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Violation of single-length-scaling dynamics via spin vortices in an isolated spin-1 Bose gas
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We consider the phase-ordering dynamics of an isolated quasi-two-dimensional spin-1 Bose gas quenched
into an easy-plane ferromagnetic phase. Preparing the initial system in an unmagnetized antiferromagnetic state
the subsequent ordering involves both polar core and Mermin-Ho spin vortices, with the ratio between the
different vortices controllable by the quench parameter. Ferromagnetic domain growth occurs as these vortices
annihilate. The distinct dynamics of the two types of vortices means that the domain growth law is determined
by two macroscopic length scales, violating the standard dynamic scaling hypothesis. Nevertheless we find that
universality of the ordering process manifests in the decay laws for the spin vortices. To provide a fuller picture
of the phase ordering dynamics we also present results for the scaling of the order parameter correlation function
and the hydrodynamic decomposition of the system kinetic energy.
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I. INTRODUCTION

Quenching a many-body system from a disordered into an
ordered phase leads to the formation of spatial field patterns
of linear and nonlinear field excitations, including solitonic
waves, (quasi)topological defects, domain walls, and more
irregular structures [1–4]. These patterns will consecutively
start to grow, developing macroscopic order in the system.
The pattern size is generically given by a characteristic length
scale L, which is initially set by the quench and grows in the
course of the ordering process. Once it exceeds characteristic
microscopic length scales, the phase ordering typically be-
comes universal such that it exhibits a power-law growth in
time as L(t ) ∼ tβ , with universal scaling exponent β.

Due to their rich phase diagram [5,6] and their high
controllability in experiments, spinor Bose gases are ideally
suited for studying universal dynamics in quantum many-
body systems. Apart from experimental studies of short-time
dynamics following quenches between different phases [7,8],
subsequent domain coarsening of spin textures, without ref-
erence to universal scaling, has been observed in the long-
time dynamics of a quasi-two-dimensional (quasi-2D) spin-1
system [9]. Universal scaling with exponent β � 1/2 has re-
cently been observed experimentally in a ferromagnetic spin-1
Bose gas in a near-one-dimensional (near-1D) geometry [10].
Theoretical studies have shown that universal scaling can
occur in the ordering process of one- and quasi-2D spin-1 as
well as binary Bose gases after a parameter quench into an
ordered phase [11–19].

Phase ordering kinetics and coarsening are commonly
discussed in dissipative systems [3,20–26], where the uni-
versal ordering process is characterized by the underlying
dynamics of (quasi)topological excitations. Dissipative coars-
ening forms a special case of more general spatiotemporal
universal dynamical phenomena far from equilibrium, which
can occur in both open and isolated (quantum) many-body
systems [4,27–29]. Following a quench far out of equilibrium,

a system can in general approach a nonthermal fixed
point [10,30–35]. Such fixed points have been discussed and
experimentally observed with [35–40] and without [10,30–
33,41–43] reference to ordering patterns and kinetics as well
as topological defects.

Here, we numerically study phase ordering dynamics in
an isolated quasi-2D spin-1 Bose gas after a quench into the
easy-plane ferromagnetic phase. Our key observation is that,
by initializing the system in an unmagnetized antiferromag-
netic state (see, e.g., Ref. [44]), the initial quench dynamics
produces both polar-core vortices (PCVs) and Mermin-Ho
vortices (MHVs) as the ordered domains develop. These two
types of spin vortices have distinct universal decay laws, with
the respective vortex densities introducing two independent
macroscopic length scales. The ratio of these vortices can
be engineered by the quadratic Zeeman energy, which we
find to have a striking effect on the timescales and nature of
the ordering. Earlier work studying spin-1 quench dynamics
found that only PCVs played a role in the phase ordering [14].
Phase ordering of a (nonquenched) spin-1 system containing
only MHVs was investigated in Ref. [45], with the initial
vortices inserted randomly into the initial equilibrium state.

Our paper is organized as follows: In Sec. II, we introduce
the model under consideration as well as the applied quench
protocol. In Sec. III, we review the relevant spin vortices
of the system in the easy-plane ferromagnetic phase. The
main results are presented in Sec. IV. We begin with a brief
discussion of the numerical methods used to simulate the
dynamics after the quench. We then present an algorithm for
the detection of different types of spin vortices. With this at
hand we examine the phase-ordering dynamics of the system.
We extract the universal decay laws of the spin vortices and
show the violation of single-length scaling. We furthermore
investigate the origin of the shape of the scaling function
characterizing the momentum-space correlations of the order-
parameter field during the phase ordering by performing a
hydrodynamic decomposition of the kinetic-energy density.
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We finally draw our conclusions and give an outlook to future
work in Sec. V.

