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Atoms trapped by a spin-dependent optical lattice potential:
Realization of a ground-state quantum rotor

Igor Kuzmenko,1,2 Tetyana Kuzmenko,1 Y. Avishai,1,4 and Y. B. Band 1,2,3,4

1Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

3Department of Electro-Optics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
4The Ilse Katz Center for Nano-Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 16 March 2019; published 19 September 2019)

In a cold atom gas subject to a two-dimensional spin-dependent optical lattice potential with hexagonal
symmetry, trapped atoms execute circular motion around the potential minima. Such atoms are elementary
quantum rotors. The theory of such quantum rotors is developed. Wave functions, energies, and degeneracies
are determined for both bosonic and fermionic atoms, and magnetic dipole transitions between quantum rotor
states are elucidated. Quantum rotors in optical lattices with precisely one atom per unit cell can be used as
extremely high sensitivity rotation sensors, accelerometers, and magnetometers.
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I. INTRODUCTION

A quantum-mechanical system in which the motion of a
particle is constrained to a circular ring (or a multidimensional
spherical shell) is an elementary quantum rotor (QR) [1].
References [1,2] state that “elementary QRs do not exist
in nature.” Here we consider both bosonic and fermionic
cold atoms subject to a two-dimensional (2D) spin-dependent
optical lattice potential (SDOLP) of hexagonal symmetry, and
show that the trapped atoms behave as elementary QRs. We
demonstrate that QRs with singly occupied sites (so delete-
rious spin-relaxation effects are thereby suppressed) can be
used as high accuracy rotation sensors, accelerometers, and
magnetometers.

Quantum rotors have been formed using Laguerre-
Gaussian beams [3,4]; e.g., see Refs. [5,6]. However, these
references mostly considered the many-body prosperities of
cold atomic clouds in these beams and were not focused
on elementary quantum rotors. In contrast, our interest is in
singly occupied sites of SDOLPs so that interactions between
QR atoms are suppressed. Hence the systems we consider are
elementary QRs. Moreover, here we show that these QRs can
be used as high accuracy rotation sensors, accelerometers, and
magnetometers, and this not considered in Refs. [5,6].

The outline of the paper is as follows. In Sec. II we present
the model of the quantum rotors in the SDOLP. Section II A
presents the 2D isotropic approximation for the SDOLP, and
Sec. II B discusses the exotic properties of these QRs. The
stimulated Raman spectroscopy used to probe the QRs is
considered in Sec. III, and in Sec. III A we focus on far-off-
resonance Raman transitions between the ground-state levels
n = 0, ζ = 1/2 and n = 0, ζ = −1/2. Section IV explains
how to use the QRs in the SDOLP with singly occupied sites
as a high precision magnetometer, Sec. V discusses the use of
these QRs as rotation sensors, and Sec. VI discusses the use of
these QRs as accelerometers. In Sec. VII we provide estimates
of the accuracy of measurements of rotation, acceleration, and

magnetic field using QRs, and in Sec. VIII we calculate the
uncertainty due to shot noise in the Stokes and pump pulses.
Finally, a summary and conclusion are presented in Sec. IX.
In order to clarify some of the ideas presented in the main text,
we provide a number of Appendices with background material
and further details that substantiate the material presented in
the main text. Specifically, Appendix A provides additional
details regarding SDOLP, and Appendix B presents further
details on the isotropic approximation for the potential near
its minima. The QR areal probability density is studied in
Appendix C. Appendix D provides a semiclassical description
of the quantum QR. Finally, Appendix E discusses a method
of distinguishing between the effects of rotation, acceleration,
and external magnetic field on the QR.

II. MODEL

Consider alkali atoms trapped in the x-y plane by a SDOLP
[7–13]. As shown schematically in Fig. 1, an optical lattice po-
tential with hexagonal symmetry [14] is formed by six coher-
ent laser beams of wavelength λ0 = 2π

q0
and wave vectors qn =

−q0(cos(nπ/3), sin(nπ/3)) with n = 1, 2, 3, . . . , 6. The re-
sultant electric field is E(r, t ) = [E(r)e−iω0t+ c.c.]/2 with
amplitude E0 and space dependent part

E(r) = E0

6∑
n=1

ξneiqnr, (1)

where the polarization vectors ξn are

ξn =
{√

1 − β2ez + β

q0
qn × ez

}
. (2)

The electric field (1) is a linear combination of standing
waves with in-plane and out-of-plane linear polarization with
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FIG. 1. Laser beams (yellow) with wave vectors qn in the x-y
plane generate an optical lattice potential with hexagonal symmetry.
The orange disk in the center shows the physical region in which the
optical lattice is located.

real mixing parameter 0 < β < 1 (in what follows we take
β = 1/

√
2). It generates an effective SDOLP experienced by

the atoms.
The quantum states of the trapped atoms are described by

the electronic angular momentum J , the nuclear spin I , and
the total internal atomic angular momentum quantum number
F (F = J + I). As we shall see, atoms with F �= 0 rotate in a
closed circular ring in the x-y plane around local minima of
the scalar optical lattice potential. The corresponding orbital
angular momentum operator is denoted by �. The projections
of F, �, and the total angular momentum of the QR, L =
F + �, on the z axis are f , m, and ζ = f + m, respectively.
For bosonic (fermionic) atoms ζ is an integer (half integer).
Generically, the optical potential is not diagonal in F or in f
[9] (for further details see Appendix A). However, when the
off-diagonal elements in F are much smaller than the atomic
hyperfine splitting, the mixing of atomic energy levels with
different quantum numbers F can be neglected.

For J = 1/2, the optical lattice Stark interaction Hamilto-
nian is calculated as the second-order ac Stark shift. In the
hyperfine basis it takes the form [9,15] (see also Appendix A2
for details)

HStark (r) = V (r)1 − B(r) · F, (3)

where 1 is the (2F + 1) × (2F + 1) unity matrix. The scalar
optical potential V (r) and fictitious magnetic field B(r) [16]
(which has units of energy) are

V (r) = −α0(ω0)

4
E∗(r) · E(r), (4a)

B(r) = iα1(ω0)

4(2I + 1)
[E∗(r) × E(r)], (4b)

TABLE I. Recoil temperatures T0 = E0/kB = h̄2q2
0/(2MkB ) for

some atoms.

Fermions Bosons

Atom T0 (μK) Atom T0 (μK)

2H 321.7 7Li 3.031
6Li 3.536 23Na 1.197
40K 0.404 39K 0.414

where α0(ω0) and α1(ω0) are scalar and vector polarizabilities
of the atom [9,17]. For J > 1/2, a tensor term is also present
in Eq. (A14) (see Ref. [9]).

Both V (r) and B(r) are periodic, V (r) = V (r + m1a1 +
m2a2) and B(r) = B(r + m1a1 + m2a2), where m1 and m2

are integers and the lattice vectors are a j = λ0(ex sin θ j +
ey cos θ j ), where j = 1 and 2 and θ j = (−1) jπ/3. V (r) has
minima at rmin = m1a1 + m2a2. B(r) is a pseudovector [9],
and changes sign under time reversal (but the QR Hamiltonian
is time-reversal invariant). V (r) and B(r) are plotted versus r
in Fig. 7 in Appendix A2.

The loss of atoms from the near-detuned SDOLP due to
excited-state spontaneous emission can be phenomenologi-
cally taken into account by including an imaginary contribu-
tion to the energy denominator of the second-order ac Stark
shift [see Eq. (A7) of Appendix A]. The loss rate is given by

	(r) = V (r)γe

2h̄�
, (5)

where � is the detuning of the optical frequency from reso-
nance and γe is the inverse lifetime of the excited electronic
state. As we shall soon see, the loss rate 	(r) will affect the
accuracy of the sensors considered below.

Candidates for observing QR states include the fermions
2H, 6Li, and 40K and the bosons 7Li, 23Na, 39K, 85Rb, and
87Rb. All of these have nonvanishing F in their ground elec-
tronic state [18]. Recoil temperatures T0 = E0/kB for some of
these fermionic and bosonic species are listed in Table I.

A. 2D isotropic approximation

We assume hereafter that the depth of V (r) at the minimum
positions exceeds the recoil energy E0 = h̄2q2

0/(2M ), where
M is the atomic mass, and the low-energy atomic states
are trapped and localized near these minima. For hexagonal
symmetry, the scalar potential near the minimum at r = (0, 0)
is well approximated by V (r) ≈ Ṽ (r), where

Ṽ (r) = −V0

6

[
2 + 3J0

(
2πr

λ0

)
+ J0

(
2
√

3πr

λ0

)]
, (6)

and V0 = 9
2α0(ω0)E2

0 . The fictitious magnetic field near this
minimum can be approximated by B(r) ≈ B̃(r)er where

B̃(r) = B0

3(2I + 1)

[
J1

(
2πr

λ0

)
+ J1

(
4πr

λ0

)

+
√

3J1

(
2
√

3πr

λ0

)]
. (7)
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Here B0 = 9
2α1(ω0)E2

0 , Jn(ρ) is the Bessel function of order
n, and the unit vector er ≡ r̂. The dependence of V0 and
B0 on the detuning of ω0 from resonance is discussed in
Appendix A2.

