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Engineering momentum profiles of cold-atom beams
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We describe a procedure for engineering beams of cold atoms by selectively draining particles from a trapped
gas based on momenta. Atoms escape through a filter potential that only transmits atoms with the desired
momenta. We outline an algorithm that outputs a filter potential that produces a prespecified beam momentum
profile. We illustrate this procedure for the case of a narrow band-pass (NBP) quantum filter. Lastly, we discuss
the application of the NBP filter for probing the self-energy and effective mass of Bose polarons, as well as the
corresponding Landau criterion.
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I. INTRODUCTION

In this article, we discuss a procedure for creating cold-
atom beams with momentum transport profiles that can be se-
lected for the matter at hand. Such beams would enable novel
scattering experiments with quantum gases. In particular, they
could be used to measure parameters that define few- and
many-body physics of cold-atoms systems, e.g., the scattering
length, three-body parameter [1,2], or the self-energy and the
effective mass of a polaron [3,4]. The beams can also be used
as the initial state for atom interferometry [5,6].

Figure 1 summarizes our proposal. Analogous to a quan-
tum switch device (“transistor”) [7–9], the flux of particles
from the “source” (reservoir) is determined by the “gate”
(link potential). However, rather than simply controlling the
overall transmission rate, our proposal allows one to design
the momentum profile of the outgoing flux. For simplicity,
we illustrate our idea using a one-dimensional (1D) geometry
(though our formalism also applies directly to a cylindrically
symmetric three-dimensional geometry). We assume that the
particles in the reservoir are noninteracting [10], so that their
scattering properties may be calculated using the one-body
Schrödinger equation,

− h̄2

2m

∂2

∂x2
ψ + V0(x)ψ = h̄2k2

2m
ψ, (1)

where m is the mass of a particle from the reservoir, and h̄2k2

2m is
its energy. The link potential V0(x) produces the transmission
coefficient T0(k). By carefully tuning V0(x), one produces a
T0(k) that allows only particles with the desired momenta to
tunnel through the barrier into the flux region as required by
the experimental application. The tunability of V0(x) in cold-
atom setups has been recently demonstrated [11–13], sug-
gesting that our proposal relies only on the toolbox available
in current cold-atom laboratories. Note that the momentum
profile of the outgoing beam can be measured using single-
atom momentum resolution techniques (e.g., [14]), allowing
one to confirm that the beam has the desired flux profile.

In this article, we discuss how to determine an appropriate
V0(x) for a given desired flux profile T0(k). Furthermore, we

briefly discuss the 1D Bose polaron problem as a possible
application of cold-atom beams.

Other studies related to the engineering of atomic beams
have focused on the outcoupling of atoms from a Bose-
Einstein condensate [15–17] or on controlling the transmis-
sion of atoms with careful manipulation of an optical lattice
[18–20]. In contrast, the current article proposes a method for
engineering atomic beams by coupling a trapped gas of atoms
to a combination of individually tuned lasers. Moreover, the
proposed scheme is generic in the sense that one can approx-
imately produce arbitrary desired momentum profiles of the
transmitted atom beam.

II. PROCEDURE FOR FINDING A LINK POTENTIAL

We find an appropriate link potential V0(x) ≡ V (x, θ∗) by
performing a global search over a family of possible potentials
V (x, θ) for the parameters θ∗ that reduce the k-integrated
squared error between the desired transmission-momentum
profile T0(k) and the actual profile Tθ (k) produced by a sample
potential V (x, θ). Concretely, we minimize the cost

Jθ =
∑

0<k<kF

wk|T0(k) − Tθ (k)|2, (2)

where the k integral has been approximated (up to a constant
factor) by a sum over a discrete set of momentum values,
the interval of integration is [0, kF ], and wk is the weight
given to momentum k. The weights are chosen to emphasize
or deemphasize special regions of k during the minimiza-
tion. For instance, for a narrow band-pass filter that forbids
transmission for all k except in the neighborhood of a chosen
value k0 (see Figs. 1 and 2), it is appropriate to increase the
weights in the region of k0. The convergence of our approach
is somewhat sensitive to the choice of wk .