II. SPIN-1 BOSE GAS

We consider a homogeneous quasi-2D spin-1 Bose gas
described by the Hamiltonian [46]

H =
∫

d2x

[
ψ†

(
− h̄2∇2

2M
+ q f 2

z

)
ψ + c0

2
n2 + c1

2
|F|2

]
, (1)

where ψ = (ψ1, ψ0, ψ−1)T is the bosonic spinor field whose
components account for the magnetic sublevels mF = 0,±1
of the F = 1 hyperfine manifold. The quadratic Zeeman
energy q along the z direction can be controlled by external
magnetic fields. We work in a frame where a possible ho-
mogeneous linear Zeeman shift has been absorbed into the
definition of the fields. Spin-independent contact interactions
are described by the term c0n2, where n = ψ†ψ ≡ ∑

m ψ†
mψm

is the total density. Spin-dependent interactions are character-
ized by the term c1|F|2, where F = ψ†fψ is the spin density
and f = ( fx, fy, fz ) is a vector that contains the matrices
forming the fundamental representation of the spin-1 algebra.
This term includes the redistribution of population between
the three components via spin-mixing dynamics [46].

For ferromagnetic interactions (i.e., c1 < 0) and q > 0 the
system exhibits two different phases separated by a quan-
tum phase transition (QPT) [47]. For q > q0 = 2n0|c1| the
system is in the polar phase where the mean-field ground
state is unmagnetized and given by the state vector ψP =
eiθ√n0(0, 1, 0)T . Here, n0 is the homogeneous condensate
density and θ is a global phase distinguishing different realiza-
tions of the spontaneous symmetry breaking. For 0 < q < q0

the system is in the easy-plane ferromagnetic phase in which
the mean-field ground state reads

ψEP = √
n0

eiθ

2

⎛
⎝e−iφ√

1 − q/q0√
2(1 + q/q0)

eiφ√
1 − q/q0

⎞
⎠, (2)

where φ denotes the angle of the in-plane magnetization with
respect to the x axis. The magnitude of the magnetization is
|F⊥| = n0[1 − (q/q0)2]

1
2 . We take F⊥ = Fx + iFy as the spin

order parameter for this phase.
Beginning from a polar condensate at q > q0 it has been

shown that, after a sudden quench across the QPT, the system
undergoes phase-ordering dynamics within the easy-plane
ferromagnetic phase [10,13,14]. In this work we investigate
the phase-ordering dynamics occurring when quenching the
system into the easy-plane ferromagnetic phase starting from
the state

ψAF =
√

n0

2

⎛
⎝ eiφ1

0
eiφ−1 ,

⎞
⎠, (3)

where φ+1 and φ−1 denote arbitrary phases. This unmag-
netized state is a mean-field ground state for the case of
antiferromagnetic interactions (c1 > 0), commonly referred
to as the antiferromagnetic phase. It can be easily generated
experimentally by applying a π/2 rf-rotation to a polar con-
densate [44].

Quenching into the easy-plane ferromagnetic phase gives
the system an excess energy (relative to the easy-plane ground
state) of �εAF = q + 1

4 q0(1 − q/q0)2. This is larger than the
excess energy for a polar initial condition (�εP = �εAF − q),
indicating that more heating will occur for the initial condition
we employ. However, the degree of extra heating will be less
for smaller q and here we focus on the regime q � 0.3q0.

III. SPIN VORTICES

In 2D systems vortices often play a dominant role in the
phase-ordering dynamics. We therefore briefly review the
structure of single spin vortices in the easy-plane ferromag-
netic phase. We write its wave function in polar coordinates
with the origin taken at the vortex core. Sufficiently far from
the core the general vortex state vector is of the form

ψV =
√

n0

2
eiσφϕ

⎛
⎜⎝

e−iσαϕ
√

1 − q/q0√
2(1 + q/q0)

eiσαϕ
√

1 − q/q0.

⎞
⎟⎠. (4)

Here, ϕ is the azimuthal angle, and σφ and σα are integers
accounting for the directions of the mass and spin flow around
the vortex, respectively. Different types of spin vortices arise
from different combinations of σφ and σα . We only discuss el-
ementary vortices given by σφ = 0,±1 and σα = ±1 because
they will be long-lived configurations in the system.

Polar core vortices (PCVs) exhibit spin circulation (σα =
±1) but no mass circulation (σφ = 0), and have an unmag-
netized (i.e., polar) core. The two types of PCVs can be dis-
tinguished by the phase winding in the order-parameter field,
i.e., F⊥ ∼ eiσαϕ . Here we refer to these as positive (p) σα = 1
and negative (n) σα = −1 PCVs and note that these two types
constitute a vortex-antivortex pair and can annihilate.