The (fictitious) Zeeman interaction B(r) · F is proportional
to Fr = F · er [since B(r) is radial] and does not commute
with the operators Fz or 
z (= −i∂φ), but commutes with
Lz = Fz + 
z. Hence, f and m are not individually good
quantum numbers of the total Hamiltonian but ζ , the eigen-
value of the operator Lz, is. The wave functions �n,ζ (r) and
energy levels εn,ζ of the trapped atoms satisfy the Schrödinger
equation [19][

− h̄2∇2

2M
+ Ṽ (r) − B̃(r)Fr − εn,ζ

]
�n,ζ (r) = 0, (8)

and the functions �n,ζ (r) can be expanded as follows:

�n,ζ (r) = 1√
2πr

∑
σ

ψn,ζ ,σ (r)eiζφχσ (φ). (9)

Here χσ (φ) are spinor eigenfunctions of Fr , i.e., Frχσ (φ) =
σχσ (φ) (σ should not be confused with f , the eigenvalue of
Fz).

Explicitly, for F = 1/2 (e.g., 6Li), σ = ±1/2, and χσ (φ)
is given by

χσ=±1/2(φ) = 1√
2

{
e− iφ

2 χ
(z)
↑ ± e

iφ
2 χ

(z)
↓

}
,

where χ
(z)
f are eigenfunctions of Fz with eigenvalues f . Insert-

ing the expansion (9) into Eq. (8) we obtain

[
− h̄2

2M

∂2

∂r2
+ Ṽ (r) − 1

2
B̃(r) + ζ 2C(r) − εn,ζ

]
ψn,ζ ,1/2(r) = ζC(r)ψn,ζ ,−1/2(r), (10a)

[
− h̄2

2M

∂2

∂r2
+ Ṽ (r) + 1

2
B̃(r) + ζ 2C(r) − εn,ζ

]
ψn,ζ ,−1/2(r) = ζC(r)ψn,ζ ,1/2(r), (10b)

where the off-diagonal spin-flipped terms are proportional
to C(r) = h̄2/(2Mr2). The numerical calculations presented
below will be for the fermionic case with F = 1/2, assuming
that V0, |B0| 
 E0. The inequality V0 
 E0 means that the
potential wells are deep and the tunneling probability of
the atoms between the wells is small. The wave functions
and the eigenenergies εn,ζ of the trapped atoms are com-
puted by solving the Sturm-Liouville system of equations
(10) with V0 = 100E0, B0 = 180E0. The resulting energies
εn,ζ are shown in Fig. 2. For the fermionic case, all the

FIG. 2. Fermionic QR energy levels for F = 1/2 with V0 =
100 E0 and B0 = 180 E0. The solid purple, dashed blue, dotted green,
and dot-dashed red lines correspond to energy levels with ζ = ±1/2,
±3/2, ±5/2, and ±7/2. The energy levels with n = 0, 1, . . ., go
from bottom to top.

energy levels are twofold degenerate, εn,ζ = εn,−ζ . The off-
diagonal terms ζC(r)ψn,ζ ,σ (r) (where σ = −σ ) in (10) are
a weak perturbation to the ground-state energy level, but not
so for the excited states. The degenerate fermionic ground
state has quantum numbers (n, ζ ) = (0,±1/2), and energy
ε0,±1/2 = −99.196 E0. The lowest-energy excited states are
orbital excitations with quantum numbers (n, ζ ) = (0,±3/2)
and radial excitations with quantum numbers (1,±1/2) (see
Fig. 2). The corresponding excitation energies are

ε0, 3
2
− ε0, 1

2
= 6.011E0, (11a)

ε1, 1
2
− ε0, 1

2
= 14.93E0. (11b)

For temperatures T � Torbit ≡ (ε0, 3
2
− ε0, 1

2
)/kB, the

trapped atoms are in their ground state. Torbit is of order T0

[see Eq. (11a)].
The ground-state areal probability density,

ρ(r) = |�0,1/2(r)|2, (12)

depends only on r and not on φ since the optical lattice poten-
tial is nearly isotropic about the potential minima. ρ(r) has a
maximum at r = r0 = 0.068 λ0, and decays with |r − r0|, as
shown in Fig. 3. Thus, the atom is confined near a circular ring
of radius r0 (hence it is a QR [1]). ρ(r) vanishes linearly with
r as r → 0. The QR ground-state density can be observed as
described in Ref. [20].

B. Exotic properties of the QR state

The following exotic expectation values are obtained for
the QR:

〈n, ζ |
z|n, ζ 〉 = ζ − 〈n, ζ |Fz|n, ζ 〉, (13)

〈n, ζ |
2
z |n, ζ 〉 = ζ 2 − 〈n, ζ |2ζFz − F 2

z |n, ζ 〉. (14)
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FIG. 3. The ground-state areal probability density (12) vs r =
(x, y) for a F = 1/2 fermionic atom.

Recall that �n,ζ (r) = 〈r|n, ζ 〉 are eigenfunctions of Lz =

z + Fz with eigenvalue ζ ; however, �n,ζ (r) is not an eigen-
function of Fz or F 2

z , and 〈n, ζ |F 2
z |n, ζ 〉 �= 0.

For fermionic or bosonic QRs, the wave functions �n,ζ (r)
in Eq. (9) are expressed as sums of products of spatial
wave functions ψn,ζ ,σ (r)eiζφ and spin-wave functions χσ (φ).
They have unusual symmetry relations under rotation through
an angle 2π around the z axis. The angular part of the
spatial wave function satisfies eiζ (φ+2π ) = ±eiζφ (upper sign
for bosons and lower sign for fermions), and the spin-wave
function satisfies e2π iLzχσ (φ) = χσ (φ).

For bosonic QRs, ζ and σ are integers, so the angular parts
of the spatial wave functions, eiζφ , and the spin-wave func-
tions satisfy the properties eiζ (φ+2π ) = eiζφ and e2π iLzχσ (φ) =
χσ (φ). The nondegenerate ground state |n = 0, ζ = 0〉 is such
that 〈0, 0|Fz|0, 0〉 = 0, but 〈0, 0|F 2

z |0, 0〉 �= 0, and therefore
〈0, 0|
2

z |0, 0〉 �= 0. The spin-excited QR states have ζ �= 0 and
are doubly degenerate [see Eq. (1.23) in Ref. [1]]. All states
have an areal density which vanishes at r = 0.

For fermionic QRs, ζ and σ are half integers, and all
states (including the ground state) are doubly degenerate.
The ground state has n = 0 and ζ = ±1/2, and is an exotic
QR since it is twofold degenerate with finite orbital angular
momentum. The expectation values of 
z and 
2

z are nonzero.
For F = 1/2, 〈n, ζ |
z|n, ζ 〉 = ζ

2 − βz
n,ζ , and 〈n, ζ |
2

z |n, ζ 〉 =
1
2 − |βz

n,ζ |, where

βz
n,ζ = 1

2

∑
σ

∫
ψn,ζ ,σ ψn,ζ ,−σ dr. (15)

A striking consequence of the above analysis, which will
be substantiated below, is that ground-state QRs with pre-
cisely one atom per site can serve as rotation sensors, ac-
celerometers, and magnetometers. For these applications and
for the study of QRs in general, radio wave spectroscopy and
Raman spectroscopy are valuable tools.

III. QR STIMULATED RAMAN SPECTROSCOPY

Consider Raman transitions between the QR states |n =
0, ζ = 1/2〉 and |n = 0, ζ = −1/2〉 that are split by an energy
h̄�QR due to the presence of an external magnetic field,
and/or rotation, and/or in-plane acceleration. We explicitly

FIG. 4. Schematic representation of the energy levels and photon
energies for the far-off-resonance Raman transition between the split
QR ground states.

consider far-off-resonance radio wave transitions that are red
detuned from the F = 3/2 atomic hyperfine state by a large
detuning �hf , �hf < 0, and |�hf | 
 γhf , where γhf is the
decay rate of the F = 3/2 hyperfine state (see Fig. 4 in
Sec. III A). Far-off-resonance stimulated Raman scattering
can be treated as a two-level system with a generalized Raman
Rabi frequency, �g = �p�s

�hf
. The pump laser has frequency

ωp and Rabi frequency �p and takes the system up from
the lower of the two QR states to a virtual intermediate
state, and the Stokes radiation has frequency ωs and Rabi
frequency �s and takes the system down from the virtual
intermediate state to the upper of the two QR states. Let
δ = ωp − ωs − �QR be the detuning from Raman resonance.
The dressed-state [21] complex Hamiltonian in the two-level
|n = 0, ζ = ±1/2〉 manifold, which incorporates decay of the
QR states, can be written as [22]

HRaman = h̄

(
0 − i	0,1/2/2 �g/2

�g/2 δ − i	0,−1/2/2

)
. (16)

Symmetry requires that the loss rates 	0,±1/2 of the two QR
states due to loss of atoms from the SDOLP be equal, 	0,1/2 =
	0,−1/2; they are given by (see Sec. III A below for details)

	0,1/2 = γe

2h̄�

∑
σ

{∫
Ṽ (r)ψ2

0,1/2,σ (r)dr

+ sign(σ )

2

∫
B̃(r)ψ2

0,1/2,σ (r)dr

}
. (17)

Here � is the detuning of the laser beams generating the
SDOLP and γe is the spontaneous emission decay rate of
the 2P3/2 excited state. The difference of the eigenvalues of

HRaman, �̃ =
√

δ2 + �2
g, is independent of 	0,1/2.

