emerged as good candidates
to control QR due to their remarkable electromagnetic and
mechanical properties. Indeed, it has been shown that in-
teractions mediated by vacuum fluctuations in graphene are
highly tunable by varying the chemical potential [30–32], the
external magnetic field [33,34], and the strain [35] and by
stacking of many graphene sheets [36,37]. Regarding QR by
graphene sheets, some theoretical works do exist [38], but
only very few of them explore the important application of
tuning this effect using external parameters, such as strain
[35]. Taking advantage of the remarkable magneto-optical
control of the Casimir-Polder interaction between atoms and
graphene sheets [33], we put forward an alternative, realistic
method for tuning the QR of cold atoms by a graphene sheet
by applying a perpendicular magnetic field. We demonstrate
that the quantum reflection probability for a given energy as a
function of the external magnetic field shows discontinuities,
a direct consequence of the structure of the Landau levels of
the electronic spectrum of the graphene sheet.
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FIG. 1. Atom being reflected by the attractive Casimir-Polder
force exerted by a graphene sheet before the atom reaches the
sheet. Graphene is under the action of an external magnetic field
perpendicular to the sheet.

This paper is organized as follows. In the next section
we present the methodology to be used in the computation
of QR probabilities. However, instead of using power-law
expressions for the dispersive forces which are valid only in
the two opposite regimes of short-distance (van der Waals
regime) and large-distance regime (retarded regime) we use
the complete Casimir-Polder potential computed by means
of Lifshitz formula [39,40], valid for all distance regimes.
In Sec. III we present our results and show that graphene
is, indeed, a very good platform to be used as a reflecting
material and permits high tunability of QR. We discuss QR
for three atoms with different masses (He, Na, and Rb) and
show that depending on the atom mass its QR probability will
be significant for different atom-graphene distance regimes.
Section IV is left for conclusions and final remarks.

II. METHODOLOGY

We consider a system constituted of a beam of atoms
moving towards a graphene sheet with normal incidence, with
an applied magnetic field, perpendicular to the sheet as shown
in Fig. 1.

The common procedure to calculate the QR probability
R with normal incidence of the atoms towards the wall un-
der consideration is to solve a one-dimensional Schrödinger
equation with the corresponding potential U (z) (z being the
distance from the atom to the wall) and appropriate boundary
conditions. It is usual in the literature [13,18,41,42] to con-
sider the van der Waals potential Uvdw(z) = −C3/z3, valid
for short distances, or the (asymptotic) retarded potential

Uret (z) = −C4/z4, valid for large distances, C3 and C4 being
positive constants, or even a simple phenomenological in-
terpolating potential of the form Uint (z) = −C4/[z3(z + �)],
where � is a parameter with dimensions of length which
depends on the incident atom [38,43]. A detailed discussion
on the comparison of this kind of phenomenological potential
and the exact one given by Lifshitz formula can be found in
Ref. [44]. In the present work we do not restrict ourselves
to the approximate expressions for the interacting potential
between the atom and the wall. Rather, we compute the
QR probability by using the full Casimir-Polder potential
valid for all distance regimes, which constitutes an important
methodological progress with respect to the vast majority of
existing theoretical works on QR. In the present case, this
potential is the Casimir-Polder potential between a neutral but
polarizable atom and a graphene sheet with a magnetic field
acting perpendicularly on the sheet at low temperatures, which
is given by [33]

U (z) = h̄

ε0c2

∫ ∞

0

dξ

2π
ξ 2 α(iξ )

∫
d2k

(2π )2

e−2κz

2κ

×
[

rs,s(k, iξ, B) −
(

1 + 2c2k2

ξ 2

)
rp,p(k, iξ, B)

]
, (1)

where κ =
√

ξ 2/c2 + k2, α(iξ ) is the electric polarizability of
the atom, and rs,s(k, iξ, B) and rp,p(k, iξ, B) are the diagonal
reflection coefficients associated with graphene (s and p mean,
as usual, the transverse electric and transverse magnetic polar-
izations, respectively). The reflection coefficients of graphene
in the presence of the magnetic field, the model for atomic
polarizabilities, and a discussion of the profile of function
U (z) can be found in the Appendix.