There are four types of elementary Mermin-Ho vortices
(MHVs) which exhibit both mass (σφ = ±1) and spin (σα =
±1) circulation, and the vortex core is magnetized. The wind-
ing numbers of the mF th component is given by wmF = σφ −
mF σα . Thus a MHV is characterized by a double winding in
either the mF = 1 or −1 component, a single winding in mF =
0, and no winding in the remaining component. We denote
the four types of MHVs as (σφ, σα ) = (p, p), (n,n), (p,n),
(n,p) where p ≡ + 1 and n ≡ − 1. The spin circulation σα can
be determined from the phase winding of the transverse spin
whereas σφ can directly be inferred from the phase winding
of the mF = 0 component. This unambiguously characterizes
all types of MHVs. The two MHVs (p,p) and (n,n) constitute
a vortex-antivortex pair, and similarly for (p,n) and (n,p).

IV. PHASE-ORDERING DYNAMICS

A. Numerical methods and parameter quench

We simulate the phase-ordering dynamics starting from the
antiferromagnetic initial state (3). To seed the growth of un-
stable modes due to the quench and the subsequent formation
of symmetry breaking domains, it is crucial to account for
fluctuations beyond mean-field order. We do this by adding
noise to the initial state according to the truncated Wigner
prescription [15,49,50]. The time evolution of this initial state
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FIG. 1. Image of a 336ξs × 336ξs subregion of the system at time t = 2485ts, where ts = h̄/q0 is the characteristic spin time, for a quench
to q = 0.15q0. (a)–(c) Phase profiles φmF = Arg(ψmF ) of the three mF components. (d) Phase field of the transversal spin revealing the
spin circulations. (e) Identified spin vortices: Vortex-antivortex pairs are shown with the same color code. All types of Mermin-Ho vortices
(MHVs) (blue pluses and dots and red stars and triangles) and polar core vortices (PCVs) (green crosses and squares) are present. Vortex
labeling and details of the identification procedure are given in the main text. (f) All vortices detected in the phase profiles depicted in panels
(a)–(d) including their winding numbers indicated by wδ with δ = 0, ±1, F , where wF denotes the winding identified in φF⊥ . Vortex detection
as in Ref. [48]. Comparison of panels (e) and (f) shows that our algorithm for the spin vortex identification (see main text) is able to identify
all PCVs and MHVs in the system with a high accuracy. A Gaussian blur filter with two-grid-point width is applied to the data in panels
(a)–(c) and three-grid-point width to the data in panel (d) to reduce short-length-scale noise.

is then given by the spin-1 Gross-Pitaevskii equations (GPEs)

ih̄∂tψ =
(

− h̄2∇2

2M
+ q f 2

z + c0n + c1F · f
)

ψ, (5)

which are solved by means of a spectral split-step algorithm.
Our quasi-2D simulations are performed for the case of
c0/|c1| = 3 and n0 = 104ξ−2

s , where ξs = h̄/
√

Mq0 is the spin
healing length of the system. Each component of the spinor
field is represented on a 2D grid of 2048 × 2048 points of
spatial extent l × l = 1600ξs × 1600ξs and subject to periodic
boundary conditions.

We consider a sudden quench made by setting q to a
value in the range [0, q0] at the start of the simulation. In the
early-time evolution the dynamics is dominated by the growth
of unstable modes leading to the formation of transverse
magnetization (see, e.g., Refs. [51,52]). Spin vortices develop
between the small magnetized domains that form with a length
scale comparable to ξs. Once the (local) ferromagnetic order
is established these defects are topologically stabilized and
can only decay by mutual annihilation when the appropriate
vortex-antivortex pair meets. This process is relatively slow
compared with the initial growth of local order and dominates
the long-time phase-ordering dynamics of the system [3].

The mean distance between spin vortices is proportional to
the average size of the magnetic domains and is generally
taken as the key length scale for the universal phase-ordering
process.

B. Detection of spin vortices

Compared to the well-studied case of quenches from the
polar initial state, where only PCVs emerge, our initial state
gives rise to a rich ensemble of different vortices. An example
of the vortex configuration in a subregion of the system is
shown in Fig. 1. This example is taken at a time sufficiently
long after the quench such that the average domain size
is much larger than the microscopic length scales of the
system (ξs).