A. Far-off-resonance Raman transitions between
n = 0, ζ = 1/2 and n = 0, ζ = −1/2

Far-off-resonance Raman transitions between the QR
states |n = 0, ζ = 1/2〉 and |n = 0, ζ = −1/2〉 that are split
by an energy h̄�QR are described by the model Hamiltonian
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(16). Here we derive Hamiltonian (16), its eigenvalues, and its
eigenfunctions.

Consider Raman transitions between the QR states |n =
0, ζ = 1/2〉 and |n = 0, ζ = −1/2〉 that are split by an energy
h̄�QR by the presence of a rotation, or an external magnetic
field, or an in-plane acceleration. When the red detuning �hf

from the F = 3/2 hyperfine state is large enough, |�hf | 
 γhf

and �hf < 0, where γhf is the decay rate of the F = 3/2
hyperfine state (see Fig. 4), the off-resonance intermediate
F = 3/2 state can be eliminated and the Raman process can
be treated as a two-level problem. The resultant generalized
Raman Rabi frequency is given by �g = �p�s

�hf
. If we de-

note the energy difference between the two levels as h̄�QR,
the detuning from Raman resonance is δ = ωp − ωs − �QR.
The dressed-state two-level non-Hermitian Hamiltonian [21]
which incorporates decay of the QR states can be written as
[22]

HRaman = HRaman − ih̄

2
G, (18)

where HRaman and G are 2 × 2 Hermitian matrices; the Her-
mitian part HRaman in (18) is

HRaman = h̄

(
0 �g/2

�g/2 δ

)
. (19)

It acts in the two-dimensional Hilbert states spanned
by (1, 0)T = |0, 1/2〉 and (0, 1)T = |0,−1/2〉. The anti-
Hermitian part originates from the decay rate in the optical
lattice:

	(r) = γe

2h̄�
{Ṽ (r) + FrB̃(r)}, (20)

where γe is the decay rate of the excited 2P3/2 state, and
� is the detuning of the laser frequency from the resonant
frequency. When |�| 
 γe, we can apply perturbation theory
and write the anti-Hermitian part of the Hamiltonian (18) as

Gζ ,ζ ′ =
∫

�
†
0,ζ (r)	(r)�0,ζ ′ (r)d2r,

where �n,ζ (r) are the wave functions of the QR given by
Eq. (10). Note that the atom in the quantum state with ζ =
1/2 or −1/2 orbits clockwise or counterclockwise around
the minimum of the lattice potential. The decay rate (20) is
isotropic. Therefore, taking into account the symmetry of the
wave function

�n,−ζ (r, φ) = Fx�n,ζ (r,−φ)

(which is true for F = 1/2 atoms), we can write

Gζ ,ζ ′ = 	0,1/2δζ ,ζ ′ , (21)

where 	0,1/2 is given by Eq. (17). Equations (18), (19), and
(21) yield Eq. (16).

Another source of uncertainty is spontaneous decay of the
F = 3/2 hyperfine state, which gives a decay rate

	hf = γhf

h̄�hf

∑
σ

∫ {
Ṽ (r) + sign(σ )

2
B̃(r)

}

×ψ2
0,1/2,σ (r)dr. (22)

For 6Li atoms in the ground state, γhf = 1.586 × 10−17 s−1

[23]. Comparing Eqs. (17) and (22), one concludes that

γhf

�hf
� γe

�e
,

hence 	hf � 	0,1/2. Thus, in the following discussions we
neglect 	hf since it is very small in comparison with 	0,1/2.

Eigenfunctions of the non-Hermitian Hamiltonian (16) are

|ψ+〉 = U |0, 1/2〉 + V|0,−1/2〉, (23a)

|ψ−〉 = V|0, 1/2〉 − U |0,−1/2〉, (23b)

where

U =
√

�̃ + δ

2�̃
, V =

√
�̃ − δ

2�̃
, �̃ =

√
δ2 + �2

g.

The corresponding eigenvalues are

ε± = h̄(δ − i	0,1/2)

2
± h̄�̃

2
.

The difference ε+ − ε− = h̄�̃ does not depend on 	0,1/2.
The time evolution of the wave function of the QR with

time, starting with the initial wave function |0, 1/2〉, is speci-
fied by the time-dependent wave function

|ψ (t )〉 = e−(	0,1/2+iδ)t/2

×
{[

cos

(
�̃t

2

)
+ iδ

�̃
sin

(
�̃t

2

)]
|0, 1/2〉

− i�g

�̃
sin

(
�̃t

2

)
|0,−1/2〉

}
. (24)

The probabilities P0,±1/2(t ) to find the QR in the states

|0,±1/2〉 are given by P0,±1/2(t ) = |〈0,±1/2|ψ (t )〉|2. Using
Eq. (24), we find

P0,1/2(t ) =
[

1 − P0 sin2

(
�̃t

2

)]
e−	0,1/2t , (25a)

P0,−1/2(t ) = P0 sin2

(
�̃t

2

)
e−	0,1/2t , (25b)

where

P0 = �2
g

�̃2
= �2

g

δ2 + �2
g

.

The Ramsey time-separated oscillating field method [24] with
Raman pulses [25] using radio-frequency pump and Stokes
radiation can be used to determine �QR, as we shall now show.

The probability P0,−1/2(t ) is plotted in Fig. 5 for different
values of |δ|. The amplitude P0 of P0,−1/2(t ) is maximal when
δ = 0. This is because P0 is maximum when δ = 0 (�QR =
ωp − ωs), and becomes very small for weak stimulated Raman
scattering, i.e., when |δ| 
 �g. Experimentally scanning ωs

and finding ωp − ωs where P0,−1/2(t ) is maximal yields �QR.
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FIG. 5. The probability P0,−1/2(t ) in Eq. (25b) to find the QR in
the state |0, −1/2〉 as a function of time for 	0,1/2 = 0.05 �g, �g =
1, and different values of |δ|: (a) δ = 0, (b) |δ| = 0.5 �g, (c) |δ| = �g,
and (d) |δ| = 1.5 �g.

B. Ramsey separated oscillating field method

A preferable method of experimentally determining �QR is
to employ the Ramsey time-separated oscillating field method
[24] with Raman pulses [25]. The QR initially in the ground
state |0, 1/2〉 is subjected to two sets of Raman pulses of
duration τp separated by a delay time T , so the generalized
Rabi frequency becomes time dependent:

�g(t ) =
⎧⎨
⎩

�g if 0 � t � τp ,

0 if τp < t < T + τp ,

�g if T + τp � t � T + 2τp ,

(26)

with �gτp ≈ π/2 and T 
 τp. The effect of the first pulse is
to evolve the initial state into a coherent superposition of the
initial and final states. During the delay time between pulses,
the system carries out phase oscillations. Finally, the second
pulse rotates the state vector again by an angle of �gτp. Fixing
the delay time T and measuring the population in the final
state as a function of the detuning δ at the final time T + 2τp

yields a fringe pattern as shown in Fig. 6. The figure shows the
Ramsey fringes obtained for a single QR and the value of �QR

such that δ = 0 is easy to identify from the fringe pattern.

FIG. 6. Ramsey fringes in the probability P|0,−1/2〉 at the final
time T + 2τp plotted vs detuning δ. The splitting �QR is found by
identifying where the detuning δ = ωp − ωs − �QR = 0.

IV. MAGNETOMETER

Atomic magnetometers often rely on a measurement of
the Larmor precession of spin-polarized atoms in a magnetic
field [26]. One of the limitations on their sensitivity is spin
relaxation. In our system, spin relaxation is highly suppressed
if the lattice is singly occupied.

The degenerate ground state of a fermionic QR is split by
the external field, and measuring the frequency splitting can
accurately determine the external field. When the QR is placed
in an external magnetic field, say Bexez (for simplicity), a
Zeeman interaction term, HB = −gμBBexFz, must be included
in the Schrödinger equation (8). The energy of the ground
state calculated to first order in Bex is

ε0,ζ (Bex) = ε0,ζ + 2ζgμBBex

2I + 1
βz

0,1/2, (27)

with V0 = 100 E0 and B0 = 180 E0, βz
0,1/2 = 0.1078. Equa-

tion (27) shows that the external magnetic field splits the
degeneracy of the energy levels with ζ = ±1/2. The Raman
scattering between these levels gives rise to Rabi oscillations
with amplitude that has a maximum when ωp − ωs = �B,
where

�B = gμBBex

(2I + 1)h̄
βz

0,1/2. (28)

The frequency splitting �B can be experimentally mea-
sured, therefore the QR can be used as a magnetometer:
measuring �B and comparing with Eq. (28) yields the external
magnetic field Bex. The uncertainty of Bex results largely
from the uncertainty of β

(z)
0,1/2 which is a function of the

laser frequency ω and amplitude E0. Hence, the accuracy of
measuring Bex is

δBex

Bex
= 1

βz
0,1/2

√(
∂βz

0,1/2

∂ω
δω

)2

+
(

∂βz
0,1/2

∂E0
δE

)2

, (29)

where δω and δE are the uncertainties of ω and E0. Additional
analysis of δBex, including the suppression of spin relaxation
in a singly occupied optical lattice [27,28], directional exter-
nal magnetic field effects, the lack of spectral line splitting
due to the small anisotropy of the effective lattice potential,
and measurement-time limitations, is provided in Sec. VII.