We developed a strategy for choosing the weights that takes
into account the following considerations: (i) the transport
coefficient is zero for k = 0 (there can be no transmission for
k = 0 and V �= 0 in 1D), so the weight can be smaller for
small k; (ii) the transport coefficient approaches 1 for large
k so higher weights are required in the large-k region if one
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FIG. 1. An illustration of the proposal: A reservoir that contains
particles of various momenta is connected to an external link poten-
tial. The potential filters out the desired momenta and the particles
in the flux region have a known momentum distribution—here,
the distribution is nonzero only in the neighborhood of a chosen
momentum. The link potential is a narrow band-pass filter.

wishes to suppress flux at large k; and (iii) to reproduce narrow
features in the target transport profile, it may be helpful to
increase the weight in the k region of these features. Following
these principles, we arrive at the following formula for the
weight function:

w(k; r) = wbg(k) + rT0(k), (3)

where wbg(k) is chosen to account for considerations (i)
and (ii) above, and the term proportional to the positive
constant r accounts for consideration (iii). The form of
wbg(k) can be inferred from typical transmission coeffi-
cients. For convenience, we use the analytic form for the
transmission coefficient produced by the Morse potential
h̄2k2

0/[2m cosh2(k0x/
√

2)] (cf. [21]):

wbg(k) =
[

sinh2(
√

2πk/k0)

sinh2(
√

2πk/k0) + cosh2(
√

7π/2)

]1/2

, (4)

where the parameter k0 determines a typical energy scale (for
an example, see our illustration below). The parameter r was
chosen by trial and error for each target profile T0(k).

With the goal of discovering experimentally viable solu-
tions, we parametrize the family of link potentials V (x, θ), as
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FIG. 2. A two-Gaussian solution for the narrow band-pass filter
transport profile. The main figure shows the target profile (dot-dashed
red curve) used during optimization [see Eq. (7)] and the actual
transport profile resulting from the optimization procedure (solid
blue curve). The inset shows the optimal link potential V (x, θ∗).

TABLE I. The explicit constraints on the potential parameters
and the rationale for each constraint. The values of σmin, σmax, Amin,
and Amax must be determined from the experimental context.

Constraints Experimental rationale∑N
i=1 μi = 0 The cost function has a continuous degeneracy

associated with overall translations of the link
potential.

σmin � σ j � σmax Laser beam widths fall between a minimum
and maximum value.

Amin � |Aj | � Amax Laser amplitudes fall between a minimum
and maximum value.

a sum of N Gaussians, each of the form

Vi(x; Ai, μi, σi ) = Ai√
2πσ 2

i

exp

[
− (x − μi )2

2σ 2
i

]
; (5)

the parameter θ denotes the parameter space
{A1, μ1, σ1, . . . , AN , μN , σN }. While minimizing Eq. (2),
we enforce the parameter constraints listed in Table I. In
addition to these constraints on the parameters, we enforce a
constraint requiring that the link potential should not extend
beyond the region of potential support, x ∈ [−x0, x0]. To
accomplish this, we minimize the boundary-augmented cost
function,

Jaug
θ

= Jθ + α

N∑
i=1

∫
|x|>x0

dx |Vi(x; Ai, μi, σi )|2, (6)

where α is a tuning parameter chosen empirically to aid
in convergence. If the potential Vi is outside [−x0, x0], then
the boundary-augmented cost function evaluates to Jθ � Jθ +
αAi, which means that α should be chosen of the order Jθ/Amin

to dictate the constraint. The integral in Eq. (6) evaluates to the
complementary error function. The full form of Jaug

θ
is given

in Appendix A.
For a particular choice of θ [and hence V (x; θ)], we solve

for Tθ (k) by integrating the Schrödinger equation (1) across
the region of the potential and calculating the ratio of the
transmitted to the incident flux. In order to do this efficiently,
we discretize the second derivative in Eq. (1), which trans-
forms Eq. (1) into a banded linear system of equations solv-
able in O(M ) time, where M is the number of x steps. Using
these techniques, we are able to evaluate the transmission
coefficient 3700 times per second on a seventh-generation
Intel Core i7 processor for a test involving 1000 randomly
generated two-Gaussian potentials and 100 different scatter-
ing momenta.