Each spin vortex is located by finding a vortex in the phase
field of the transversal spin [see Fig. 1(d)]. The spin vortex
type is identified as follows: We count the number and the cor-
responding winding of vortices occurring in the phase fields of
the three mF components in a specified detection area around
the spin vortex [see Figs. 1(a)–1(c) and 1(f)]. The initial
detection area is taken to be 3 × 3 grid points. After extracting
all the information from the phase fields we are usually able to
unambiguously determine the type of the spin vortex. We find
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FIG. 2. Vortex number Nvort as a function of time within the
phase-ordering regime for q = 0.15q0. The decay of PCVs (orange
diamonds) and fit (6) (dotted line). The decay of MHVs (green
crosses) and fit (7) (solid line). Total number of spin vortices (blue
dots). The data is averaged over five trajectories and the error bars
correspond to the standard deviation of the results.

that some of the spin vortices are stretched (i.e., the vortices
in the different mF components are spatially separated) due
to the heating from the energy released by the quench. Such
vortices cannot be identified if they extend beyond the initial
detection area, so we repeat the identification step using a
larger detection area in an iterative procedure. In each iteration
step we increase each side of the detection area by one grid
point. We terminate the algorithm when the spin vortex has
been identified or the detection area has grown to include a
vortex number exceeding a threshold value of four vortices.
This accounts for our algorithm to detect a doubly quantized
vortex in the mF = ±1 components as two separate singly
quantized vortices with equal winding number. Note that a
small systematic error can arise in our identification analysis
when a vortex-antivortex pair is separated by less than three
grid points, which can, for example, happen when they are
about to annihilate. The result of the vortex identification
analysis is shown in Fig. 1(e). We observe all types of PCVs
and MHVs to be present in the system [see Figs. 1(e) and 1(f)],
and our algorithm is able to identify them accurately. In
addition to spin vortices, free vortices occur in each of the
mF components and tend to cluster into small groups with the
same phase winding.

C. Universal decay laws of spin vortices

To characterize the phase-ordering dynamics following the
quench we quantify the evolution of the spin vortex number in
the system. Figure 2 shows the total number of PCVs (orange
diamonds) and MHVs (green crosses) at times 850ts � t �
8300ts for a quench to q = 0.15q0. There is approximately
an equal number of PCVs and MHVs at the earliest time
presented; however, the decay rate of each type of vortex is
distinctly different, with the PCVs decaying faster than the
MHVs. This leads to qualitatively different regimes for the
phase-ordering dynamics: As the MHVs become dominant
at later times the rate of decay of the total number of spin
vortices changes (and hence the magnetic domain growth law)
approaching that of the MHVs.
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FIG. 3. Vortex number Nvort as a function of time within the
phase-ordering regime for quenches to (a) q = 0.3q0 and (b) q =
0.05q0. The decay of PCVs (orange diamonds) and fit (6) (dotted
lines). The decay of MHVs (green crosses). (a) Fit (7) (solid line).
(b) Fit Kudo decay law (solid line) according to Ref. [45]. Total
number of spin vortices (blue dots). The data are averaged over five
trajectories and the error bars correspond to the standard deviation of
the results.

We quantitatively determine the decay laws for the two
types of spin vortices. The PCV decay is consistent with

Nvort ∼ [t/ ln(t/t0)]−2, (6)

where t0 is a short-time cutoff [20] (see dotted line in Fig. 2).
This result agrees with the domain growth law and vortex
decay rate found in earlier work on the polar to easy-plane
quench where only PCVs emerge [14]. The MHVs decay
more slowly, consistent with XY -like scaling [20,21,23]

Nvort ∼ [t/ ln(t/t0)]−1 (7)

(see solid line in Fig. 2).
We have also considered quenches to other values of q and

present results for two other cases in Fig. 3. These results
reveal that the respective decay laws that we have identified
for the PCVs and MHVs are universal. For the quench to
q = 0.05q0 we find that we have to modify the XY decay law
stated in Eq. (7), taking into account the possible difference in
the number of vortices between the two subclasses of MHVs.
The decay is well fit [53] by a decay law found for MHVs in
a similar parameter regime (q/q0 � 1, close to the isotropic
phase at q = 0) by Kudo et al. [45]. This Kudo decay law
is governed by the XY universality class, so this does not
indicate a change in the universality of the MHV decay.
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A key feature we observe is that, by varying the quadratic
Zeeman energy, we can engineer the proportion of PCVs
and MHVs that are present at the start of the phase-ordering
dynamics. Increasing the quadratic Zeeman energy, the ratio
of PCVs to MHVs decreases [see Figs. 2 and 3].