V. ROTATION SENSOR

When the QR is in a noninertial frame rotating with an
angular velocity � there is an additional term H� = h̄� · L
in the Hamiltonian, where L = F + �. For � along the z axis,
the QR energy is

ε0,ζ (�z ) = ε0,ζ + ζ h̄�z. (30)

In fact, for arbitrary �, Eq. (30) is valid to first order in �

(see Appendix E for details). The splitting of the ground-
state energy is �� = �z, and the accuracy of measurement
of the angular velocity due to spontaneous magnetic dipole
transitions within the ground-state QR manifold is δ�z =
δ�� = 4g2μ2

B�3
z /(3h̄c3). Additional analysis of δ�z, includ-

ing the suppression of spin relaxation in a singly occupied
optical lattice [27,28], the lack of spectral line splitting due
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to the small anisotropy of the effective lattice potential, and
measurement-time limitations, is given in Sec. VII.

VI. ACCELEROMETER

When the QR is in a noninertial frame moving with a
linear acceleration a, an additional term Ha = Ma · r must be
included in the Hamiltonian. The energy of the ground state
calculated to first order in a is

ε0,ζ (a‖) = ε0,ζ + ζMa‖�0,ζ , (31)

where �n,ζ = ∫
[ψ2

n,ζ ,1/2(r) + ψ2
n,ζ ,−1/2(r)]rdr. The splitting

of the ground-state energy is �a = Ma‖�0,ζ /h̄. The acceler-
ation measurement accuracy δa‖ is considered in Sec. VII.

VII. ACCURACY ESTIMATES FOR Bex, �, AND a

A. Magnetometer

The uncertainty of Bex results largely from the uncertainty
of the quantity βz

0,1/2 which is a function of the laser frequency
ω and amplitude E0. Hence, the accuracy of measuring Bex is
given by Eq. (29). It is convenient to rewrite Eq. (29) as

δBex

Bex
= 1

βz
0,1/2

√(
∂βz

0,1/2

∂E0
δE

)2

+
(

∂βz
0,1/2

∂I0
δI

)2

, (32)

where δE and δI are uncertainties of the recoil energy E0 and
the laser intensity I0. βz

0,1/2 depends on a single parameter,
I0/E0, therefore

E0

∂βz
0,1/2

∂E0
= −I0

∂βz
0,1/2

∂I0
.

Assuming that δI/I0 � δω/ω, we get

δBex

Bex
= δE

βz
0,1/2

∣∣∣∣∂βz
0,1/2

∂E0

∣∣∣∣.
Numerical calculations for V0 = 100 E0 and B0 = 180 E0

give

δBex

Bex
= −0.075495δω

ω
,

where we have used the fact that δE/E0 = 2 δω/ω. For lithium
atoms, ω = 2.808 × 1015 s−1 [29], and taking δω = 2π ×
160 mHz = 1.005 s−1 [30] we find

δBex

Bex
= 2.703 × 10−17. (33)

B. Rotation sensor

As already stated in Sec. V, the accuracy of measurement
of the angular velocity due to spontaneous magnetic dipole
transitions within the ground-state QR manifold is δ�z =
4g2μ2

B�3
z /(3h̄c3), hence

δ�z

�3
z

= 1.614 × 10−44 s2. (34)

For �z = 72.722 μrad/s (the rotation frequency of Earth),
δ�z = 6.209 × 10−57 s−1.

C. Accelerometer

The acceleration measurement accuracy δa‖ is given by

δa‖
a‖

= 1

�0,1/2

√(
∂�0,1/2

∂ω
δω

)2

+
(

∂�0,1/2

∂E0
δE

)2

. (35)

Taking into account the equalities,

∂�0,1/2

∂ω
δω = ∂�0,1/2

∂E0
δE,

∂�0,1/2

∂E0
δE = ∂�0,1/2

∂I0
δI,

where E0 is the recoil energy (D3) and I0 ∝ E2
0 is the intensity

of the laser beam. Assuming that∣∣∣∣∂�0,1/2

∂I0

∣∣∣∣δI �
∣∣∣∣∂�0,1/2

∂E0

∣∣∣∣δE,

we find that

δa‖
a‖

≈ δE
�0,1/2

∣∣∣∣∂�0,1/2

∂E0

∣∣∣∣.
Numerical calculations for V0 = 100 E0 and B0 = 180 E0 give

1

�0,1/2

∣∣∣∣∂�0,1/2

∂E0

∣∣∣∣ = 0.139986

E0
,

hence

δa‖
a‖

= 1.002 × 10−16.

The measurement accuracies of an external magnetic field,
angular velocity, and linear acceleration are also affected by
the energy-time uncertainty principle. Given a measurement
time T , the measurement bandwidth is 1/(2T ), and the ac-
curacy of the QR magnetometer, accelerometer, or gyroscope
is proportional to 1/

√
T [31]. For an optical lattice with N

QRs, the accuracies of the magnetometer, gyroscope, and
accelerometer are [31]

δBu = Bex

βz
0,1/2

∣∣∣∣∂βz
0,1/2

∂ω

∣∣∣∣
√

δω

NT
, (36)

δ�u =
√

δ�z

NT
, (37)

δau = a‖
�0,1/2

∣∣∣∣∂�0,1/2

∂ω

∣∣∣∣
√

δω

NT
. (38)

Here the subscript u denotes uncertainty due to the finite
measurement time, δω is the uncertainty of the optical lattice
laser frequency ω, and δ�z is the angular velocity uncertainty
given by Eq. (34). Taking T = 1 s, and N = 4.99 × 108

(which corresponds to an optical lattice of area 1 cm2), we
get

δBu

Bex
= 1.74 × 10−20, (39)

δ�u

�
3/2
z

= 5.687 × 10−27 s1/2, (40)

δau

a‖
= 4.474 × 10−21. (41)
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VIII. UNCERTAINTY DUE TO SHOT NOISE
IN THE STOKES AND PUMP PULSES

Another source of uncertainty δBex, δ�, and δa arises from
shot noise in the Stokes and pump pulses used to measure
the detuning �QR of the QR using the Ramsey separated field
method (see Figs. 4 and 6). Shot noise results in fluctuations
in the position and amplitude of the population oscillations of
the Ramsey fringes because the π/2 Raman pulses have Rabi
frequencies which fluctuate, �Rτ :

φR ≡ �Rτ = π

2
± δφR,

where

δφR � π

2

(
1√
Np

+ 1√
Ns

)
, (42)

and Np and Ns are the number of photons of the pump and
Stokes beams, assuming a Poissonian distribution of photon
number. The uncertainty δ�QR of �QR can be estimated from
the variation of the probability for population transfer from
the initial level of the split QR ground-state level to the final
level. A simple calculation shows that

δ�QR �
√

1.5 δφR

τ
� 1.92

τ

(
1√
Np

+ 1√
Ns

)
, (43)

where we have used (42) for δφR.
The ground-state hyperfine splitting of lithium atoms is

ωhf = 2π × 228.2 MHz = 1.434 × 109 s−1, so the energies
of Stokes and pump photons are h̄ωs � h̄ωp � h̄ωhf , where
h̄ωhf = 1.51226 × 10−18 erg. The numbers of photons Np and
Ns can be estimated as

Nν = πr2
bτ Iν

h̄ων

, (44)

where Iν is the intensity of the pump (ν = p) or Stokes (ν = s)
field, rb is the radius of the beam (which is assumed to be the
same for the pump and Stokes beams), and τ is the pulse dura-
tion. Taking Ip = 5 × 103 W/m2, Is = 2 × 104 W/m2, we get
τ = 1.644 ms. For rb ≈ 0.2 m (the microwave wavelength),
the numbers of photons (44) are

Np ≈ 7.467 × 1024, Ns ≈ 2.987 × 1025,

so from Eq. (43) δ�QR is

δ�QR ≈ 6.411 × 10−10 s−1 = 2π × 0.102 nHz.

Knowing �QR, the external magnetic field Bex, the angular
velocity �, or the acceleration a of the noninertial frame can
be calculated using

Bex = (2I + 1)h̄�QR

gμBβz
0,1/2

, (45)

� = �QR, (46)

a = h̄�QR

M�0,1/2
. (47)

Here I = 1 is the nuclear spin of 6Li atoms, βz
0,1/2 = 0.1078,

M is the atomic mass, and �0,1/2 = 0.0987λ0, where λ0

is the wavelength of the laser beam creating the optical

lattice. For 6Li atoms, λ0 = 670.964 nm, and therefore
�0,1/2 = 66.18 nm.

When the optical lattice has N quantum rotors, uncertain-
ties of external magnetic field Bex, angular velocity �, and
acceleration a due to the shot noise are given by

δBex = 1√
N

(2I + 1)h̄ δ�QR

gμBβz
0,1/2

, (48)

δ� = δ�QR√
N

, (49)

δa = 1√
N

h̄ δ�QR

M�0,1/2
. (50)

For N = 4.99 × 108 6Li atoms,

δBex = 4.54 × 10−24 T,

δ� = 2.87 × 10−14 s−1,

δa = 4.58 × 10−15 m/s2.