For an atom of mass m and energy E under the action of
the potential U (z), the Schrödinger equation reads

∂2ψ (z)

∂z2
+ p2(z)

h̄2 ψ (z) = 0, (2)

where

p(z) =
√

2m[E − U (z)]. (3)

Since the WKB solutions are good approximations when the
atom is far from the graphene sheet (compared to the length
scale associated with the CP interaction, namely, c/ξl ; see
Table I in the Appendix), it is convenient to try a solution of
the form [45]

ψ (z) = c+(z)

|√p(z)|eiφ(z) + c−(z)√|p(z)|e−iφ(z), (4)

with φ(z) given by

φ(z) =
∫ z

z0

p(z′)
h̄

dz′. (5)

Note that there is no approximation in writing the previous
equations, since c+(z) and c−(z) still need to be determined.
However, the previous ansatz is a very convenient one, since
it transforms the second-order Schrödinger equation into a set
of two coupled first-order differential equations for c+(z) and
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c−(z). In fact, substituting Eqs. (4) and (5) into Eq. (2) it is
straightforward to show that

∂c+(z)

∂z
= e−2iφ(z) c−(z)

2p(z)

∂ p(z)

∂z
, (6)

∂c−(z)

∂z
= e+2iφ(z) c+(z)

2p(z)

∂ p(z)

∂z
. (7)

Reagarding boundary conditions, it is reasonable to impose
that c+(0) = 0 and c−(0) = 1, which means that any atom
that reaches the graphene sheet will not be reflected, but
rather adsorbed to it. By definition, the quantum reflection
probability is [46]

R = lim
z→∞

∣∣∣c+(z)

c−(z)

∣∣∣2
. (8)

The previous set of coupled first-order differential equations
for c+(z) and c−(z) will be solved numerically. Information
about the efficiency of a certain potential U (z) to give rise to
QR can be extracted from the function [46,47]

Q(z) = h̄2

2p2(z)

[
φ′′′(z)

φ′(z)
− 3

2

(
φ′′(z)

φ′(z)

)2
]
, (9)

with p(z) and φ(z) given by Eqs. (3) and (5). It can be
shown that the highest probabilities of the occurrence of
QR correspond to the regions of the highest values of Q(z)
[46–48]. Moreover, for a given energy, this function exhibits
a peak. Let us denote by zm the position of this peak, that is,
the distance between the atom and the graphene sheet where
Q(z) is maximum. In order to solve numerically the set of
coupled differential equations, Eqs. (6) and (7), we choose a
point close to the graphene sheet (zi) and a point far from the
graphene sheet (z f ) such that zi � zm � z f . The differential
equations are solved in the region between zi and z f which
contains the peak of Q(z). The limit in Eq. (8) is numerically
calculated by taking values of coefficients c+(z) and c−(z) at
point z f . Parameters z f and zi are convergence parameters. We
have numerically established that a good convergence of the
results occurs whenever changes in zi and z f do not affect any
more the value of the QR probability R. A detailed discussion
of this method can be found in Ref. [48].

As already mentioned, in most calculations of QR, an
interpolation between the nonretarded van der Waals potential
(≈ −C3/z3) and the retarded potential (≈ −C4/z4) regimes is
used, allowing for a semianalytical solution of the coupled
differential equations for the WKB coefficients c+(z) and
c−(z). In the present work we solve the coupled equations
(6) and (7) by using the complete Casimir-Polder potential
whose dependence with distance is quite involved, so that a
full numerical procedure is demanded. The consideration of
the whole potential is crucial for obtaining reliable results on
the control of QR on graphene with the aid of an external
magnetic field and constitutes an important methodological
advance with respect to the traditional theoretical approach
to QR. In the next section we present the main results of
this work obtained by numerical calculations. As we shall
see, the complex behavior of the complete Casimir-Polder
potential with the external magnetic field has nontrivial conse-
quences on the QR of different atomic specimens. It is worth

mentioning that the Zeeman coupling in graphene can be
safely neglected due to the more pronounced effect of Landau
quantization of electronic motion, related to the relativistic
nature of the Dirac spectrum [49,50]. In addition, we have
verified that the Zeeman effect upon the atoms only leads
to negligible corrections in the computation of the dispersive
energy interaction between graphene and the atoms, for all
species considered, as previously shown in Ref. [33].