We have also studied quenches for a larger interaction-
parameter ratio of c0/|c1| = 12 and find the number and the
ratio of spin vortices as well as their decay to be consistent
with the results presented above. This supports our expecta-
tion that the decay laws of the vortices are independent of
the interaction parameter ratio as long as |c1| is sufficiently
smaller than c0 such that the excitations of the total density
and phase do not significantly disturb the spin dynamics.
Hence, we expect the same dynamics to occur in various
experiments using spin-1 Bose gases [7,9,10].

D. Violation of single-length scaling

We find that our system evolution violates the dynamic
scaling hypothesis, which underlies standard universal phase
ordering. The dynamic scaling hypothesis [3] states that corre-
lation functions of the order parameter collapse (i.e., become
time independent) when spatial coordinates are scaled by the
(single) macroscopic length scale L(t ). Our system instead has
two distinct macroscopic length scales which have different
scaling with time: the mean distance between PCVs,

LPCV(t ) ∼ t/ ln t, (8)

and the mean distance between MHVs,

LMHV(t ) ∼ (t/ ln t )1/2. (9)

Only in the limit of one spin vortex type being much more
numerous than the other will pure single-length scaling ac-
cording to the dynamic scaling hypothesis hold.

We verify the above-mentioned properties by studying the
momentum-space correlation function of the transversal spin

S(k, t ) = 〈| f⊥(k, t )|2〉, (10)

where f⊥ = F⊥/n0 and the brackets denote an average over
different trajectories of the simulation. According to the
scaling hypothesis, a self-similar evolution of the correlation
function, involving only a single macroscopic length scale
L(t ), is given by the scaling form

S(k, t ) = [L(t )]α/β fs(L(t )k), (11)

where fs is a universal scaling function and α, β are the
corresponding scaling exponents. Because the single length
scale L(t ) evolves in time according to L(t ) ∼ tβ we can write
Eq. (11) in the more general form

S(k, t ) = (t/tref )α fs([t/tref ]
βk), (12)

with tref being some reference time within the scaling regime.
If the integral over the correlations is conserved in time within
the infrared momentum regime obeying the scaling evolution,
one finds the constraint α = 2β for a two-dimensional system.

Figure 4 shows the momentum-space correlation func-
tion of the transversal spin rescaled according to Eq. (12)
for two different regimes of the time evolution in the case
of a quench to q = 0.15q0. For times 650ts � t � 1700ts
the correlation function exhibits approximate scaling with
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FIG. 4. Universal scaling dynamics of the momentum-space cor-
relation function (10) of the transversal spin, S(k, t ), according to
Eq. (12) for a quench to q = 0.15q0. (a) Using the scaling exponents
α = 1.91 ± 0.19 and β = 0.95 ± 0.11 and taking the reference time
to be tref = 690ts (i.e., the evolution time which corresponds to the
data of the earliest time shown), the data collapse to a universal
scaling function for times 650ts � t � 1700ts. The scaling exponents
are consistent with the scaling law obtained for PCVs [see Eq. (8)].
The power-law falloff of the distribution as S(k, t ) ∼ k−ζ is given
by ζ = 2.71 ± 0.01, which differs from the exponent ζ = 2.45
reported for a system containing PCVs only [14]. (b) Using the
scaling exponents α = 0.96 ± 0.23 and β = 0.49 ± 0.11 and taking
the reference time to be tref = 4137ts (i.e., the evolution time which
corresponds to the data of the earliest time shown), the data collapse
to a universal scaling function for times 4100ts � t � 8300ts. The
scaling exponents are consistent with the scaling law obtained for
MHVs [see Eq. (9)]. The power-law falloff of the distribution as
S(k, t ) ∼ k−ζ is given by ζ = 2.90 ± 0.01. All scaling exponents
are obtained by means of a least-square fit to the corresponding
data within the infrared momentum regime below the scale kmaxξs =
0.4 and kmaxξs = 0.2 for the cases (a) and (b), respectively. The
exponent ζ results from fitting the scaling form A/[1 + (k/kL )ζ ],
with characteristic momentum scale kL ∼ L(t )−1, to the above-stated
infrared regime of the rescaled data. The solid gray lines show the
best fit of the scaling form. All data depicted are averaged over 64
trajectories.