Compare this result with the uncertainties of the magnetic
field and angular velocity of the Earth, and the acceleration
due to gravity derived in Sec. VII:

δBu = 7.8 × 10−25 T,

δ�u = 3.6 × 10−33 s−1,

δau = 4.4 × 10−20 m/s2.

Hence the shot-noise contribution to the uncertainty is larger
than the uncertainty due to the decay rate of the excited
hyperfine state.

IX. SUMMARY AND CONCLUSIONS

The wave functions of QRs, atoms trapped by a SDOLP,
are confined to circular rings of radius r0 with center at the
minima of the scalar lattice potential. SDOLPs with precisely
one atom per site (which suppress spin relaxation) can be
used as ultrahigh accuracy rotation sensors, accelerometers,
or magnetometers. The Ramsey time-separated oscillating
field method with far-off-resonance Raman pulses between
the split ground state of fermionic QRs can be used as a
spectroscopic measurement technique for these applications,
with a major accuracy limitation due to measurement-time
uncertainty as outlined in Secs. VII and VIII. Bosonic QRs
have ground states which are not degenerate, but their excited
states are degenerate. The splitting of the excited states in the
presence of rotation, in-plane acceleration, or magnetic fields
can also be used for sensing.
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APPENDIX A: OPTICAL LATTICE POTENTIAL

Consider a 2D hexagonal optical lattice potential produced
by six coherent laser beams having a superposition of in-
plane and out-of-plane linear polarization with a configuration
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shown in Fig. 1. Note that other configurations, e.g., three or
four laser beams instead of six, can also produce a SDOLP,
but we shall not consider other configurations here. The wave-
length, wave number, and frequency of the laser beams are
λ0, q0 = 2π/λ0, and ω0 = q0c, where c is the speed of light.
The optical lattice frequency should be slightly detuned to
the red of resonance. For 6Li atoms, the resonant wavelength
is λres = 670.963 nm. The resultant electric field is given by
E(r, t ) = [E(r)e−iω0t + c.c.]/2 where the spatial dependence
of the field is

E(r) = E0

6∑
n=1

ξneiqnr. (A1)

The wave vectors qn are

q1 = −q4 = −q0 ex,

q2 = −q5 = −q0

2
{ex +

√
3 ey}, (A2)

q3 = −q6 = q0

2
{ex −

√
3 ey},

and the unit vectors ex, ey, and ez are parallel to the x, y,
and z axes. The polarization vectors ξn (1 � n � 6) are ξn =
{
√

1 − β2ez + β

q0
[qn × ez]}, where β is real and lies in the

interval 0 < β � 1/
√

2. Hereafter, we take β = 1/
√

2.
For an arbitrary atom with electronic angular momentum

J, the electric field generates an effective SDOLP [9]:

U (r) = −1

4

(
αs

n,J (ω0) E∗(r) · E(r)

− iαv
n,J (ω0)

2J
[E∗(r) × E(r)] · J

+ 3αt
n,J (ω0)

2J (2J − 1)

{
[E∗(r) · J] [E(r) · J]

+ [E(r) · J] [E∗(r) · J]

− 2

3
J (J + 1) E∗(r) · E(r)

})
, (A3)

where U is a (2J + 1) × (2J + 1) matrix in spin space. Here
αs

n,J (ω0), αv
n,J (ω0), and αt

n,J (ω0) are the conventional dynami-
cal scalar, vector, and tensor polarizabilities of the atom in the
fine-structure level |nJ〉 with principal quantum number n and
total electronic angular momentum J [9]:

αs
n,J (ω0) = α

(0)
n,J (ω0)√

3(2J + 1)
, (A4)

αv
n,J (ω0) = −

√
2J α

(1)
n,J (ω0)√

(J + 1)(2J + 1)
, (A5)

αt
n,J (ω0) = −

√
2J (2J − 1) α

(2)
n,J (ω0)√

3(J + 1)(2J + 1)(2J + 3)
. (A6)

The terms on the right-hand side of Eq. (A3) proportional
to αs

J (ω0), αv
J (ω0), and αt

J (ω0) describe a spin-independent
optical lattice potential, a Zeeman-type interaction, and a ten-
sor Stark-type interaction, respectively. The scalar α

(0)
n,J (ω0),

vector α
(1)
n,J (ω0), and tensor α

(2)
n,J (ω0) polarizabilities of the

atom in the fine-structure level |nJ〉 can be calculated as

follows [9]:

α
(K )
n,J (ω0) = (−1)K+J+1

√
2K + 1

∑
n′,J ′

(−1)J ′

×
{

1 K 1
J J ′ J

}
|〈n′J ′‖d‖nJ〉|2

× 1

h̄
Re

(
1

ωn′,J ′;n,J − ω0 − iγn′,J ′;n,J/2

+ (−1)K

ωn′,J ′;n,J + ω0 + iγn′,J ′;n,J/2

)
. (A7)

Here K = 0, 1, 2 gives the scalar, vector, and tensor polar-
izabilities, {1 K 1

J J ′ J} is the Wigner 6- j symbol, and 〈nJ ‖
d ‖ n′J ′〉 denotes the reduced matrix elements of the dipole
moment operator. The quantities ωn′,J ′;n,J = (εn′,J ′ − εn,J )/h̄
and γn′,J ′;n,J = γn′,J ′ + γn,J are the angular frequency and
linewidth of the transition between the fine-structure levels
|nJ〉 and |n′J ′〉.

1. Li atom scalar and vector polarizabilities

Equation (A7) contains an expression for the scalar and
vector polarizabilities of an atom in terms of matrix elements
of the dipole operator between electronic wave functions.
Here we use this expression in the special case of J = 1/2 and
compute the scalar and vector polarizabilities αs(ω) and αv (ω)
of the Li atom in its ground state, the electronic configuration
of which (outside the closed 1s shell) is 2s 2S1/2 [17]:

α0(ω) = −α
(0)
2,1/2(ω)√

6
, (A8a)

α1(ω) = α
(1)
2,1/2(ω)√

3
, (A8b)

where α
(K )
n,J (ω) (K = 0, 1) are the coupled polarizabili-

ties given in Eq. (A7), whereas the tensor polarizability
α

(K=2)
n,J (ω) = 0 (see Ref. [17] for details). For the calculations

of the reduced matrix elements 〈n′J ′||d||nJ〉 we need the
electronic wave function of the Li atom in its ground and
excited states. The ground-state wave function with config-
uration 2s 2S1/2 is

�S,ms (r) = 1√
4π

ψ2s(r)χms , (A9)

where ψ2s(r) is the real valued radial wave function of the
2s electron and χms are spin-wave functions, ms = ±1/2.
The radial and spin-wave functions are normalized by the
conditions

∫ ∞
0 ψ2

2s(r)r2dr = 1 and χ†
ms

χm′
s
= δms,m′

s
.

The electronic wave functions of Li in the excited 2p 2P1/2

and 2p 2P3/2 states are given by

�2p,J,mJ (r) = ψ2p(r)
∑

mL,ms

CJ,mJ
1,mL ;1/2,ms

×Y1,mL (θ, φ)χms . (A10)

Here ψ2p(r) is the radial wave function of the 2p electron;
Y1,mL (θ, φ) are spherical harmonics with mL = 0,±1; χms are
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TABLE II. The 6- j symbols for Li atoms in thew ground 2S1/2

and excited 2P3/2 states.

J = 1/2 J = 3/2

K = 0 1/
√

6 −1/
√

6
K = 1 −1/3 −1/6

spin-wave functions with ms = ±1/2; and

CJ,mJ
1,mL ;1/2,ms

≡ 〈
1mL

1
2 ms

∣∣JmJ
〉

are Clebsch-Gordan coefficients. The radial wave functions
and the spherical harmonics are normalized by the conditions∫ ∞

0 ψ2
2p(r)r2dr = 1 and∫ 2π

0
dφ

∫ π

0
sin θdθY ∗

1,mL
(θ, φ)Y1,m′

L
(θ, φ) = δmL,m′

L
.

The reduced matrix element of the electric dipole moment
operator is

d0 ≡ |〈eJ‖d‖g1/2〉| = e
∫ ∞

0
ψ2s(r)ψ2p(r)r3dr. (A11)

The 6- j symbols required in Eq. (A7) for the Li atom are
{ 1 K 1

1/2 J 1/2} and are given by Table II.
We also need the resonant frequencies,

ωJ,1/2 = 1

h̄
{εp,J − εs,1/2}, J = 1

2
,

3

2
,

where εs,1/2 is the energy of the ground 2S1/2 state, and
εp,J are the energies of the excited 2PJ states. The optical
lattice frequency detuning from resonance should be smaller
than the fine-structure splitting (to have a significant effective
magnetic field) but larger than the linewidth of the transitions.
Hence, we assume that the frequency ω satisfies the inequali-
ties

γJ,1/2

2
� ω3/2,1/2 − ω � ω3/2,1/2 − ω1/2,1/2,

which imply

1

ω3/2,1/2 − ω

 1

ω − ω1/2,1/2

 1

ωJ,1/2 + ω
.