We minimize Jaug
θ

for θ∗ using the global optimiza-
tion routine called Differential Evolution (DE) [22]. This
evolutionary-based search algorithm is suitable given the non-
convex (multiple local minima) nature of the optimization
problem and the continuity of the parameter space. Despite
its simplicity, DE does a good job of balancing exploration
of the space of link potentials against the need to efficiently
learn from each sample with little tuning of the model settings.
Empirically, we found DE to converge to good solutions much
more quickly than random search, perhaps due to DE’s ability
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to incorporate information from the previous iteration of the
optimization algorithm.

III. NARROW BAND-PASS (NBP) FILTER
TRANSPORT PROFILE

To illustrate the method described above, we optimize for
a NBP filter transport profile sharply peaked near k = k0.
For our target transport profile, we use a Lorentz profile (see
Fig. 2),

T (k; k0, b) =
[

1 + (k − k0)2

b2

]−1

, (7)

where k0 determines the peak position and b determines the
width. For simplicity, in this section, we adopt the units
k0 = h̄ = 2m = 1, which scales k0 out of the problem. The
value of b must be much smaller than k0 to have a well-
defined peak, but not too small to have realistic timescales
for a one-body tunneling. We set b = 0.03k0, which for a
reasonable assumption h̄2k2

0/(2m) = kB × μK, where kB is
the Boltzmann constant, leads to the timescale associated with
the resonance width 2m

h̄b2 ∼ 10 ms.
For the constraints shown in Table I, we use σmin = 0.2,

σmax = 3, Amin = 5, and Amax = 30. We set kF = 2. We fur-
ther simplify the optimization by searching over two-Gaussian
link potentials with equal amplitudes and widths. We antici-
pate that this potential might be the easiest to realize in the
laboratory. Moreover, it allows us to give a physical interpre-
tation in terms of quasidiscrete energy levels supported by the
link. Even though we work here with a very simple example
with only three unknown parameters, a method for globally
searching the space of possible link potentials is still required
because the cost function for the optimization has many
local minima corresponding to the many ways to produce a
resonance state near the scattering energy k2

0 . Moreover, this
global search technique extends to more complicated transport
profiles which necessitate more complicated families of link
potentials.

Figure 2 shows the link potential and transport profile
resulting for the NBP filter optimization. The solution sup-
presses transport except near k = 1 as set by our Lorentz
target profile and near k = 2 resulting from a second reso-
nance in the scattering potential. In general, the transmission
coefficient will always be nonzero to the right of the target
profile. This, however, need not be a problem if the atoms
are sourced from a thermal reservoir with sufficiently low
population to the right of the target profile [23]. Moreover,
the transmission coefficient can be further shaped by using a
second NBP filter.

It may be experimentally problematic if the transport pro-
file shown in Fig. 2 were highly sensitive to the potential
parameters. Such sensitivity would require extremely fine
control over the laser amplitudes, positions, and widths in
order to produce the desired transport profile. To test this
sensitivity, we generate 2000 perturbed potentials by varying
the six parameters of the two-Gaussian solution shown in
Fig. 2 by a random-normal multiplicative factor with mean
1 and standard deviation 0.05. The distributions of the peak
positions and heights for the 2000 perturbed potentials are
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FIG. 3. Sensitivity of the transport profile to perturbations of the
potential parameters. Shown are the distributions of the peak position
kmax (main graph) and peak height Tmax (inset) for 2000 potentials
with parameters randomly perturbed by about 5% from the optimized
potential presented in Fig. 2.

shown in Fig. 3. Both the peak positions kmax and the peak
heights Tmax undergo perturbations on the scale of the 5%
potential perturbations, suggesting that transport properties
are relatively insensitive to slight errors in the potential pa-
rameters.