scaling exponents α = 1.91 ± 0.19 and β = 0.95 ± 0.11 [see
Fig. 4(a)], whereas for times 4100ts � t � 8300ts we extract
scaling exponents α = 0.96 ± 0.23 and β = 0.49 ± 0.11 [see
Fig. 4(b)]. The exponents result from performing a least-
squares fit of the data using the reference times tref = 690ts
and tref = 4137ts, respectively. The errors are deduced from
the width of the marginal-likelihood functions of the scaling
exponents [33]. The extracted scaling exponents are consistent
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power-law falloff of the spin part n(s)(k) ∼ k−ζ with exponent ζ � 2.6 (dashed line) is consistent with the one extracted for the correlation
function of the transversal spin. The two rightmost panels correspond to the time regime depicted in Fig. 4(b). Here, the power-law falloff
of the spin part with exponent ζ � 3 (solid line) is also consistent with the one extracted for the correlation function. This indicates that the
spin part plays the dominant role for the shape of the universal scaling function describing the scaling evolution of the transversal spin. The
occupation-number spectrum ntot (k), however, is dominated, in the infrared momentum regime, by the incompressible part arising from the
vortices in the system. It shows a power-law behavior with ζ � 4 (dash-dotted line in the rightmost panel) which is consistent with ζ = d + 2
predicted for an ensemble of randomly distributed vortices in a d-dimensional system [3].

with the integral of the correlation function being conserved
in time within the infrared scaling regime as we find α ≈ 2β.
Note that we do not take into account a possible logarithmic
correction entering the scaling forms (11) and (12) in our
analysis. Because the time window considered for the scaling
analysis of the correlation function is comparatively small,
we expect the effects of logarithmic corrections not to be
detectable within the error of the extraction method.

We observe clearly two distinct scaling regimes for the
time evolution of our spin-1 system. The scaling exponents
for the early stage of the phase ordering are consistent with
the scaling law obtained for PCVs [see Eq. (8)], whereas we
find good agreement with the scaling of MHVs [see Eq. (9)]
within the late-time regime. For times 1700ts � t � 4100ts we
are not able to collapse the data with a single set of exponents
α, β. This indicates the violation of single-length scaling
in the system. While the decay of each of the underlying
spin vortices obeys a universal scaling law during the whole
process of phase ordering, the correlation function measuring
the evolution of the order parameter does not. Nonetheless, in
the late-time regime where MHVs are much more numerous
than PCVs (see Fig. 2) we find the phase-ordering process to
be well described by a single length scale only corresponding
to the decay of MHVs [see Fig. 4(b)]. Due to the fast decay of
PCVs as compared with MHVs, the phase ordering is domi-
nated by the PCV scaling law at early stages [see Fig. 4(a)],
although there is an approximately equal number of PCVs and
MHVs in the system (see Fig. 2).

However, the phase ordering for evolution times t � 1700ts
is not purely characterized by the dynamics and the properties
of PCVs. This becomes visible when investigating the scaling
function associated with the scaling evolution in Fig. 4(a).

The momentum-space correlation function of the transversal
spin shows a plateau below the characteristic momentum scale
kL ∼ L(t )−1, followed by a power-law falloff S(k, t ) ∼ k−ζ .
Using all rescaled data we determine the exponent ζ by means
of fitting the scaling form A/[1 + (k/kL )ζ ] to the infrared
momentum regime. We extract an exponent ζ = 2.71 ± 0.01
from the fit, which is considerably larger than the exponent
ζ = 2.45, which was found for a system containing PCVs
only [14]. We expect the deviation to arise from the approx-
imately equal number of MHVs being present in the system.
In contrast, in the late-time regime, we extract an exponent
of ζ = 2.90 ± 0.01. This indicates that not only the scaling
exponents but also the shape of the scaling function differs for
the two types of spin vortices causing the associated universal
dynamics to belong to clearly distinct universality classes.

We emphasize that the power-law falloff of the correlation
function of the transversal spin does not characterize the flow
fields induced by the vortices detected in the system. For
an ensemble of randomly distributed vortices one generally
expects a steeper power-law falloff of the order parameter
correlation function with exponent ζ = d + 2 [3,37,54].

Investigating the origin of the observed power-law falloff
thus requires the separation of the flow field induced by
vortices from other contributions such as sound excitations
or additional structure in the spin degree of freedom of the
system. For this we make use of a hydrodynamic decomposi-
tion of the kinetic-energy density as defined in the Appendix.
Figure 5 shows the momentum distributions n(δ)(k) derived
from such a decomposition. Note in particular the (purple
pentagons) curve n(i)(k) which depicts the contribution of the
incompressible (i.e., divergence-free) part of the velocity field
to the kinetic-energy spectrum. This part arises from both spin
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and free vortices [cf. Fig. 1(f)] and falls off as n(i)(k) ∼ k−ζ

with ζ � 4 during the late-time regime of the phase ordering.
We remark that, for the early stage, we observe a slightly
steeper power-law consistent with ζ � 4.3.