III. RESULTS AND DISCUSSIONS

In order to investigate the consequences of the application
of a magnetic field perpendicular to a graphene sheet in
the probability of an atom to be reflected by this sheet, we
consider three atomic species of experimental relevance: He,
Na, and Rb. These atomic species have already been used in
QR experiments [3–9]. The atomic polarizabilities of these
atoms are used in the Casimir-Polder potential [Eq. (1)] and
are described by the single Lorentz-oscillator model, whose
fitted parameters are well known from the literature [36] (see
the Appendix). Because we would like our results to be valid
regardless of the retard/nonretard regime, we numerically
evaluate the Casimir-Polder potential in the distance range
zi < z < z f at given values of the magnetic field (see the
Appendix). In order to solve numerically the system of cou-
pled differential equations (6) and (7), we use a standard pro-
cedure of interpolation by a polynomial function of successive
points of the CP potential, and, finally, we may obtain the QR
reflection probability R using Eq. (8).

In Fig. 2 we plot the QR probabilities R of He, Na, and Rb
as functions of their incident energies for four values of the
magnetic field (B = 0, 2, 7, and 14 T). The chemical potential
of the graphene sheet is set to μc = 0.115 eV. Note that, in all
cases, R → 1 as E → 0, which is a direct consequence of the
fact that the de Broglie wavelength associated with the atom
increases as E decreases; i.e., the wavelike nature of the par-
ticles becomes more important the lower their energy is. By
the same token, R → 0 as E → ∞, as expected, since the de
Broglie wavelength decreases as E increases. The limit where
λ → 0 is analogous to the geometrical optics limit in wave
optics and hence the particle behavior of the atom must show
up. In between these two regimes, there is an intermediate one
in which the QR is substantially influenced by the external
magnetic field. This is one of the main results of our paper,
showing that a magnetic field applied to a graphene sheet may
be used as an efficient way of controlling and tuning the QR
by an external agent. Moreover, this influence depends on the
atom under consideration. For He atoms [Fig. 2(a)] the QR
probability at a given energy decreases when the magnetic
field is applied (B = 2, 7, and 14 T curves). On other hand,
for Rb atoms [Fig. 2(c)] the QR probability is enhanced in the
presence of the magnetic field (B = 2, 7, and 14 T). For Na
atoms [Fig. 2(b)], there is a nonmonotonic behavior with B,
i.e., QR decreases for B = 2 T and increases for B = 7 and
14 T when compared to the case of B = 0 T.

In order to understand these different behaviors of the
QR probability for different atoms, it is necessary to analyze
the interplay between the tunability of CP energy with the
magnetic field at different distance regimes and the function
Q(z). The position of the peak of Q(z) indicates the most
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FIG. 2. The quantum reflection probability R as a function of the
energy of the incident particle for (a) He, (b) Na, and (c) Rb at given
values of the external magnetic field. We considered the chemical
potential of the graphene sheet fixed at μc = 0.115 eV.

probable region of space where QR can occur. To this end, we
show in Figs. 3, 4, and 5 the dependence of the QR probability
[panels (a)], the Q(z) function [panels (b)], and the relative
change of CP energy with the magnetic field [panels (c)] for
He, Na, and Rb atoms, respectively. In the case of the He
atom, we show in Fig. 3(a) the quantum reflection probability
as a function of the applied magnetic field for three different
values of the chemical potential of the graphene sheet. The
incident energy of the atom was fixed at a value that leads
to optimal tunability in a magnetic field, as can be seen in
Fig. 2 [E = 101 neV for the case of He in Figs. 3(a) and 3(b)].
The QR probability as a function of the magnetic field for the
He atom shows a general decrescent behavior, consistent with
the discussion of the previous paragraph. In addition to this
decrescent trend, there exist discontinuities that are related to
discontinuities in the CP energy whenever a Landau level of
the spectrum of graphene (which varies with B) crosses the
chemical potential [33]. The effect of varying the chemical
potential is just a shift in values of the magnetic field where
these discontinuities take place. In Fig. 3(b), we show the
function Q(z) for the chemical potential μc = 0.115 eV, an
incident energy of the He atom of E = 101 neV, and four