Though we have demonstrated our optimization method in
a very simple scenario, it is possible to apply this technique to
more complicated scenarios such as a double band-pass filter
or step transport profiles. These more complicated transport
profiles require more than two Gaussian potentials because
they rely on multipath interference that must suppress tunnel-
ing for certain values of momenta. In our explorations, we
found that link potentials made of three- or four-Gaussian
potentials tended to be more sensitive to random variations of
potential parameters. If such potentials are needed to produce
the desired transport profile, it may be possible to further
augment the cost function in order to preference solutions
that are less sensitive to potential perturbations. We leave the
thorough exploration of these ideas to future work. In the next
section, we discuss a possible experimental application of the
NBP filter.

IV. APPLICATION

A Bose or Fermi gas can be placed in the flux region
(see Fig. 1) to study quantum environments with neutral,
mobile impurities—an important research venue promoted
by cold-atom simulators [24–33]. With our proposal, it is
possible to investigate the dynamics of impurities that initially
have a known momentum profile, thus allowing for a direct
measurement of the effective mass and the critical momentum.
A detailed discussion of these concepts is beyond the scope
of this article. Still, we find it useful to briefly explain them
in connection to our proposal. To this end, we consider a
degenerate one-dimensional Bose gas with an impurity of
momentum P. To model this system, we employ a nonlinear
Schrödinger equation for a Bose gas with an impurity atom
(see Appendix B). This equation was solved analytically in
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FIG. 4. (a) Schematic illustration of the energies of free and
dressed particles. The effective mass and the self-energy can be
obtained from the energy difference, �(p). (b) Pc for an impurity
of mass M 	 m; c is the speed of sound in the gas and g is the
boson-impurity interaction strength.

the context of a nonlinear flow past an obstacle [34], which
allows us to work out all properties of the dressed particle in a
simple manner; note that this (or a similar) nonlinear equation
was discussed in Refs. [35–40]; see, also, [28,41–46] for other
relevant studies.

The lowest-energy state of the nonlinear Schrödinger equa-
tion with a given P is a combination of two solitons. They
make a dissipationless defect in the Bose gas, which accom-
panies the impurity. The corresponding lowest energy is given
by E � EB + ε + P2/(2meff ), where EB is the energy of the
gas without an impurity, ε is the self-energy of the dressed
particle, and meff is its effective mass. The solution is stable
only for P < Pc; impurities with P > Pc generate gray solitons
(cf. [34]). Note that quantum fluctuations lead to a finite
dissipation (cf. [47–49]) even for P < Pc. We do not consider
this effect as it does not change our qualitative presentation.

To measure ε, meff , and Pc, one can use a narrow band-pass
filter as shown in Fig. 2 to create a flux of particles with
momenta close to P. The width (value of b) of the target
profile must be chosen such that the current is weak, i.e.,
there is a negligible probability to find two flux particles at
distances smaller than the healing length of the Bose gas. Then
the impurity-in-a-gas picture is applicable by construction.
For simplicity, we assume that initially the impurity is in
a hyperfine state that does not interact with the Bose gas.
To transfer to a strongly interacting hyperfine state, one has
to deposit enough energy to compensate for the interaction
effects; see Fig. 4(a). Therefore, the radio-frequency response
(e.g., the transferred fraction) at different momenta directly
measures the self-energy and effective mass of the polaron.

A measurement such as this would be similar to the mea-
surement in a recent experiment with a three-dimensional
Fermi polaron [32], but with a superior control over the
impurity momentum. Moreover, the overlap between the non-
interacting and interacting states, i.e., the residue, can be
measured, allowing one to test different theoretical methods
[36,39,44,45] that, while qualitatively agreeing on meff and
ε, contradict each other on the residue. Since the momentum
of the impurity is known, not only the effective parameters
but also the limits of applicability of the polaron model will
be seen in the radio-frequency response, in particular, Pc.
In Fig. 4(b), we present Pc for impurities whose mass M is
much larger than m [34]. For weak interactions (g → 0), the
critical momentum is determined by the speed of sound c, in
accordance with the Landau criterion. In the opposite limit,

g → ∞, the critical momentum goes to zero as 1/g (cf. [35]):
Pc is limited by the timescale for a two-body exchange.