As a result, while the total kinetic-energy spectrum is
dominated by the contribution from the incompressible part
within the infrared momentum region below kξs � 0.2, the
power-law falloff of the spin correlator S(k, t ) is closer to
that of the spin part of the decomposition (n(s), brown arrows
in Fig. 5), for which we find an exponent consistent with
ζ � 2.6 for times 650ts � t � 1700ts, and an exponent ζ � 3
in the late-time regime 4100ts � t � 8300ts [see dashed and
solid lines, respectively, in Fig. 5]. Both exponents can be
related to the surface structure of the transversal spin domains
present in the system. For domains in a d-dimensional system
one generally expects a power-law behavior of the associated
momentum-space correlator with exponent ζ = −2d + ds,
where ds denotes the surface fractal dimension [55]. For
smooth surfaces the fractal dimension is ds = d − 1 [55],
which results in an exponent ζ = 3. Hence, the late-time
scaling regime dominated by the annihilation of MHVs can
be interpreted in terms of the spin domains having a rather
smooth surface structure. However, within the early stage
of the phase ordering the scaling is consistent with the spin
domains having a fractal surface structure with fractal dimen-
sion ds ≈ 1.4. Note that a fractal dimension of this size has
been found for the phase-ordering process involving PCVs
only [14]. Our results thus seem to indicate that each type of
spin vortex is accompanied by a specific surface structure of
the attached spin domain boundaries.

V. CONCLUSION AND OUTLOOK

In this work we studied the phase-ordering dynamics of
a system quenched into the easy-plane ferromagnetic phase.
Our choice of novel initial condition allows both PCVs and
MHVs to form during the quench and subsequently we find
that both types of spin vortices play a crucial role in the phase
ordering. Because the two types of vortices have different
decay laws, the standard (i.e., single macroscopic length
scale) dynamic scaling hypothesis cannot hold for this system.
We find that the ratio of PCVs and MHVs produced can be
varied by quenching to different q. The subsequent decay
of each type of spin vortex appears universal. We believe
this presents an extension of the dynamic scaling hypothesis
to systems supporting multiple defects relevant to the order
parameter. Our results for the scaling of the order-parameter
correlation function support our interpretation of two distinct
macroscopic length scales and importantly demonstrate that,
in the PCV-dominated regime, the scaling function deviates
from the one found for a system containing PCVs only [14].
Performing a hydrodynamic decomposition of the kinetic-
energy density, we identify the spin part of the decomposition
to determine the shape of the scaling function of the order-
parameter correlations.

A feature of our system is that it can be realized in experi-
ments with spinor Bose-Einstein condensates. The initial-state
production and tuning of q are commonplace experimental
manipulations. The main challenges lie in producing a large

quasi-2D system, ideally in a flat-bottomed trap, and subse-
quently monitoring the evolution for long timescales.

The initial condition considered here is a π/2-spin rotation
of that studied in earlier work, yet the equilibration dynamics
proceeds in a different manner involving a new class of
topological defects. An interesting future direction is to vary
the spin rotation angle continuously to produce a family of
initial states to explore the crossover between the two different
transient ordering processes.
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APPENDIX A: HYDRODYNAMIC DECOMPOSITION

In this Appendix we provide a brief definition of the
hydrodynamic decomposition of the spin-1 Bose gas. For
details see also Refs. [56,57]. For simplicity of the expressions
we use units of h̄ = 1. In a hydrodynamic formulation [56],
the spin-1 system is described by the total density ρ, the spin
vector fμ, and the nematic tensor nμν ,

ρ =
∑

m

ψ†
mψm, (A1)

fμ = 1

ρ

∑
m,m′

ψ†
m(fμ)mm′ψm′ , (A2)

nμν = 1

ρ

∑
m,m′

ψ†
m(nμν )mm′ψm′ , (A3)

μ = x, y, z, with fμ being the spin-1 matrices in the funda-
mental representation, and the nematic or quadrupole tensor
representation nμν = (fμfν + fνfμ)/2. The superfluid velocity
field v is then given by

v = −i

2Mρ

∑
m

[ψ†
m(∇ψm) − (∇ψ†

m)ψm]. (A4)

For expressing the hydrodynamic energy it is useful to define
the generalized velocities, corresponding to the quantum-
pressure (q), the spin (s), the nematic (n), the incompressible
(i) and compressible (c) parts,

w(q) = M−1∇√
ρ, w(i,c) = √

ρv(i,c),

w(s)
μ = (2M )−1√ρ∇ fμ, w(n)

μν = (2M )−1
√

2ρ∇nμν. (A5)