The last inequality shows that the main contribution to the
coupled polarizabilities (A7) is from (ωJ,1/2 − ω)−1 (where
J = 1/2, 3/2), whereas the terms (ωJ,1/2 + ω)−1 can be ne-
glected. As a result, the coupled polarizabilities (A7) are given
by

α
(0)
2,1/2(ω) = − d2

0√
6h̄

1

ω1/2,1/2 − ω
− d2

0√
6h̄

1

ω3/2,1/2 − ω
,

α
(1)
2,1/2(ω) = d2

0√
3h̄

1

ω1/2,1/2 − ω
− d2

0

2
√

3h̄

1

ω3/2,1/2 − ω
.

The scalar and vector polarizabilities (A8) are

α0(ω) = d2
0

6h̄

1

ω1/2,1/2 − ω
+ d2

0

6h̄

1

ω3/2,1/2 − ω
, (A12a)

α1(ω) = d2
0

3h̄

1

ω1/2,1/2 − ω
− d2

0

6h̄

1

ω3/2,1/2 − ω
. (A12b)

The ratio of the vector and scalar polarizabilities is

α1(ω)

α0(ω)
= 2ω3/2,1/2 − ω1/2,1/2 − ω

ω3/2,1/2 + ω1/2,1/2 − 2ω
≈ 2. (A13)

2. Spin-dependent optical potential for J = 1/2

The effective SDOLP U (r) in Eq. (A3) acts in the Hilbert
space of atomic states spanned by the basis kets |nJF f 〉 where
the quantum number F corresponds to the total atomic angular
momentum operator F = J + I and f is its projection on the
z axis [9]. Generically, U (r) is not diagonal in F or in f .
However, when the off-diagonal elements with F �= F ′ are
much smaller than the hyperfine energy splitting of the atoms,
we can neglect them. Within the subspace of fixed n, J, F the
matrix elements of U (r) are written as

Wf , f ′ (r) = 〈nJF f |U (r)|nJF f ′〉.
As already stated, in the special case J = 1/2,

α
(K=2)
n,J (ω0) = 0, i.e., the tensor Stark-type interaction operator

vanishes. Hence, the optical lattice potential Wf , f ′ (r) takes
the form [9]

Wf , f ′ (r) = V (r)δ f , f ′ − B(r) · F f , f ′ , (A14)

where the scalar optical potential V (r) and a fictitious mag-
netic field B(r) (which is taken to have units of energy) are
given by Eq. (4). The scalar and vector dynamical polarizabil-
ities of the atom are [9]

α0(ω0) = α
(0)
n,1/2(ω0)√

6
, (A15)

α1(ω0) = (−1)I+1/2+F
α

(1)
n,1/2(ω0)√

3
. (A16)

Substituting Eq. (A1) into Eq. (4a), and using polar coor-
dinates r = (r, φ), x = r cos φ, y = r sin φ, we obtain

V (r) = −V0

3
− V0

6

2∑
m=0

cos

[
2πr

λ0
cos(φ − mθ0)

]

− V0

18

2∑
m=0

cos

[
2
√

3πr

λ0
sin(φ − mθ0)

]
, (A17)

where θ0 = 2π/3. The potential strength V0 is given by

V0 = 9α0(ω0)

2
E2

0 . (A18)

Substituting Eq. (A1) into Eq. (4b), we get

B(r) = Br (r)er + Bφ (r)eφ. (A19)

The components Br (r) and Bφ (r) of B(r) are expanded as

Br (r) = B0

9(2I + 1)

3∑
m=0

cos(φ + mθ0)

× sin

[
2πr

λ0
cos(φ − mθ0)

]

+ B0

3
√

3(2I + 1)

2∑
m=0

sin(φ − mθ0)
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FIG. 7. (a) The optical lattice potential V (r), Eq. (A17), and
(b) the fictitious magnetic field (A19) as functions of the Carte-
sian coordinates x and y for β = 1/

√
2. The plot legends denote

(a) V (r)/V0 (contour plot with minimum indicated by deep blue).
(b) |B(r)|/B0 (direction and strength indicated by arrows of varying
length and color). V0 and B0 are given by Eqs. (A18) and (A21).

× sin

[
2
√

3πr

λ0
sin(φ − mθ0)

]

+ B0

9(2I + 1)

2∑
m=0

cos(φ − mθ0)

× sin

[
4πr

λ0
cos(φ − mθ0)

]
, (A20a)

Bφ (r) = − B0

9(2I + 1)

3∑
m=0

sin(φ + mθ0)

× sin

[
2πr

λ0
cos(φ − mθ0)

]

+ B0

3
√

3(2I + 1)

2∑
m=0

cos(φ − mθ0)

× sin

[
2
√

3πr

λ0
sin(φ − mθ0)

]

+ B0

9(2I + 1)

2∑
m=0

sin(φ − mθ0)

× sin

[
4πr

λ0
cos(φ − mθ0)

]
, (A20b)

where the fictitious magnetic field strength B0 is

B0 = 9α1(ω0)

2
E2

0 . (A21)

The expansions (A17) and (A20) assure that V (r, φ),
Br (r, φ), and Bφ (r, φ) are invariant under the transformation
φ → φ′ = φ − mπ/3, where m is an integer. Thus, the optical
lattice potential V (r) and the fictitious magnetic field B(r) are
invariant under rotations by π/3 rad around the z axis (see
Fig. 1):

V

[
U

(mπ

3

)
r
]

= V (r),

U
(mπ

3

)
B

[
U

(mπ

3

)
r
]

= B(r), (A22)

where the rotation matrix U (φ) is

U (φ) =
(

cos φ − sin φ

sin φ cos φ

)
.

The optical potential (A17) and the fictitious magnetic field
(A19) are shown in Figs. 7(a) and 7(b) for β = 1/

√
2.

APPENDIX B: ISOTROPIC APPROXIMATION FOR THE
SPIN-DEPENDENT OPTICAL LATTICE POTENTIAL

The Fourier transforms for V (r), Br (r), and Bφ (r) are

V (r, φ) =
∑

m

Ṽm(r)e6imφ, (B1)

Br (r, φ) =
∑

m

B̃r,m(r)e6imφ, (B2)

Bφ (r, φ) =
∑

m

B̃φ,m(r)e6imφ, (B3)

where m is an integer, and

F̃m(r) = 1

2π

∫ 2π

0
F (r, φ)e−6imφdφ, F = V, Br, Bφ.

V (r, φ), Br (r, φ), and Bφ (r, φ) are real, and therefore

F̃−m(r) = F̃∗
m(r).

Moreover, V (r, φ) and Br (r, φ) are even with respect to the
inversion φ → −φ, and Bφ (r, φ) is odd:

V (r,−φ) = V (r, φ), Br (r,−φ) = Br (r, φ),

Bφ (r,−φ) = −Bφ (r, φ).
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FIG. 8. V (r) (A17) as a function of the polar angle φ for β =
1√
2
. The purple (1), blue (2), sky blue (3), green (4), orange (5), and

red (6) curves denote r = 0.05λ0, 0.1λ0, 0.15λ0, 0.2λ0, 0.25λ0, and
0.3λ0.

Therefore the Fourier components Ṽm, B̃r,m, and B̃φ,m satisfy
the properties

Ṽm(r) = Ṽ−m(r), B̃r,m(r) = B̃r,−m(r),

B̃φ,m(r) = −B̃φ,−m(r).

1. Isotropic approximation for V (r)

Figure 8 shows V (r) as a function of φ for β = 1/
√

2 and
a few values of r. It is clear that for r < 0.3λ0 the potential is
almost isotropic. Hence, for r � 0.3 λ0, the optical potential
(A17) can be well approximated by the isotropic potential
Ṽ (r) ≡ Ṽ0(r) given by Eq. (6).

The lowest-order anisotropic correction to the potential in
Eq. (B1) is given in terms of the Fourier coefficients:

Ṽ1(r) = Ṽ−1(r) ≈ V0

180

(
πr

λ0

)6

. (B4)

For r = r0 = 0.068 λ0, where r0 is the radius where the areal
probability density is maximal, |Ṽ1(r0)| ≈ 5.281 × 10−7 V0;
i.e., it is really small, and therefore the anisotropic corrections
can be neglected for the ground and lowest-energy eigenstates.

The isotropic potential Ṽ0(r) is shown in Fig. 10 (blue
curve). Clearly, Ṽ0(r) is attractive and increases monotonically
with r.

2. Isotropic approximation for B(r)

Figure 9 shows Br (r) and Bφ (r) [Eq. (A20)], as functions
of φ for β = 1/

√
2 and several values of r. Clearly, for r <

0.3λ0, Br (r) depends on r, whereas Bφ (r) oscillates quickly
with φ, but with very small amplitude. Hence, for r � 0.3λ0,
Br (r) can be approximated by the isotropic function B̃(r) ≡
B̃r,0(r):

B̃r,0(r) = B0

3(2I + 1)

{
J1

(
2πr

λ0

)
+ J1

(
4πr

λ0

)

+
√

3 J1

(
2
√

3πr

λ0

)}
, (B5)

(a)

(b)

FIG. 9. (a) Br (r) and (b) Bφ (r), Eq. (A20), as functions of the
polar angle φ for β = 1√

2
. The purple (1), blue (2), sky blue (3),

green (4), orange (5), and red (6) curves denote r = 0.05λ0, 0.1λ0,
0.15λ0, 0.2λ0, 0.25λ0, and 0.3λ0.

and the isotropic part of B̃φ,0(r) vanishes:

B̃φ,0(r) = 0.