V. SUMMARY

We outline a procedure for engineering beams of particles
with desired momentum profiles using a filter potential con-
nected to a reservoir (see Fig. 1). Such a beam can be used
to probe cold-atom systems. It can also be used for quantum
simulations, as we illustrated with a narrow band-pass filter
and a one-dimensional Bose gas in the flux region. Polarons in
two-, three-, and mixed-dimensional geometries can similarly
be created.

ACKNOWLEDGMENTS

We thank Peter Schlagheck for referring to [50], and
Joachim Brand and Volodymyr Pastukhov for useful dis-
cussions. A.G.V. gratefully acknowledges the support of the
Humboldt Foundation and the Deutsche Forschungsgemein-
schaft (Project No. 413495248).

The authors contributed equally to this work.

APPENDIX A: BOUNDARY-AUGMENTED
COST FUNCTION

Equation (6) shows the boundary-augmented cost function
which includes a term that increases the cost for link-potential
solutions that extend beyond the support region x ∈ [−x0, x0].
This added term is

Jboundary = α

N∑
i

Ji
boundary, (A1)

where

Ji
boundary =

∫
|x|>x0

dx |Vi(x; Ai, μi, σi )|2. (A2)

Assuming the Gaussian potential form as in Eq. (5), this
evaluates to

Ji
boundary =

√
π

2
A2

i σi

[
erfc

(
x0 + μi

σi

)
+ erfc

(
x0 − μi

σi

)]
,

(A3)

where erfc is the complementary error function.

APPENDIX B: IMPURITY IN A BOSE GAS

To model one impurity atom that moves through a one-
dimensional environment made of N cold bosonic atoms, we
employ the following Hamiltonian:

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

− h̄2

2M

∂2

∂y2
+ λ

N∑
i> j=1

δ(xi − x j )

+ g
N∑

i=1

δ(xi − y), (B1)

where M is the mass of the impurity atom, and m is the mass
of a bosonic particle. The position of the impurity is y; bosons
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are at the coordinates {xi}. We assume that the realistic boson-
boson and boson-impurity interactions are well described by
the zero-range potentials of strengths λ and g, respectively.
The environment is large by assumption. To describe it, the
periodic boundary conditions are used: The particles move in
a ring of the circumference L, such that 0 < xi < L and 0 <

y < L. We are interested in the thermodynamic limit: N, L →
∞ with a fixed value of the density, ρ = N

L .
If the system is noninteracting (λ = g = 0), the eigen-

states are written as e2π i n1x1+···+nN xN +my
L , where n1, . . . , nN

and m are arbitrary integers. For nonvanishing interac-
tions, we use these functions to write an eigenfunction

of the Hamiltonian as � =∑{n j },m a{n j},me2π i
∑

n j x j +my

L . Be-
cause all interactions are pairwise, the total (angular) mo-
mentum of the system must be conserved, and we write
it as P = 2π h̄

L (
∑

j n j + m). A conserved quantity (P) al-
lows us to exclude one variable from the consideration. We
write the function � as � = ei Py

h̄
∑

{n j},m a{n j },me2π i
∑

n j z j
L ≡

ei Py
h̄ ψ (z1, . . . , zN ), with zi = Lθ (y − xi ) + xi − y, where θ (x)

is the Heaviside step function, i.e., θ (x > 0) = 1 and zero
otherwise. The variables zi are defined such that 0 � zi � L
and the impurity is placed at z = 0 (z = L). Now if we insert
this function into the Schrödinger equation, H� = E�, we
obtain the following equation for ψ (0 < zi < L):