Here, v(i,c) are obtained by a Helmholtz decomposition
of v = v(i) + v(c), with the incompressible part having a
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FIG. 6. Hydrodynamic decomposition of the kinetic-energy density into ε(δ)(k) for the same evolution times as in Fig. 5. The contributions
representing the quantum pressure ε(q) (orange diamonds), nematic ε(n) (green squares), compressible ε(c) (red triangles), incompressible ε(i)

(purple pentagons), and the spin ε(s) (brown arrows) parts of the decomposition are compared with εtot (k) = k2ntot (k)/(2M ) (blue dots).
The sum of all parts of the decomposition εkin = ∑

δ ε(δ) (pink thin diamonds) reveals expected deviations between the hydrodynamic
decomposition and εtot for infrared momenta [37]. While the spin part is characterized by a single power-law according to ε(s)(k) ∼ k−ζ+2

with ζ � 2.6 (dashed line) in the early stage of the phase ordering, a bimodal distribution with a steeper power-law falloff consistent with
ζ � 3 (solid line) within the low-momentum region arises in the late-time regime. The incompressible part shows a power-law behavior
consistent with ζ � 4 (dash-dotted line). We remark that the power-law falloff of εtot arises from contributions of both the incompressible and
the spin part. Hence it neither gives direct access to the vortices characterizing the scaling evolution nor to the surface structure of the spin
domains determining the shape of the universal scaling function of the transversal spin correlator.

vanishing divergence, ∇ · v(i) = 0, and the compressible part
a vanishing curl, ∇ × v(c) = 0.

Using the hydrodynamic variables we can express the
energy as

E = Ekin +
∫

d2x
[c0

2
ρ2 + c1

2
ρ2 f 2

μ + qρnzz

]
, (A6)

where the kinetic part reads

Ekin = 1

2M

∫
d2x

[
(∇√

ρ )2 + ρ

4
(∇ fμ)2 + ρ

2
(∇nμν )2

]

+ M

2

∫
d2xρv2. (A7)

Hence, in Fourier space, the kinetic-energy spectrum is given
by the correlation functions of the generalized velocities

εkin(k) = ε(q)(k) + ε(c)(k) + ε(i)(k) + ε(s)(k) + ε(n)(k)

(A8)

averaged over the orientation of the momentum vector,

ε(δ)(k) = M

2

∫
d�k〈|w(δ)(k)|2〉, (δ = q, i, c), (A9)

ε(s)(k) = M

2

∫
d�k

〈
w(s)

μ (k) · w(s)
μ (k)

〉
, (A10)

ε(n)(k) = M

2

∫
d�k

〈
w(n)

μν (k) · w(n)
μν (k)

〉
, (A11)

where Einstein’s summation convention is implied.
The respective total energies are obtained as E (δ) =∫

d2x
∫

dkkε(δ)(k). The spectrum of the kinetic energy
can then be used to calculate corresponding occupation

numbers by using the relation

n(δ)(k) = 2Mk−2ε(δ)(k), (A12)

where δ = q, i, c, s, n. The total occupation number is then
approximately given by

ntot (k) ≈
∑

δ

n(δ)(k) = 2Mk−2εkin(k). (A13)

We remark that the total occupation number ntot and
2Mk−2εkin(k) deviate from each other in the regime of in-
frared momenta kξs � 1 due to additional contributions from
four-point correlations of the fundamental fields contributing
to the kinetic-energy density; see, e.g., Ref. [37].

APPENDIX B: SPECTRUM OF THE KINETIC ENERGY

In this Appendix we briefly discuss the spectrum of the
kinetic energy of our spin-1 system to give additional insights
to the results presented in Fig. 5 in the main text.

Figure 6 shows the hydrodynamic decomposition of
the kinetic-energy density as defined in Appendix A during
the phase-ordering process described in the main text. For the
early stage of the phase ordering, the spin part of the decom-
position exhibits a power-law behavior according to ε(s)(k) ∼
k−ζ+2 with ζ � 2.6. In the late-time regime, the single-
power-law transitions into a bimodal distribution character-
ized by a steeper power-law falloff consistent with ζ � 3 in
the low-momentum region while the high-momentum region
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is still characterized by an exponent ζ � 2.6. In contrast,
for the incompressible part of the kinetic energy, ε(i)(k), a
single power-law consistent with ζ � 4 prevails throughout
the whole evolution. Note that the power-law falloff of the
total kinetic energy εtot (k) = k2ntot (k)/(2M ) results from both

the incompressible and the spin part such that it neither pro-
vides direct access to the vortices characterizing the scaling
evolution nor to the surface structure of the spin domains
determining the shape of the universal scaling function of the
order-parameter correlator.
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