FIG. 3. Data are for He atoms. (a) The QR probability as a
function of the external magnetic field for chemical potentials of the
graphene sheet μc = 0.105 eV (red dashed), μc = 0.115 eV (blue
solid), μc = 0.125 eV (green dot-dashed). (b) The function Q(z)
of Eq. (9) for the chemical potential of the graphene sheet μc =
0.115 eV and external magnetic field intensities B = 0, 2, 7, and 14 T.
For all data in panels (a) and (b), we set the energy of the incident
particle as E = 101 neV. (c) Relative variation of the CP energy with
the magnetic field as a function of distance [U B(z)/U B=0(z)] for the
chemical potential of the graphene sheet μc = 0.115 eV and external
magnetic field intensities B = 0, 2, 7, and 14 T.

values of the external magnetic field. The maximum of the
Q(z) function occurs at distances from the graphene sheet
where the CP energy is enhanced by the external magnetic
field [as can be seen from Fig. 3(c)]. This enhancement of CP
energy with the magnetic field in the region of space where
QR takes place is related to the decrescent behavior of the QR
probability with the magnetic field for the He atom discussed
in the previous paragraph. In the case of Rb, in Fig. 5(a), we
show the QR probability as a function of the external magnetic
field for three values of the chemical potential. The incident
energy of the Rb atom was set to correspond to the optimal
tunability in a magnetic field in Fig. 2, i.e., E = 10−5 neV for
Figs. 5(a) and 5(b). Again, the QR probability as a function
of the magnetic field shows discontinuities associated with
the crossing of Landau levels through the chemical potential
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FIG. 4. Data are for Na atoms. (a) The QR probability as a
function of the external magnetic field for chemical potentials of the
graphene sheet μc = 0.105 eV (red dashed curve), μc = 0.115 eV
(blue solid curve), and μc = 0.125 eV (green dot-dashed curve).
(b) The function Q(z) of Eq. (9) for the chemical potential of the
graphene sheet μc = 0.115 eV and external magnetic field intensities
B = 0, 2, 7, and 14 T. For all data in panels (a) and (b), we set the
energy of the incident particle as E = 10−3 neV. (c) The relative
variation of the CP energy with the magnetic field as a function of
distance [U B(z)/U B=0(z)] for the chemical potential of the graphene
sheet μc = 0.115 eV and external magnetic field intensities B = 0,
2, 7, and 14 T.

in the electronic spectrum of the graphene sheet. However,
here QR probability has a crescent behavior. In Fig. 5(b), it is
possible to see that the maximum of the function Q(z) occurs
in the region of space where the CP energy decreases with
the presence of the magnetic field. This explains the different
behaviors of QR probability with magnetic field for different
atoms. In the case of the Rb atom, QR takes place in a region
where the CP energy decreases with the magnetic field, so that
the QR probability is enhanced. Furthermore, in between the
discontinuities at QR probability for Rb [Fig. 5(a)], there exist
plateaus. This behavior is a direct consequence of the plateaus
in the CP energy as a function of the magnetic field at long-
distance regimes (where QR takes place), which occur due
the prevalence of low-frequency modes in the Lifshitz formula

FIG. 5. Data are for Rb atoms. (a) The QR probability as a
function of the external magnetic field for chemical potentials of the
graphene sheet μc = 0.105 eV (red dashed curve), μc = 0.115 eV
(blue solid curve), and μc = 0.125 eV (green dot-dashed curve).
(b) The function Q(z) of Eq. (9) for the chemical potential of the
graphene sheet μc = 0.115 eV and external magnetic field intensities
B = 0, 2, 7, and 14 T. For all data in panels (a) and (b), we set the
energy of the incident particle as E = 10−5 neV. (c) The relative
variation of the CP energy with the magnetic field as a function of
distance [U B(z)/U B=0(z)] for the chemical potential of the graphene
sheet μc = 0.115 eV and external magnetic field intensities B = 0,
2, 7, and 14 T.