− h̄2

2m

∑
i

∂2ψ

∂z2
i

− h̄2

2M

(∑
i

∂

∂zi

)2

ψ + i
h̄P
M

∑
i

∂ψ

∂zi

+λ
∑
i> j

δ(zi − z j )ψ =
(

E − P2

2M

)
ψ, (B2)

which must be supplemented with the boundary conditions,

ψ (zi = 0) = ψ (zi = L),
∂ψ

∂zi

∣∣∣∣
zi=0+

zi=L−
= 2gκ

h̄2 ψ (zi = 0),

(B3)

where κ = mM/(m + M ) is the reduced mass.
By assumption, the bosons interact weakly such that the

ansatz ψ =∏i �(zi ) can be used to approximate the sys-
tem. To minimize the expectation value of the Hamilto-
nian, the function �(z) must satisfy the following nonlinear
Schrödinger equation:

− h̄2

2κ

∂2�

∂z2
+ i

h̄P
M

∂�

∂z
− i

h̄2(N − 1)A

M

∂�

∂z
+ λ(N − 1)|�|2�

= μ�, (B4)

where A = −i
∫

�(x)∗ ∂
∂x �(x)dx defines the momentum of

a boson, and μ is the Lagrange multiplier. We rewrite this
equation as

−∂2�

∂z2
+ iv

∂�

∂z
+ λ̃(N − 1)|�|2� = μ̃�, (B5)

where μ̃ = 2κμ

h̄2 , λ̃ = 2κλ

h̄2 , and v = 2κP
Mh̄ with P = P −

h̄A(N − 1). P defines the momentum of the impurity in the
thermodynamic limit; note that A is determined by P, and
there is a unique value of P for a given P. The boundary

z
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FIG. 5. (a) The density |�|2N of the Bose gas for z0 = a (solid
red curve), z0 = −a (dot-dashed blue curve) (a > 0; the exact value
of a is not important for our discussion). Note that the minimum of
the density is at −a. The shaded area is a combination of the two
solutions with the singularity at z = 0. (b) The phase φ of the Bose
gas for the densities from (a).

conditions for Eq. (B5) read

�(z = 0) = �(z = L),
∂�

∂z

∣∣∣∣
z=0+

z=L−
= g̃�(0), (B6)

where g̃ = 2κg
h̄2 . The nonlinear equation (B5) has an analytic

steady solution [34], which determines the properties of the
dressed impurity in our problem. Let us first consider the
noninteracting impurity g = 0. In this case, the solution for
v > 0 is [51,52]

� =
√

μ̃

λ̃(N − 1)

{
1 − βsech2

[√
μ̃β

2
(z + z0)

]} 1
2

eiφ(z),

(B7)

φ(z) = −πθ (z + zd )

+ arctan

⎧⎨
⎩

√
2v2

μ̃
β

exp[
√

2μ̃β(z + z0)] − 2β + 1

⎫⎬
⎭, (B8)

where β = 1 − v2/(2μ̃), z0 is some parameter that determines
the origin, and zd is the point where arctan reaches π/2. It
is worthwhile noting that the solution for v < 0 is �∗. The
solution from Eqs. (B7) and (B8) is plotted in Fig. 5; for
simplicity, it is plotted in the interval −L/2 < z < L/2, and
the region 0 < z < L easily follows.

To describe an interacting impurity, we combine two mov-
ing solitons with ±z0, which creates a singularity at z = 0
[34,35]. Therefore, a dressed impurity in our model is a topo-
logical defect with a dissipationless propagation. We write the
corresponding “wave function” as

� =
√

μ̃

λ̃(N − 1)

{
1 − βsech2

[√
μ̃β

2
(z ± z0)

]} 1
2

eiφ(z),

(B9)
with

φ(z) = δφθ (−z) + arctan

⎧⎨
⎩

√
2v2

μ̃
β

exp[
√

2μ̃β(z ± z0)]− 2β+ 1

⎫⎬
⎭,

(B10)

where z0 > 0 is discussed below, the parameter δφ is not
important for the further derivations, and it reassures that the
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phase is a continuous function; the plus sign in ± corresponds
to z > 0 and the minus sign to z < 0. This function is il-
lustrated in Fig. 5. The density has a nonanalytic derivative
at z = 0. The phase is a continuous function at z = 0 (its
derivative is also continuous). Note that the wave function
is not periodic [see Eq. (B10)]. This nonperiodicity is not
important for our discussion because we are interested in the
behavior of the bosons close to the impurity. It suggests that
a gray soliton must be formed upon a change of interaction
parameters to take care of the phase slip.