The lowest-order anisotropic corrections to Br (r) and Bφ (r)
in Eqs. (B2) and (B3) are given by the Fourier coefficients

B̃r,1(r) = B̃r,−1(r) ≈ − B0

120(2I + 1)

(
πr

λ0

)5

, (B6)

B̃φ,1(r) = B̃∗
φ,−1(r) ≈ − iB0

120(2I + 1)

(
πr

λ0

)5

. (B7)

When r = r0 = 0.068 λ0, |B̃r,1(r0)| = |B̃φ,1(r0)| ≈ 1.236 ×
10−6B0 is very small, and the anisotropic part of the magnetic
field can be neglected for the ground and lowest excited
energy eigenstates.

The isotropic effective radial magnetic field B̃(r) is shown
in Fig. 10 (red curve). Note that B̃(0) = 0. There is a distance
rB = 0.1722 λ0 such that, for r < rB, B̃(r) increases with in-
creasing r. B̃(r) reaches its maximum, B̃(rB) = 0.6780 B0, at
r = rB, and decreases for r > rB. When r = rc = 0.3827 λ0,
B̃(rc) = 0, and for r > rc the fictitious magnetic field reverses
its direction from r̂ to −r̂.
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FIG. 10. Spherically symmetric potential Ṽ (r) ≡ Ṽ0(r) in units
of V0 and the effective radial magnetic field B̃(r) ≡ B̃r,0(r) in units
of B0.

APPENDIX C: PROBABILITY DENSITY FOR F = 1/2

At finite temperature T , the probability density to find the
atom at position r in the 2D plane is

ρ(r) = 1

Z

∑
n,ζ

|�n,ζ (r)|2e−βεn,ζ ,

where

Z =
∑
n,ζ

e−βεn,ζ ,

and β = (kBT )−1 is proportional to the inverse temperature.
At low temperature, where kBT is much smaller than the
orbital excitation energy [see Eq. (11a)], ρ(r) is well approx-
imated by Eq. (12). In the isotropic optical lattice potential
approximation, ρ(r) depends only on r and not on φ. ρ(r)
has a maximum at r = r0 = 0.068 λ0, and rapidly decays with
|r − r0|, as shown in Fig. 3.

APPENDIX D: SEMICLASSICAL DESCRIPTION
OF THE QUANTUM ROTOR

When F is large, F 
 1, we can describe the motion of
the trapped atoms using a semiclassical approximation. This
formulation yields useful insights into the behavior of QRs,
and is simple to carry out within the isotropic approximation
for the SDOLP [Eqs. (6) and (B5)], which is valid near the
minimum of the scalar potential. A power series expansion
about the origin yields

Ṽ0(r) ≈ −V0 + π2V0r2

λ2
0

,

B̃r,0(r) ≈ 2πB0r

(2I + 1)λ0
. (D1)

In terms of the canonical momentum p and the unit vector
f = F/F , and using the power series in Eqs. (D1), we arrive
at the following Hamilton equations of motion:

ṙ = p
M

, (D2a)

ṗ = −2π2V0

λ2
0

r − 2πFB0

(2I + 1)λ0
f‖, (D2b)

ḟ = 2πB0

(2I + 1)h̄λ0
[r × f], (D2c)

where f‖ = fxex + fyey.

It is convenient to use harmonic length and energy units:

harmonic length b0 = λ0

2π

(
2E0

V0

)1/4

,

harmonic energy h̄�h =
√
E0V0

2
,

where the recoil energy E0 is

E0 = h̄2q2
0

2M
= 2π2h̄2

Mλ2
0

. (D3)

In this section, we consider 40K atoms which have I = 4,
J = 1/2, and F = 9/2 in the ground state. When V0 = 100 E0,
b0 = 0.05985 λ0 and h̄�h = 7.071 E0. The time-dependent
position of the atom r(t ) = (x(t ), y(t )) and the unit spin vec-
tor f (t ) = ( fx(t ), fy(t )) are shown in Fig. 11 for B0 = 1.8V0,
with the following initial conditions:

x(0) = 5 b0, y(0) = 0,

px(0) = 0, py(0) = −3h̄/b0,

fx(0) = −0.9975, fy(0) = 0.05, fz(0) = 0.05. (D4)

The motion of the atom is not periodic, and therefore the
trajectory (x(t ), y(t )) in Fig. 11(a) fills a ring with inner
radius 5 b0 and outer radius 6.615 b0, whereas ( fx(t ), fy(t ))
in Fig. 11(b) fills a ring with inner radius 0.9644 and outer
radius 1. For 40K atoms, λ0 = 766.5 nm, and b0 = 45.87 nm.

The results of this section cannot be applied to Li atoms
because, for the semiclassical approximation to be valid, F
must be large.

APPENDIX E: DISTINGUISHING BETWEEN �, a, AND Bex

Consider a QR placed in an external magnetic field Bex in
a noninertial frame moving with a linear acceleration a and
rotating with an angular velocity �. The three-dimensional
Hamiltonian of the QR is

H = H0 + Hz + HB + H� + Ha. (E1)

Here H0 is a 2D Hamiltonian for motion of the QR in the
x-y plane without an external magnetic field and in an iner-
tial frame; using polar coordinates r = (r, φ), H0 = − h̄2∇2

2M +
Ṽ (r) − B̃(r)Fr . The second term on the right-hand side of
Eq. (E1), Hz, is for the motion of the trapped atom in a
harmonic potential in the z direction:

Hz = − h̄2∂2
z

2M
+ Kzz2

2
. (E2)

The harmonic oscillator force constant Kz is assumed to be
large and the atom is in the ground state of the Hamiltonian
(E2). The third term on the right-hand side of Eq. (E1), HB,
is the Zeeman interaction between the QR and the external
magnetic field Bex, HB = − gμB

2I+1 F · Bex. The fourth term, H�,
is due to the fictitious force in a rotating frame of reference,
H� = h̄L · �, where L = F + �, and � is the orbital angular
momentum of the atom around minimum points of Ṽ (r). The
fifth term, Ha, is due to the fictitious force appearing in a
noninertial frame moving with linear acceleration a, Ha =
Ma · r.
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(a)

(b)

FIG. 11. (a) Position of the trapped atom r(t ) = (x(t ), y(t )) and
(b) the unit vector f (t ) = ( fx (t ), fy(t )) parallel to the atomic orbital
momentum. Here, we have taken B0 = 1.8V0 and initial conditions
(initial position, momentum, and the direction of the total atomic
angular momentum), f (t ) = F(t )/|f (t )|, given by Eq. (D4).

We shall calculate energy levels of H0 + Hz in the inertial
frame, and then apply first-order perturbation theory in Bex,
�, and a, to find the corrections to the energies of the QR.

1. Matrix elements of HB

Matrix elements of Fx, Fy, and Fz are

〈n, ζ |Fx|n, ζ ′〉 = 1

2
β

‖
n,ζ (δζ ,ζ ′+1 + δζ ,ζ ′−1),

〈n, ζ |Fy|n, ζ ′〉 = − i

2
β

‖
n,ζ (δζ ,ζ ′+1 − δζ ,ζ ′−1),

〈n, ζ |Fz|n, ζ ′〉 = βz
n,ζ δζ ,ζ ′ ,

where 〈z, r|n, ζ 〉 = ψ̃0(z)�n,ζ (r), and

β
‖
n,ζ = 1

2

∫ {
ψ2

n,ζ ,1/2(r) − ψ2
n,ζ ,−1/2(r)

}
dr, (E3)

βz
n,ζ =

∫
ψn,ζ ,1/2(r)ψn,ζ ,−1/2(r) dr. (E4)

Note the following symmetries:

β
‖
n,−ζ = β

‖
n,ζ , βz

n,−ζ = −βz
n,ζ .

These follow from the wave-function symmetries
ψn,−ζ ,1/2(r) = ψn,ζ ,1/2(r) and ψn,−ζ ,−1/2(r) = −ψn,ζ ,−1/2(r).
The matrix elements of HB are

〈n, ζ |HB|n, ζ ′〉 = − gμB

2I + 1

{
ζBzβ

z
n,ζ δζ ,ζ ′

+ β
‖
n,ζ

2
[B+δζ ,ζ ′−1 + B−δζ ,ζ ′+1]

}
, (E5)

where B± = Bx ± iBy.

2. Matrix elements of H�

Matrix elements of the operator L are

〈n, ζ |Lx|n, ζ ′〉 = 〈n, ζ |Ly|n, ζ ′〉 = 0,

〈n, ζ |Lz|n, ζ ′〉 = ζ�z.