[33]. Finally, in the case of Na (shown in Fig. 4), the QR takes
place at intermediate distances, i.e., in the region between the
short-distance regime, where the CP energy increases with
the magnetic field, and the long-distance regime, where the
CP energy decreases with the magnetic field. This explains
the nonmonotonic dependence of QR probability with the
magnetic field for the Na atom discussed in the previous
paragraph and shown in Fig. 2(b).

All results presented in this paper have been derived by
the Casimir-Polder interaction computed from the Lifshitz
formula at zero temperature [Eq. (1)]. The detailed study
of the effect of finite temperature in quantum reflection is
beyond the scope of the present work, but we shall briefly
comment on the thermal effects on our results. It is well

033605-5



MARCIUS SILVESTRE et al. PHYSICAL REVIEW A 100, 033605 (2019)

known that thermal effects in dispersive forces, which have
been investigated in, e.g., Ref. [51], change the long-distance
regime of the Casimir-Polder interaction. This distance regime
is characterized by the thermal wavelength, which is pro-
portional to (kBT )−1, and thermal corrections may influence
the quantum reflection quantitatively [44]. These corrections
should be more pronounced for heavy atoms, for which
quantum reflection is dominated by long-distance regimes of
the Casimir-Polder potential (see the Appendix). Moreover,
finite-temperature effects cause a broadening in the Fermi-
Dirac distribution which, in turn, makes the discontinuities
in the Casimir-Polder potential as a function of the magnetic
field smear out. However, thermal effects do not prevent QR
from being tuned by a magnetic field, since the Casimir-
Polder potential at finite temperature is still substantially
changed by a magnetic field [33]. Therefore, we expect that
even at high temperatures, quantum reflection by a graphene
sheet may still be tuned by a magnetic field, although the
discontinuities present in panels (a) of Figs. 3, 4, and 5 will
disappear. The discontinuities in Figs. 3, 4, and 5 must be
observable for small temperatures (thermal energy kBT ) com-
pared to the energy spacing between two successive Landau
levels. These energy spacings become larger for high mag-
netic fields. This fact can be used in order to reach the regime
where discontinuities in the quantum reflection probability
should be observable.

IV. CONCLUSIONS

In summary, we have demonstrated that an external mag-
netic field may be used to tune quantum reflection (QR) in
a graphene sheet. We have calculated the attractive Casimir-
Polder potential using the Lifshitz formula, valid at any dis-
tance between the atom and the graphene sheet. We have
considered three atomic species of experimental relevance
(He, Na, and Rb), for which we calculate the QR prob-
ability using a full numerical approach. We identify three
distinctly different behaviors in the QR probability, depending
on the magnitude of the applied magnetic field, which can
be explained in terms of the different characteristic distance
regimes of the Casimir-Polder potential. We also conclude that
the effects of the magnetic field on QR are more pronounced
for lighter atomic species at the short distance regime of the

Casimir-Polder, while for heavier atoms the magnetic effects
tend to be more intense in the long-distance regime. However,
in all cases and for all the investigated atoms, QR in graphene
can be efficiency tuned by applying an external magnetic
field. We show that the QR probability exhibits discontinuities
as a result of the quantization of the electronic spectrum of
graphene. These discontinuities persist at low temperatures
and for high values of the magnetic field. Altogether our
findings not only allow for an alternative way to control
quantum reflection at the nanoscale but also open the door for
the design of novel reflective optical elements, such as Fresnel
mirrors [52], which can be used for tunable reflective focusing
of matter waves.
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APPENDIX: REFLECTION COEFFICIENTS, ATOMIC
POLARIZABILITIES, AND CASIMIR-POLDER ENERGY

IN THE PRESENCE OF THE MAGNETIC FIELD

The reflection coefficients of a graphene sheet under the
influence of a magnetic field applied perpendicular to the
sheet can be obtained by using Maxwell’s equations with the
appropriate boundary conditions [34,53,54]:

rs,s(k, iξ, B)

= 2σxx(iξ, B)Zh + η2
0[σxx(iξ, B)2 + σxy(iξ, B)2]

−�(k, iξ, B)
, (A1)

rp,p(k, iξ, B)

= 2σxx(iξ, B)Ze + η2
0[σxx(iξ, B)2 + σxy(iξ, B)2]