The parameter μ̃ is found from the normalization condition∫
�2 = 1. For N → ∞, we obtain

μ̃ = γ ρ2 N − 1

N

{
1 − 2

√
2β0

[tanh(d ) − 1]√
γ N

}
, (B11)

where γ = λ̃/ρ, ρ = N/L, β0 = 1 − v2/(2γ ρ2), and d =√
γ β0

2 ρz0. The equation to determine z0 is found by using the
boundary conditions at z = {0, L},

g̃

ρ
√

2γ
= β

3
2

0 tanh(d )

−β0 + cosh2(d )
. (B12)

This equation is cubic [in tanh(d )]; hence, the solutions can
be found in a closed form. There are three solutions. How-
ever, only two will lead to the acceptable values of z0. We
will refer to these steady solutions as the “polaron” and the
“polaron-soliton” pair because in the limit g → 0 the former
corresponds to the ground state, and the latter to a gray soliton.
The polaron-soliton pair is expected to be unstable (small
perturbations lead to a decay of this steady solution [34]);
therefore, we do not consider it. The solutions merge for zm,

tanh2

(√
γ β0

2
ρzm

)
=
√

1 + 4v2

γ ρ2 − (1 + v2

γ ρ2 )

2β0
, (B13)

which is derived by taking a derivative of Eq. (B12) with
respect to z0 and equating the resulting expression to zero—
this determines the maximum value of g for which (for a fixed
β0) there is a steady solution. Equations (B12) and (B13) give
the equation for the critical value of vc:

g̃

ρ
√

γ
=

3 −
√

1 + 4v2
c

γ ρ2

−1 +
√

1 + 4v2
c

γ ρ2

√√√√√1 + 4v2
c

γ ρ
− 1 − v2

c

γ ρ2
. (B14)

For v > vc (see Fig. 4 of the main text), there are no steady
solutions.

Now we can calculate the energy of the dressed impurity
in the thermodynamic limit,

E ≡ lim
N→∞, N

L →ρ

[E (c, P) − E (c = 0, P = 0)], (B15)

where

E (c, P) = P2

2M
+ μN − h̄2A2N (N − 1)

2M

− λN (N − 1)
∫ L/2

0
|�|4dz. (B16)

Using these expressions, we derive

E = P2

2M
+ h̄2ρ2

2κ

√
2γ β

3
{4b + [−4b + βsech2(d )] tanh(d )}

+ h̄P

M
lim

N→∞
AN, (B17)

where b = 1 + v2

4λ̃ρ
= 1 + κP2

2M2λρ
. This energy for v → 0 can

be written as

E � ε + P2

2meff
, (B18)

where ε is the effective energy of the dressed impurity and
meff is the effective mass.

The parameters meff and ε calculated using Eq. (B18) agree
well with the results in the literature [37], supporting the
use of the nonlinear Schrödinger equation for solving the
problem. However, further work is required to understand
other properties of a dressed impurity in this formalism.
First of all, it will be interesting to investigate the critical
momentum, which is supersonic in the employed model for
g → 0 and for not-heavy impurities. Indeed, the model we
solve is equivalent to a heavy impurity moving in a gas of
bosons with mass κ , which has a different speed of sound.
Note that Fig. 4 of the main text reports on a heavy impurity
(M/m 	 1) for which this problem does not occur. It will
also be interesting to investigate the residue—the overlap
between the wave function that describes a state with g = 0
and the wave function that describes an interacting state. In the
present model, the impurity changes the order parameter only
locally, which means a nonzero residue (see [36] for P = 0),
contradicting other studies on the topic [44,45]. To understand
this disagreement, one could calculate the overlap using an
exactly solvable model, e.g., a heavy impenetrable impurity
in a Bose gas (solvable by the Bethe ansatz).
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