The matrix elements of Lx and Ly vanish since the wave
function ψ̃0(z) is even with respect to the inversion z → −z,
whereas Lx and Ly are odd. Hence, nonvanishing matrix
elements of H� are

〈n, ζ |H�|n, ζ ′〉 = h̄ζ�zδζ ,ζ ′ . (E6)

3. Matrix elements of Ha

Matrix elements of the position operator r are

〈n, ζ |x|n, ζ ′〉 = 1

2
�

‖
n,ζ (δζ ,ζ ′+1 + δζ ,ζ ′−1),

〈n, ζ |y|n, ζ ′〉 = − i

2
�

‖
n,ζ (δζ ,ζ ′+1 − δζ ,ζ ′−1),

〈n, ζ |z|n, ζ ′〉 = 0,

where

�
‖
n,ζ =

∫ {
ψ2

n,ζ ,1/2(r) + ψ2
n,ζ ,−1/2(r)

}
rdr. (E7)

Note the symmetry �
‖
n,−ζ = �

‖
n,ζ . The matrix elements of Ha

are

〈n, ζ |Ha|n, ζ ′〉 = M�
‖
n,ζ

2
[a+δζ ,ζ ′−1 + a−δζ ,ζ ′+1], (E8)

where a± = ax ± iay.
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4. First-order corrections to the energies

In order to find the first-order corrections to the energies of
the QR due to B, �, and a, we apply degenerate perturbation
theory. First-order corrections to the energies of the quantum
states with ζ = ±1/2 are

ε
(1)
n,±1/2(B,�z, a‖) = ±1

2

[(gμBβz
n,1/2

2I + 1
Bz + h̄�z

)2

+ |β‖
n,1/2B+ + M�

‖
n,1/2a+|2

]1/2

. (E9)

Corrections to the energies of the quantum states with ±ζ

(where ζ = 3/2, 5/2, 7/2, . . .) are

ε
(1)
n,±ζ (B,�z, a‖) = ±ζ

(
gμBβz

n,ζ

2I + 1
Bz + h̄�z

)
. (E10)

5. Raman spectroscopy considerations for distinguishing
between various sensors

We propose to use Raman spectroscopy to measure B, �,
and a by applying radio-frequency electromagnetic waves to
the QR with pump and Stokes frequencies (ωp > ωs) that are
far-off-resonance from the F = 3/2 atomic hyperfine state.
In Sec. III A we discussed the Raman transition |0, 1/2〉 ↔
|0,−1/2〉 and the use of the Ramsey separated oscillating
fields method to verify the Raman resonance condition ω ≡
ωp − ωs = �QR. In order to determine �, a, and Bex, we will
need to consider the Raman transitions |0, 1/2〉 ↔ |0,−1/2〉,
|0, 3/2〉 ↔ |0, 5/2〉, and |0,−3/2〉 ↔ |0,−5/2〉, which have
transition frequencies �0 ≡ �QR, �+, and �−, respectively:

�0 = 1

h̄

[
ε

(1)
0,1/2(B,�z, a‖) − ε

(1)
0,−1/2(B,�z, a‖)

]
,

�± = 1

h̄

[
ε0,5/2 − ε0,3/2 + ε

(1)
0,±5/2(B,�z, a‖)

−ε
(1)
0,±3/2(B,�z, a‖)

]
.

Note that when Bex = 0, � = 0, and a = 0 then

�
(0)
+ = �

(0)
− = 1

h̄
(ε0,5/2 − ε0,3/2).

We are interested in the splitting �1 = �+ − �− due to Bex,
�, and a. Using Eqs. (E9) and (E10), we get

�0
(
Bx, By, Bz,�z, ax, ay; �‖

0,1/2, β
‖
0,1/2, β

z
0,1/2

)

= 1

h̄

[(gμBβz
0,1/2

2I + 1
Bz + h̄�z

)2

+
(gμBβ

‖
0,1/2

2I + 1
Bx + M�

‖
0,1/2ax

)2

+
(gμBβ

‖
0,1/2

2I + 1
By + M�

‖
0,1/2ay

)2]1/2

, (E11)

�1
(
Bz,�z; β

z
0,3/2, β

z
0,5/2

)
= 1

h̄

{
2h̄�z + gμB

2I + 1

(
5βz

0,5/2 − 3βz
0,3/2

)
Bz

}
. (E12)

Nine measurements need to be made to allow determina-
tion of the nine unknowns: Bz, By, Bz, �x, �y, �z, ax, ay, and
az. In order to find the nine unknowns, nine measurements are
required. In particular, measurements must be carried out with
the QR placed in x-y, y-z, and z-x optical lattices. Moreover,
measurements of �1 must be made with two different laser in-
tensities, e.g., (V0, B0) = (100 E0, 180 E0) and (50 E0, 90 E0).
In other words, we consider (V0, B0) = (10NE0, 18NE0),
where the dimensionless parameter N = 5 and 10 specifies
the laser intensity. Furthermore, measurements of �0 must be
made with V0 = 100 E0 and B0 = 180 E0.

The numerical solution of the Schrödinger equation (9)
for different values of N yields the following results for
the integrals βz

0,1/2(N ), βz
0,3/2(N ), βz

0,5/2(N ), β
‖
0,1/2(N ), and

�
‖
0,1/2(N ). The values of βz

0,3/2(N ) and βz
0,5/2(N ) for N =

5 and 10 are (see Figs. 12(d) and 12(e))

βz
0,3/2(5) = 0.161531, βz

0,3/2(10) = 0.117236,

βz
0,5/2(5) = 0.154678, βz

0,5/2(10) = 0.111702.

The values of βz
0,1/2(10), β

‖
0,1/2(10), and �

‖
0,1/2(10) for N =

10 are (see Figs. 12(a), 12(b) and 12(c))

βz
0,1/2(10) = 0.107807, β

‖
0,1/2(10) = 0.478494,

�
‖
0,1/2(10) = 0.0986575λ0.

6. Determining Bex, �, and a

With the optical lattice in the x-y plane, measurements can
be made of �1,xy(N ) for N = 5 and 10. Two equations (one
for N = 5 and one for N = 10) are thereby obtained from

gμBBz

h̄(2I + 1)

[
5βz

0,5/2(N ) − 3βz
0,3/2(N )

] + 2�z = �1,xy(N ).

(E13)

The solution of these equations is

Bz = 2I + 1

gμB

h̄[�1,xy(10) − �1,xy(5)]

β̃(10) − β̃(5)
, (E14)

�z = β̃(10) �1,xy(5) − β̃(5) �1,xy(10)

β̃(10) − β̃(5)
, (E15)

where

β̃(N ) = 5βz
0,5/2(N ) − 3βz

0,3/2(N ).

With the optical lattice arranged in y-z and z-x planes,
measurements can be made of �1,yz(N ) and �1,zx (N ) for
N = 5 and 10. These measurements allow us to find Bx, By,
�x, and �y:

Bx = 2I + 1

gμB

h̄[�1,yz(10) − �1,yz(5)]

β̃(10) − β̃(5)
, (E16)

By = 2I + 1

gμB

h̄[�1,zx (10) − �1,zx (5)]

β̃(10) − β̃(5)
, (E17)
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(a)

(b)

(c)

(d)

(e)

FIG. 12. (a) βz
0,1/2 (E4), (b) β

‖
0,1/2 (E3), (c) �

‖
0,1/2 (E7), (d) βz

0,3/2

(E4), and (e) βz
0,5/2 (E4) as functions of N . The red dots denote the

values of βz
0,1/2, β

‖
0,1/2, and �

‖
0,1/2 for N = 10, and the green dots

denote the values of βz
0,3/2 and βz

0,5/2 for N = 5 and 10.

�x = β̃(10) �1,yz(5) − β̃(5) �1,yz(10)

β̃(10) − β̃(5)
, (E18)

�y = β̃(10) �1,yz(5) − β̃(5) �1,yz(10)

β̃(10) − β̃(5)
. (E19)

With the optical lattice arranged in the x-y, y-z, and z-x
planes, measurements can be made of �0,xy, �0,yz, and �0,zx

for N = 10. Three equations are thereby obtained:

(gμBβ
‖
0,1/2

2I + 1
Bα + M�

‖
0,1/2aα

)2

+
(gμBβ

‖
0,1/2

2I + 1
Bα′ + M�

‖
0,1/2aα′

)2

+
(gμBβz

0,1/2

2I + 1
Bα′′ + h̄�α′′

)2

= h̄2�2
0,αα′ , (E20)

where (α, α′, α′′) = (x, y, z), (y, z, x), and (z, x, y). Here Bα

are given by Eqs. (E14), (E16), and (E17) for α = z, x, y,
whereas �α are given by Eqs. (E15), (E18), and (E19). The
solution of Eq. (E20) is

ax = 1

M�
‖
0,1/2

{
1

2

√
Ax,y + Az,x − Ay,z − gμBβ

‖
0,1/2

2I + 1
Bx

}
,

(E21)

ay = 1

M�
‖
0,1/2

{
1

2

√
Ay,z + Ax,y − Az,x − gμBβ

‖
0,1/2

2I + 1
By

}
,

(E22)

az = 1

M�
‖
0,1/2

{
1

2

√
Az,x + Ay,z − Ax,y − gμBβ

‖
0,1/2

2I + 1
Bz

}
,

(E23)

where

Aα,α′ = h̄2�2
0,αα′ −

(gμBβz
0,1/2

2I + 1
Bα′′ + h̄�α′′

)2

,

and (α, α′, α′′) = (x, y, z), (y, z, x) and (z, x, y).
As already discussed in Sec. III A in connection with

the far-off-resonance Raman transition |0, 1/2〉 ↔ |0,−1/2〉,
to determine the Raman resonance condition ωp − ωs = �

in all the far-off-resonance Raman processes considered in
this section, (|0, 1/2〉 ↔ |0,−1/2〉, |0, 3/2〉 ↔ |0, 5/2〉, and
|0,−3/2〉 ↔ |0,−5/2〉), one can employ the Ramsey time-
separated oscillating field method [24] with Raman pulses
[25].
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