�(k, iξ, B)
, (A2)

�(k, iξ, B) = [2 + Zhσxx(iξ, B)][2 + Zeσxx(iξ, B)]

+ [η0σxy(iξ, B)]2, (A3)

where Zh = ξμ0/κ , Ze = κ/(ξε0), and η2
0 = μ0/ε0. Besides,

σxx(iξ, B) and σxy(iξ, B) are the longitudinal and transverse
conductivities of graphene, respectively. The electric conduc-
tivity tensor of graphene under an external magnetic field is
well known and reads as follows [55,56]:

σxx(iξ, B) = e3v2
F Bh̄(ξ + τ−1)

π

∞∑
n=0

{
nF (Mn) − nF (Mn+1) + nF (−Mn+1) − nF (−Mn)

Dn(Mn+1 − Mn)
+ (Mn → −Mn)

}
, (A4)

σxy(iξ, B) = e3v2
F B

−π

∞∑
n=0

{nF (Mn) − nF (Mn+1) − nF (−Mn+1) + nF (−Mn)}
[

1

Dn
+ (Mn → −Mn)

]
, (A5)

where 1/τ is a phenomenological scattering rate which causes
a small broadening in the Landau levels, nF (E ) = �(μc − E )
is the Fermi-Dirac distribution at zero temperature, Dn =
(Mn+1 − Mn)2 + h̄2(ξ + τ−1)2 and Mn = √

nM1 are the Lan-
dau energy levels, M2

1 = 2h̄eBv2
F is the Landau energy scale,

and vF � 106 m/s is the Fermi velocity. The scattering time
can be obtained by the fit of the Drude model to optical

conductivities given by experiments or numerical calculations
[30]. In the present paper, we set τ = 1.84 × 10−13 s, which
is a characteristic value for weakly disordered graphene sam-
ples. μc is the chemical potential of the graphene sheet.

The atomic polarizabilities of the different atoms can be
modeled by a single Lorentz-oscillator model. Refinements
of this model do exist [36] but they do not modify the main
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TABLE I. Parameters of the single Lorentz-oscillator model of
Eq. (A6), for He, Na, and Rb atoms [36].

l αl (0) (AU) ξl (eV)

He 1.384 27.64
Na 162.6 2.13
Rb 318.6 1.68

conclusions of the present paper concerning QR. The atomic
polarizability in the imaginary frequency axis is given by

αl (iξ ) = αl (0)

1 + ξ 2

ξ 2
l

. (A6)

The parameters of Eq. (A6) for each atom considered are
given in Table I (1 a.u. = 1.648 × 10−41 C2 m2 J−1). With
these coefficients, one can compute the Casimir-Polder energy
between an atom and a graphene sheet using Eq. (1).

We show in Fig. 6 the Casimir-Polder energy computed by
using Eq. (1) for the three atomic species considered in this
paper [(a) He, (b) Na, (c) Rb]. The polarizability of each atom
was modeled with a single Lorentz-oscillator model [36]. For
the long-distance (retarded) regime (z 	 10−6 m), the func-
tion U (z) has the known asymptotic behavior C4/z4 for the
three atoms. The C4 coefficient is a function of the intensity of
the applied magnetic field (B) and of the chemical potential
of the graphene sheet (μc). It is clear from Fig. 6 that the
magnetic field decreases the intensity of the Casimir-Polder
potential in the long-distance regime for the three atoms.
On the other hand, for short distances (z � 10−6 m), the
Casimir-Polder potential does not obey a universal asymptotic
power-law dependence for interaction with graphene in the
presence of a magnetic field. Moreover, we have numerically
verified that the Casimir-Polder potential is enhanced due
to the presence of the magnetic field in the short-distance
regime. The enhancement of the CP energy in the short-
distance regime is more evident when we plot the ratio

FIG. 6. Casimir-Polder energy as a function of the distance be-
tween graphene and the atom for different values of the external
magnetic field: (a) He, (b) Na, and (c) Rb. We set the chemical
potential of the graphene sheet as μc = 0.115 eV in this figure.

U B(z)/U B=0(z), as was done in panel (c) of Figs. 3 (He), 4
(Na), and 5 (Rb).
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